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Abstract. In this work we are carried out an algebraic

study of the congruential lineal generator. The obtained results

make possible several combinatorial approaches that improve sig-

nificantly the period length and their behavior.

1. Introduction

In this paper we analyze algebraic structure of the linear congruential
generator xn+1 = (a · xn + b) mod m. Our goal is to analyze, for a given
m, the influence of the coefficients a and b in the length of the period
of generator. The period length is a decisive characteristic for the use
of this generator type in many applications. First we analyze the linear
congruential generator xn+1 = (a · xn + b) mod m when the parameter
m is a prime number, showing that (in that case) we can choose the
parameters a, b in such a form that the cyclic permutation is divided in
disjoint cycles of the same order in such a manner that the length of the
period obtained is close to the theoretical upper bound of m!. For more
detailed exposition see [2].

Next we analyze linear congruential generator for m = p · q, when p

and q are prime numbers. We show that it is possible also in this case
to divide the cyclic permutation in disjoint cycles of (possibly) different
order. We determine the order of each permutation and we estimate the
length of the period obtained in an certain example.
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2. Basic results and preliminaries

Let us recall that if F is a set with a finite number of elements, a generator
of F is an algorithm that obtains a sequence of elements of F . A sequence
{xn}n≥0 is periodic if there exists k such that xn+k = xn for all n ∈ N. For
a periodic sequence, the set of numbers k satisfying the above condition
constitutes a subset of N−{0}. If λ is the smallest element of that subset,
the subsequence x0, x1, . . . , xλ−1 is called a period of {xn}n≥0 and λ is
called the length of that period. We say that {xn}n≥0 is almost periodic
if there exists m ∈ N such that the sequence {xn}n≥m is periodic. In
this case, the smallest number µ satisfying this condition is called the
occurrence index to the period. We shall say that the period of the
sequence {xn}n≥0 is the period of the sequence {xn}n≥µ. It is said that
{F, f, x0} is of maximum period if the period length is equal to |F |.

In the sequel, we shall concentrate in single-step generators, that is,
those that can be written as xn+1 = f(xn), where f is a mapping f :
F → F and F is a finite set. We shall interpret a generator of F as an
algorithm that produces the sequence {xn}n≥0 of elements of F and we
shall denote it by {F, f, x0}.

As the set F is finite, there are h, k, with h < k, such that xh = xk.
Applying f , we have that xh+r = xk+r; therefore, k − h is the period of
the sequence {xi}i≥h. If xi = xj for j > i, as {xl}l≥i is periodic for i ≥ µ

then j − i ≡ 0 (mod λ). We have the following simple result:

Proposition 1. Let {F, f, x0} be a generator, where F is a finite set.
The sequence {xn}n≥0defined according to the rule xn+1 = f (xn)is almost
periodic.

In our case F = Zm = {0, 1, ..., m − 1} is a commutative ring with
unit. We are interested in knowing under what conditions the affine
mapping x 7−→ a · x + b is of cycle length m. The mapping f is bijective
if and only if a is an invertible element of Zm. The mapping fk is the
mapping x 7−→ akx0 + (1 + a + a2 + ... + ak−1) · b. Using the notation
Sk(a) = (1+a+a2+...+ak−1) we may rewrite fk as x 7−→ akx0+b·Sk(a).
We now provide some properties related with Sk(a).

For that purpose, we define the following polynomial with integer
coefficients for k ≥ 1,

Sk(x, y) =
xk − yk

x − y
= xk−1 + xk−2y + ... + yk−1.

Proposition 2. [3]Let k = p be a prime number and let x, y ∈ Zk. If
x ≡ y (mod k), then Sk (x, y) ≡ 0 (mod k).
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Proof. Indeed, if x ≡ y (mod k), then Sk(x, y) = xk−1 + xk−1 +
... + xk−1 = kxk−1 and because k = p, according to Fermat’s theorem
xk−1 ≡ 1 (mod k). Finally Sk(x, y) = k ≡ 0 (mod k). If y = 1, then
x ≡ 1 (mod k) and Sk(x) ≡ 0 (mod k). On the other hand Sk(a) =
(1+a+a2 + ...+ak−1) = 1

a−1(a−1)(1+a+a2 + ...+ak−1) = 1
a−1(ak−1).

