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Abstract. In the paper we prove (Theorem 8.1) that there

exists a continuum of non isomorphic simple modules over KF2,

where F2 is a free group with 2 generators (compare with [Ca]
where a continuum of non isomorphic simple 2-generated groups is
constructed). Using this fact we give an example of a non action
type logically Noetherian representation (Section 9).

In general, the topic of this paper is the action type algebraic geom-
etry of representations of groups. For every variety of algebras Θ and
every algebra H ∈ Θ we can consider an algebraic geometry in Θ over H.
Algebras in Θ may be many sorted (not necessarily one sorted) algebras.
A set of sorts Γ is fixed for each Θ. This theory can be applied to the
variety of representations of groups over fixed commutative ring K with
unit. We consider a representation as two sorted algebra (V, G), where
V is a K-module, and G is a group acting on V . In the action type
algebraic geometry of representations of groups algebraic sets are defined
by systems of action type equations and equations in the acting group
are not considered. This is the special case, which cannot be deduced
from the general theory (see Corollary from Proposition 3.5, Corollary
2 from Proposition 4.2 and Remark 5.1). In this paper the following
basic notions are introduced: action type geometrical equivalence of two
representations, action type quasi-identity in representations, action type
quasi-variety of representations, action type Noetherian variety of repre-
sentations, action type geometrically Noetherian representation, action
type logically Noetherian representation. Proposition 6.2, and Corollary
from Proposition 6.3 provide examples of action type Noetherian variety
of representations and action type geometrically Noetherian representa-
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tions. In Corollary 2 from Theorem 5.1 the approximation-like crite-
rion for two representations to be action type geometrically equivalent is
proved. This criterion is similar to the approximation criterion for two
algebras to be geometrically equivalent in regular sense ([PPT]). Theo-
rem 6.2 gives a criterion for a representation to be action type logically
Noetherian. This criterion is formulated in terms of an action type quasi-
variety generated by a representation (compare with [Pl4]). In Corollary 2
from Theorem 7.1 we consider a Birkhoff-like description [Bi] of an action
type quasi-variety generated by a class of representations. An example
of a non action type logically Noetherian representation allows to build
an ultrapower of a non action type logically Noetherian representation,
which has the same action type quasi-identities but is not action type
geometrically equivalent to the original representation (Corollary from
Theorem 9.1). This result is parallel to the corresponding theorem for
groups [MR].

Introduction

In this paper we consider the action type algebraic geometry of repre-
sentations of groups. General references for universal algebraic geometry,
i.e. the geometry associated with varieties of algebras are [BMR], [MR],
[Pl1–Pl4]. First notions in the algebraic geometry of representations of
groups were defined in [Pl5]. We outline them in the introduction and
consider in detail in the sequel.

We consider only right side modules and throughout the paper "mod-
ule" means a "right side module". Let K be a commutative ring with
unit, G be a group, V be a K-module, and KG be the group ring over
the group G. (V, G) is a representation of the group G if V is a KG-
module. This is equivalent to the existence of the group homomorphism
ρ : G → AutK (V ) and the ring homomorphism ρ : KG → EndK (V )
(in the paper the homomorphism of groups ϕ : G → H, and the corre-
sponding ring homomorphism ϕ : KG → R, where R ⊇ KH are denoted
by the same letter). The multiplication of elements of the module V by
elements of G and KG is denoted by ◦ and other similar symbols, and
is called the action of the group G (ring KG) on elements of the module
V . The variety of representations of groups over the fixed commutative
ring K we denote Rep − K ([PV]).

The homomorphism of two representations (α, β) : (V, G) → (W, H),
is the pair (α, β) of two homomorphisms where α : V → W is the homo-
morphism of K-modules and β : G → H is the homomorphism of groups
subject to condition (v ◦ g)α = vα ◦ gβ , for every v ∈ V and g ∈ G. If
(V, G) is a representation, V0 ≤ V is a K-submodule of V , G0 ≤ G is a
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subgroup of G and V0 is a KG0-submodule, then we say that (V0, G0) is
a subrepresentation of (V, G) (denoted by (V0, G0) ≤ (V, G)).

If (α, β) : (V, G) → (W, H) is a homomorphism of representations,
V0 = kerα, G0 = ker β, then we denote ker (α, β) = (V0, G0). We have
ker (α, β) ≤ (V, G), G0 E G, V0 is a KG-module and G0 acts trivially on
the V/V0. On the other hand, if (V0, G0) ≤ (V, G) is a subrepresentation,
which satisfies the conditions 1) G0 E G, 2) V0 is a KG-module and 3)
G0 acts trivially on the V/V0, then one can define the action of G/G0

on the V/V0 by the rule: (v + V0) ◦ (gG0) = v ◦ g + V0 (v ∈ V , g ∈
G). Then (V/V0, G/G0) is the representation and the pair of natural
homomorphisms α : V → V/V0, β : G → G/G0 is the homomorphism
of representations (α, β) : (V, G) → (V/V0, G/G0). Subrepresentation
(V0, G0) ≤ (V, G), which satisfies the conditions 1), 2) and 3) is called
a normal subrepresentation (denoted by (V0, G0) E (V, G)). We denote
(V/V0, G/G0) = (V, G) / (V0, G0).

Free objects in the Rep − K are representations (XKF (Y ) , F (Y )),
where F (Y ) is the free group with the set of free generators Y , KF (Y )
the group ring over this group, and XKF (Y ) =

⊕
x∈X

xKF (Y ) is the

free KF (Y )-module with the basis X. We denote the representation
(XKF (Y ) , F (Y )) as W (X, Y ). Below in this paper we suppose (if we
do not say anything else specifically) that X and Y are finite subsets of
the countable sets X0 and Y0 respectively.

In the variety Rep−K we can consider subvarieties Θ defined simulta-
neously by a set of identities in acting groups {f = 1 | f ∈ F (Y0)} = H
and by a set of identities of the form {w = 0 | w ∈ X0KF (Y0)} = A.
Elements of A are identities which describe action of groups on mod-
ules. These identities are called action type identities. In other words
Θ is the set of representations (V, G) ∈ Rep − K such that ∀ (α, β) ∈
Hom ((X0KF (Y0) , F (Y0)) , (V, G)) holds (fβ = 1) ∧ (wα = 0) ∀f ∈
H, ∀w ∈ A. Subvarieties of this kind are called in [PV] "bivarieties". For
every (V, G) ∈ Θ we can consider the set of group identities satisfied by
(V, G)

Idgr (V, G) =

=
{

f ∈ F (Y0) | ∀ (α, β) ∈ Hom ((X0KF (Y0) , F (Y0)) , (V, G))
(
fβ = 1

)}
,

and the set of action-type identities satisfied by (V, G)

Ida.t. (V, G) =

= {w ∈ X0KF (Y0) | ∀ (α, β) ∈ Hom ((X0KF (Y0) , F (Y0)) , (V, G)) (wα = 0)} .
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Idgr (V, G) ⊇ H and Ida.t. (V, G) ⊇ A hold. Clearly,
(Ida.t. (V, G) , Idgr (V, G)) is the normal subrepresentation of the repre-
sentation (X0KF (Y0) , F (Y0)). Denote

IdgrΘ =
⋂

(V,G)∈Θ

Idgr (V, G) , Ida.t.Θ =
⋂

(V,G)∈Θ

Ida.t. (V, G) .

(Ida.t.Θ, IdgrΘ) is also the normal subrepresentation of the
(X0KF (Y0) , F (Y0)) and IdgrΘ ⊇ H, Ida.t.Θ ⊇ A. By [PV], ac-
tion type identities (elements of Ida.t.Θ) can be reduced to the identities
in the cyclic module {x}KF (Y0) ∼= KF (Y0), i.e., to the identities of
the form x ◦ u (y1, . . . , yn) = 0, where y1, . . . , yn are some generators of
F (Y0), and u ∈ KF (Y0).