Therefore Sk(a) = (a − 1)−1(ak − 1) and Sk(x) ≡ 0 (mod k), so ak ≡ 1
(mod k).

It is important to remark that for f to be of length cycle m, fixed
points should not exist. For the sake of simplicity, let b = 1. Then the
equation x = a · x + a has a unique solution if a 6= 1 (mod m). Hence, if
f is fixed-point free, then a ≡ 1 (mod m). But, in this case, Sk(x) ≡ 0
(mod k) and fm = e, where e is the identity element.

Following this reasoning, it is not difficult to prove:

Proposition 3. [3]If m is a prime number,a ≡ 1 (mod m) and b is
not congruent to 0 (mod m), the mapping fa,b : Zm → Zm defined by
fa,b (x) = a · x + b, where a · x + b is the equivalence class modulo m

corresponding to the number a · x + b, is a cyclic permutation of order m

in Zm (and hence a maximum length generator).

The single-step generator that we have seen, cannot generate se-
quences with period longer than |F |. Our objective is to design a gen-
erator whose period length is close to the theoretical boundary m!, the
order of a symmetric group with m elements. It is well known that if
the order of the cyclic group 〈f〉 generated by f satisfies |〈f〉| = s, given
x ∈ Zm, we have that either x is a fixed point of certain element of 〈f〉 (in
this case, we denote x by xF ), or the set Hs

x = {x, f(x), ..., fs−1(x)} con-
tains exactly s elements. Moreover, it is also possible to find a sequence
x1, x2, ..., xl ∈ Zm such that

Zm = H0 ∪ Hs
x1

∪ ... ∪ Hs
xl

where H0 = {xF },
∣

∣Hs
x1

∣

∣ = ... =
∣

∣Hs
xl

∣

∣ = s, and l · s = m − 1.

3. Generation of pseudo-random numbers and linear con-

gruences

Generation based on the expression

xn+1 = (a · xn + b) mod m, (3.1)

depends on four parameters a, b, m and x0. The parameters in expression
(1) can be divided in two categories:
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1. Parameters a, b, m, providing a maximum length generator.

2. Parameters a, b, m, which do not provide a maximum length gener-
ator.

The first case is thoroughly considered in [1]. We shall carry out here
the analysis of the second option, concentrating first on the case where
m is a prime number and second on the case where m = p · q. To do
so, we shall use the following well-known results that summarize part of
what was mentioned in the previous section:

Theorem 1. If a ≡ 1 (mod m), then for any sequence produced accord-
ing to (1) there exists a fixed point xF such that

xF = (a · xF + b) (mod m)

Remark. The multiplicative group Z
∗
m = {1, 2, ..., m − 1} of the field

Zm is cyclic with generating element z. The order of element z is m− 1.

Therefore a = zl 6= 1 has the order s = m−1
l

, as = 1 and 1 + a + a2 +
... + ak−1 = 0 when a 6= 1. So asx +

(

1 + a + a2 + ... + ak−1
)

b = x,
s > 1,∀x. Definitely for a 6= 1 and for ∀b,

(

1 + a + a2 + ... + ak−1
)

b = 0,
but 1 + a + a2 + ... + ak−1 = 0 so it is verified for ∀b.

Thus if m ≥ 5 is a prime number, then m − 1 is composed, so the
period formed by the previous m− 1 numbers is divided into l subgroups
of s elements each, so that

l · s = m − 1 = φ(m)

where φ(m) is the Euler φ-function, which counts the number of integers
in {1, ..., n} that are relatively prime to n. The number of possible values
of s is

τ(φ(m)) − 1

where τ(pα1

1 pα2

2 ...pαn
n ) = (α1 + 1)(α2 + 1)...(αn + 1) for (m − 1) =

pα1

1 pα2

2 ...pαn
n . The number of subsets l is

l =
m − 1

s

Now, for a given value of s, the valid values of parameter a are the
solutions of the following equation:

as ≡ 1 (mod m) (3.2)

The number of solutions of this equation is φ(s), so that, if s=φ(m), we
have the Euler theorem.
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Remark. As we have seen Z
∗
m is a cyclic permutation divided into l

disjoint cosets consisting of s elements, z ∈ Z
∗
m and we can express this

in the form
Z
∗
m = 〈z〉x0 ∪ 〈z〉x1 ∪ ... ∪ 〈z〉xl−1 (3.3)

where xi is a generating element of each coset

x0 = min 〈z〉
x1 = min Z

∗
m \ 〈z〉

x2 = min Z
∗
m \ {〈z〉x0 ∪ 〈z〉x1}

.....

4. Combinatorial approach

In a computer applications the choice of a modulo m is restricted by
computer word size. For a generator of maximum period, the only way
to increase the period length is to increase the value of the parameter m,
which is bounded, or to use a combination of generators.

In our case, the following procedures can be followed in order to
achieve a large period length. As we have l subsets we can form one of the
l! permutation of the numbers of the set {0, 1, ..., l − 1} as {i0, i1, ..., il−1} .

So we have in this way a permutation of the subsets
{

Hi0 , Hi1 , ..., Hil−1

}

or a permutation of the seeds
{

x0i0 , x0i1 , ..., x0il−1

}

. Next we can follow
the following basic procedure for the case m = p:

• First Step. Start with one permutation obtaining a list of subsets

{

Hi0 , Hi1 , ..., Hil−1

}

or a permutation of the seeds
{

x0i0 , x0i1 , ..., x0il−1

}

.

• Second Step. Of each subset Hij , in the list of permutation

{

Hi0 , Hi1 , ..., Hil−1

}

,

choose the first element x1, or the last element xs−1, or one at ran-
dom xj until all subsets in the list of permutation

{

Hi0 , Hi1 , ..., Hil−1

}

are examining.

• Third Step.The obtained element is sent to the output.

• Fourth step. The next permutation (list of subsets) is generated [1].

• The steps 3,4 are continued until all of the possible permutation
are examined.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.86 Recurrence sequences over residual rings

• Fifth step. Repeat the Second Step choosing the second element
x2, or the element xs−2, or one at random xk 6= xj until all subsets
in the list of permutation are examined.

• Sixth step. 3,4 are continued until all of the possible permutation
are examined.

• ..... and so forth .

The complexity of the presented algorithm doesn’t turn out to be
very superior to the complexity of the algorithm LCG, since differs only
in necessity of generating the next permutation in the step 4 and needs
to evaluate the formula (4.1), slightly more complex then (3.1).

xj =

(

aj · x0ij +
aj − 1

a − 1
· b

)

mod m (4.1)

When j is chosen at random the procedure is more complex then the
algorithm LCG. It is necessary to generate an integer number uniformly
distributed between 1 and s − 1. This can be obtaining using the re-
lationship (3.1). In the successive steps it is necessary to try that the
distribution law is verified, in other words it is necessary to generate an
integer number uniformly distributed between 1 and s− 2 , s− 3, .... and
so on.

We need, also, to evaluate aj mod m.We can use the "power algo-
rithm" or "binary method". This algorithm computes aj mod m, using

O
(

(lg j) (lg m)2
)

bit operations.

The statistical properties of the sequences that is generated by the
algorithm as well as other statistical aspects are shown in [2].

Therefore, it is possible to produce a series whose generation depends
on:

1. The order in which we go through the subsets. The number of
possible variations is l!, hence the period length will be l! · m.

2. The choice of seed x0 in each subset. The number of combinations
for the choice of initial value is sl, hence the period length will be l! ·m ·sl.

3. The choice of subset can be random, as well as the choice of the
number of elements in the chosen subset. This process is carried out so
that the uniform law of distribution of x in the interval between 0 and
m − 1 holds; in other words, each value x in the interval between 0 and
m − 1 should appear only once. In consequence, the period length will
be l! · m · (s!)l.

In this way, for the chosen parameters a, b, m we can generate not
only one serie2 (as in the generator of complete period case) but many
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different series. Therefore, it is possible to come closer to the theoretically
possible upper bound of m! elements.