Example 0.1. The identity

x ◦ (y1 − 1)(y2 − 1) . . . (yn − 1)

defines the n-stable variety of group representations. This variety we
denote by Sn.

Denote

Ida.t.Θ ∩ XKF (Y ) = Ida.t. (Θ, X, Y ) , IdgrΘ ∩ F (Y ) = Idgr (Θ, Y ) ,

Id (Θ, X, Y ) = (Ida.t. (Θ, X, Y ) , Idgr (Θ, Y ))

(Id (Θ, X, Y ) is a normal subrepresentation of W (X, Y ))

XKF (Y ) /Ida.t. (Θ, X, Y ) = EΘ(X, Y ), F (Y ) /Idgr (Θ, Y ) = FΘ (Y ) .

Then

WΘ(X, Y ) = W (X, Y )/Id (Θ, X, Y ) = (EΘ(X, Y ), FΘ (Y ))

is the free representation in the variety of representations Θ (relatively
free representation). Below in this paper we suppose (if we do not say
anything else specifically) that Θ is a subvariety of Rep − K.

Let (V, G) be a fixed representation, such that (V, G) ∈ Θ. We con-
sider affine spaces of finite rank over the (V, G) in the variety Θ. These
are the sets Hom (WΘ (X, Y ) , (V, G)).

We have two kinds of equations in the algebraic geometry over rep-
resentations: equations in the acting group of the form f = 1, where
f ∈ FΘ (Y ), and the action type equations of the form w = 0, where
w ∈ EΘ(X, Y ). Action type equations describe action of the group on a
module.
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In action type algebraic geometry of representations we consider only
action type equations. If T ⊂ EΘ(X, Y ) is a set of these equations, it
defines the algebraic set

T∇

(V,G) = {(α, β) ∈ Hom (WΘ (X, Y ) , (V, G)) | ker α ⊃ T} .

over a representation (V, G). If A ⊂ Hom (WΘ (X, Y ) , (V, G)) is a set
of points of the affine space, then we have the "ideal" of action type
equations (in fact the KFΘ (Y )-submodule in EΘ(X, Y )), defined by the
set A:

A∇

(V,G) =
⋂

(α,β)∈A

ker α.

Now we can consider the action type (V, G)-closure of a set of action type
equations T ⊂ EΘ(X, Y ):

T∇∇

(V,G) =
⋂

(α,β)∈T∇

(V,G)

kerα

and the action type (V, G)-closure of a set of points A ⊂ Hom(WΘ(X, Y ),
(V, G)):

A∇∇

(V,G) =
{

(α, β) ∈ Hom (WΘ (X, Y ) , (V, G)) | kerα ⊃ A∇

(V,G)

}
.

Definition 0.1. Representations (V1, G1) , (V2, G2) ∈ Θ are called ac-
tion type geometrically equivalent (denoted (V1, G1) ∼a.t. (V2, G2))
if T∇∇

(V1,G1) = T∇∇

(V2,G2) for every X and Y and for every set T ⊂ EΘ(X, Y ).
By Proposition 4.3 this definition is correct, i.e., action type geometric

equivalence of representations does not depend on subvariety Θ.
Definition 0.2. The universal logic formula of the form

(
n∧

i=1

(wi = 0)

)
⇒ (w0 = 0) , (0.1)

where {w0, w1, . . . , wn} ⊂ XKF (Y ), is called an action type quasi-
identity.