Following the generation procedures above and if we take initially
m = 655339, its closest prime number is 655337, so taking m = 655337,

we have that m − 1 = 655336 = (23) · (11)2 · 677. If, for instance,
l = 2 · 11 = 22, we determine s = 655337−1

22 = 29778. The period length
for each generation from 1 to 3 will be:

1. 22! · 6.55336 · 105 ≈ 1021 · 6.55336 · 105 ≈ 1026;
2. 22! · 6.55336 · 105 · (29778)22 ≈ 1021 · 6.55336 · 105 · 1098 ≈ 10124;
3. 48! · 6.55336 · 105 · (29778!)22 ≈ 1021 · 6.55336 · 105 · 102.647.414 ≈

102.646.441.
To see the degree of approximation, we can apply Stirling’s formula to
approximate the value 655337!,

ln(m!) ≈
(

m +
1

2

)

· ln(m) − m + ln(
√

2π)

from where
6.55336! ≈ 103.527.102

5. Linear congruences and pseudorandom-numbers gen-

eration for a composite module

We have analyzed a linear congruential generator xn+1 = (a · xn + b)
mod m when the parameter m is a prime number, showing that (in that
case) we can choose the parameters a, b in such a form that the cyclic
permutation is divided in disjoint cycles of the same order in such a
manner that the length of the period obtained is close to the theoretical
upper bound of m!.

In this chapter we analyze the linear congruential generator for m =
m1 ·m2, when m1 and m2 are prime numbers. We show that it is possible
also in this case to divide the cyclic permutation in disjoint cycles of
(possibly) different order. We determine the order of each permutation
and we estimate the length of the period obtained in an specific example.

In order to do that, we recall that a pseudo-random numbers generator
based in a recursive relation

xn+1 = (a · xn + b) mod m (5.1)

makes an ordered arrangement of the different elements of an specific set.
If we consider the following affine function:

fa,b : Zm → Zm

x 7→ a · x + b
(5.2)
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we have that when the parameter a has an inverse (modulo m) this func-
tion is a bijection. Moreover, the set of invertible functions of this form
constitutes a twice transitive group with respect to the operation:

∗ : fa,b ∗ fc,d = fac,ad+b (5.3)

At this moment it is important to recall the following theorem:
Theorem.(Chinese Remainder Theorem) If m1 and m2 are positive

integers such that gcd(m1, m2) = 1 then the groups Zm1
×Zm2

and Zm1m2

are isomorphic.
In our context one could say: If m1 and m2 are two prime numbers,

then the function

Zm1m2
−→ Zm1

× Zm2

xm1m2
−→ (xm1

, xm2
)

(5.4)

is an isomorphism of groups (in fact an isomorphism of rings), so we have
that Zm1m2

⋍ Zm1
× Zm2

.

6. Linear congruences over Zm1m2

We denote by {F, f, x0} a generic single-step generator, that is, a genera-
tor that can be written as xn+1 = f(xn), where f is a mapping f : F → F

and F is a finite set, as a consequence of Chinese Remainder theorem we
can combine two generators {F, f, x0} and {G, g, y0} obtaining the carte-
sian product generator {F × G, f × g, (x0, y0)}.

Lemma. [3] If m is the product of two distinct prime numbers m =
m1 · m2 , the generator G : zi+1 = (a · zi + b) mod m is the cartesian
product of G1 : xi+1 = (a · xi + b) mod m1 and G2 : yi+1 = (a · yi + b)
mod m2. Moreover, the length of G is equal to the least common multiple
of the lengths of G1 and G2.