We say that a representation (V, G) is fulfilled on the formula (0.1)
and denote:

(V, G) �

((
n∧

i=1

(wi = 0)

)
⇒ (w0 = 0)

)

if wα
0 = 0 for every (α, β) ∈ Hom (W (X, Y ) , (V, G)), such that wα

i = 0
for every i ∈ {1, . . . , n}.
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Also we can consider the infinite action type "quasi-identity":

(
∧

i∈I

(wi = 0)

)
⇒ (w0 = 0) , (0.1’)

where {w0} ∪ {wi | i ∈ I} ⊂ XKF (Y ), |I| ≥ ℵ0. This is not a logic
formula in the usual sense, but we can interpret its meaning by the
rule: a representation (V, G) satisfies (0.1’) if wα

0 = 0 for every (α, β) ∈
Hom (W (X, Y ) , (V, G)), such that wα

i = 0 for every i ∈ I.
Definitions 0.3. A representation (V, G) ∈ Θ is called action type
geometrically Noetherian if for every sets X and Y and every set
T ⊂ EΘ(X, Y ), there is a finite set T0 ⊂ T , such that (T0)

∇

(V,G) = T∇

(V,G).

A representation (V, G) ∈ Θ is called action type logically
Noetherian if for every sets X and Y , every set T ⊂ EΘ(X, Y ) and
every w ∈ T∇∇

(V,G), there is a finite set T0 ⊂ T , such that w ∈ (T0)
∇∇

(V,G).
Also by Proposition 4.3, action type geometric Noetherianity and ac-

tion type logic Noetherianity of representation does not depend on sub-
variety Θ.

The paper is organized as follows. We start with two auxiliary sec-
tions. For the sake of completeness we recall in Section 1 some basic
definitions and constructions for modules and representations of groups
which will be needed later. In Section 2 we consider operators on classes
of algebras. Some of these operators act specifically on classes of repre-
sentations of groups and can be found in [PV]. In this paper we continue
to study the properties of these operators.

In Section 3 we study the basic notions related to algebraic geome-
try in representations of groups. We distinguish two kinds of equations:
equations in the acting group and action type equations. The main con-
cepts of the action type algebraic geometry of representations, i.e. the
geometry determined by action type equations, are defined in Section 4.
Section 5 deals with the notion of action type geometrical equivalence of
representations. In Corollary 2 from Theorem 5.1 an approximation-like
criterion for two representations of groups to be action type geometrically
equivalent is presented.

The notions of Noetherian variety of algebras and geometrically (logi-
cally) Noetherian algebra play an important role in the theory (see, [Pl3–
Pl4]). The corresponding notions of action type Noetherian variety of
representations and action type geometrically (logically) Noetherian rep-
resentation are discussed in Section 6. Theorems 6.1 and 6.2 establish re-
lations between geometrical and logical properties of logically Noetherian
representations. Two examples are presented: the n-stable variety of rep-
resentation over the Noetherian ring K is the action type Noetherian
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variety for every n ∈ N (Proposition 6.2), and every finite dimension
representation over the field K is action type geometrically Noetherian
(Corollary from the Proposition 6.3).

R.Gobel and S. Shelah ([GSh]) proved that there is a non logically
Noetherian group. A.Myasnikov and V.Remeslennikov [MR] proved that
for every non logically Noetherian group there exists an ultrapower of
this group, which, of course, has the same quasi-identities as the original
group, but is not geometrically equivalent to the original group. Our
target in the three final sections is to prove a similar result in the ac-
tion type algebraic geometry of representations. In Section 7 we consider
action type quasi-varieties of representations, i.e. quasi-varieties of repre-
sentations, defined by action type quasi-identities. We give a description
of the action type quasi-variety generated by a class of representations in
terms of operators on classes of representations.

In Section 8 we prove Theorem 8.1: There exists a continuum of
non isomorphic simple modules over KF2, where F2 is a free group with
2 generators (K is a countable field). This theorem is similar to the
result of R.Camm [Ca]: there is a continuum of non isomorphic simple
2-generated groups. The latter theorem has been used by R.Gobel and
S. Shelah in the construction of a non logically Noetherian group. We
use Theorem 8.1 in the Section 9 (Theorem 9.1) for the construction of a
non action type logically Noetherian representation. Then we show that
there is an ultrapower of this representation which has the same action
type quasi-identities as the original representation, but is not action type
geometrically equivalent to it.