Now, if we consider the functions f1, f2 and f defined by f1(x) =
a · x + b mod m1,f2(y) = a · y + b mod m2 and f(z) = a · z + b mod m,
the following diagram show us how these functions are relating:

f

Zm → Zm

↓ ↓
f1 × f2

Zm1
× Zm2

→ Zm1
× Zm2

(6.1)

In this diagram the upright arrows represent the Chinese isomorphism.
Let us consider the generator G1 : xi+1 = (a · xi + b) mod m1. Fol-
lowing the underlying ideas of previous lemma, the decomposition into
independent cycles of G1 is
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m1 − 1 = l1 · s1

m1 − 1 = ϕ (m1)

l1 = m1−1
s1

= ϕ(m1)
s1

and the same for generator G2:

m2 − 1 = l2 · s2

m2 − 1 = ϕ (m2)

l2 = m2−1
s2

= ϕ( m2)
s2

On the other hand, we have that

m1 · m2 − 1 = ϕ (m1) + ϕ (m2) + ϕ (m1 · m2)

where ϕ(m) is the Euler φ-function. Therefore,

m1 · m2 − 1 = ϕ (m1) + ϕ (m2) + ϕ (m1 · m2) = s1 · l1 + s2 · l2 + s3 · l3.
G : zi+1 = (a · zi + b) mod (m1 · m2), ϕ(m1 · m2) = l3 · s3.

hence

(m1 · m2) = s3 · l3, ϕ (m1 · m2) = ϕ (m1) · ϕ (m2) = s3 · l3

and

(l1 · s1) · (l2 · s2) = (l3 · s3)

so, we can obtain

G : zi+1 = (a · zi + b) mod (m1 · m2 )
ϕ(m1 · m2) = l3 · s3

Thus ord(s3) = (a1,a2) , a1, a2 6= 1, when 〈z1〉 = Z
∗
m1

, 〈z2〉 = Z
∗
m2

,

(a1,a2) =
(

zl1
1 , zl2

2

)

, and (m1 − 1) · (m1 − 1) = l3 · s3.

Therefor the condicion for s3 = s1 · s2 is that gcd (s1, s2) = 1.
Consequently, we have obtained the following decomposition of the

cyclic permutation associated to generator G:

l1 − groups of s1 elements
l2 − groups of s2 elements

l3 = l1 · l2
s3 = s1 · s2

l3 − groups of s3 elements
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For example, if we want a generator with m of the order 6 · 105, we
can choose m = 644773, so

m = m1 · m2 = 797 · 809, m1 − 1 = 796 = (2)2 · 199
m2 − 1 = 808 = (2)3 · 101

If, for example, l1 = 22, l2 = 22, we have that s =797−1
22 = 199

and s2=
809−1

22 = 202. Then, for the composite module generator m =
m1 · m2 = 797 · 809, we have the following decomposition:

l3 = l1 · l2 = 22 · 22 = 24 = 16

groups of s3 = s1 ·s2 = 199 ·202 = 40198 elements, l3 = l1 = 4 groups
of s4 = s1 = 199 elements, and l4 = l2 = 4 groups of s5 = s2 = 202
elements. The lenghts of each period are the following:

1. [(4!) · 199] · [(4!) · 202] · [(16!) · 40198] ≈ 1027

2.
[

(4!) · 4 · 1994
]

·
[

(4!) · 4 · 2024
]

·
[

(16!) · 16 · 4019816
]

≈ 10110

3.
[

(4!) · 4 · (199!)4
]

·
[

(4!) · 4 · (202!)4
]

·
[

(16!) · 16 · (40198!)16
]

≈ 102.685.022

To see the degree of approximation, we can apply Stirling’s formula
to approximate the value 644773!, ln (m!) ≈

(

m + 1
2

)

· ln (m!) − m +

ln
(√

2 · π
)

, from where 644773! ≈ 103.465.730.
We can resume the results of this example in the following table:
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G1 G2 G3

a=797 a=797 a=797

b=73 b=73 b=73

m=797 m=809 m=644773

l1 = 4 l2 = 4 l3 = 16

xF = 199 xF = 455 xF = 413045

x0 [i] s1 x0 [i] s2 x0 [i] s3 [i]

4 199 2 202 2 40198

6 199 4 202 3 40198

11 199 5 202 4 40198

40 199 7 202 5 40198

6 40198

7 40198

8 40198

11 40198

12 40198

15 40198

18 40198

26 40198

32 40198

37 40198

49 40198

174 202

385 199

971 202

1194 199

1768 202

3621 199

5239 199

7347 202
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R. Criado Dpto. de Matemáticas y Fisica Aplicadas y
CC. de la Naturaleza, Universidad Rey Juan
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