1. Some basics on modules and representations of groups

For the sake of completeness we will present in this section some well-
known basic notions and facts about the representations of groups and
modules which we will use later.

A representation (V, G) is finitely generated if G is a finitely generated
group and V is a finitely generated KG-module.

The Cartesian product of the family of representations {(Vi, Gi) | i ∈ I}

((Vi, Gi) ∈ Rep−K for every i ∈ I) is the representation

(∏
i∈I

Vi,
∏
i∈I

Gi

)
,

with componentwise action.

If {Ai | i ∈ I} is a family of sets and F is a filter over the set of
indices I, then consider equivalence ∼F on the set A =

∏
i∈I

Ai: a1 ∼F a2

if {i ∈ I | aπi

1 = aπi

2 } ∈ F, where a1, a2 ∈ A, πi : A → Ai are projections.
We denote by [a]

∼F
the equivalence class ∼F, generated by the element
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a ∈ A. The filtered product of the family of sets {Ai | i ∈ I} by the

filter F is the factor set A/ ∼F=

(∏
i∈I

Ai

)
/ ∼F. If {(Vi, Gi) | i ∈ I} is a

family of representations and F is a filter over the set of indices I, then
the filtered product of this family of representations by the filter F is the
representation

(
∏

i∈I

(Vi, Gi)

)
/ ∼F=

((
∏

i∈I

Vi

)
/ ∼F,

(
∏

i∈I

Gi

)
/ ∼F

)
,

where action of the group

(∏
i∈I

Gi

)
/ ∼F on the module

(∏
i∈I

Vi

)
/ ∼F is

defined by [v]
∼F

◦ [g]
∼F

= [v ◦ g]
∼F

(v ∈
∏
i∈I

Vi, g ∈
∏
i∈I

Gi).

The regular representation (KG, G) is defined by: v ◦ g = vg, where
v ∈ KG, g ∈ G. If U ≤ KGKG (in this way we denote both a right
ideal in a ring and a right submodule in a module) then KG/U is the
KG-module and we have the representation (KG/U, G): vν ◦ g = (vg)ν ,
where v ∈ KG, g ∈ G, ν : KG → KG/U is the natural homomorphism.

Let ρ : G → AutK (V ) be the group homomorphism, which defines a
representation (V, G). We denote

ker (V, G) = ker ρ = {g ∈ G | ∀v ∈ V (v ◦ g = v)} .

The ker (V, G) is the normal subgroup of G. If ker (V, G) = {1}, then the
representation is called faithful. Let (V, G) be an arbitrary representation,
G̃ = G/ ker (V, G), ν : G → G/ ker (V, G) is the natural homomorphism.
We can define the action of G̃ on module V by v ∗ gν = v ◦ g (v ∈ V ,

g ∈ G). The representation
(
V, G̃

)
is faithful and called the faithful

image of (V, G).
Let R be a ring with unit, M is a R-module, X ⊆ M . We can consider

the annihilator of the set X: annRX = {r ∈ R | ∀x ∈ X (xr = 0)} , and
the stabilizer of the set X: stabRX = {r ∈ R | ∀x ∈ X (xr = x)}. It is
well-known that annRX is the right ideal of R and if X is a submodule
of M , then the annRX is a two-sided ideal of R and the stabRX is a
semigroup of R. It is clear that stabRX = 1 + annRX. If (V, G) is a
representation, X ⊆ V , we denote (stabKGX) ∩ G = stabX; by this
notation we have stabV = ker (V, G).
Proposition 1.1. If R is a ring with unit, U ≤ RR right ideal of the ring
R, then annR (R/U) is the maximal two-sided ideal of the R, contained
in U . ([Pi, 2.1])
Proposition 1.2. Let K be a commutative ring with unit, G be a group,
U ≤ KGKG, then ker (KG/U, G) is the maximal normal subgroup of
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the G contained in the group (1 + U) ∩ G = {g ∈ G | g − 1 ∈ U}. This
proposition is similar to Proposition 1.1.
Corollary. If U ≤KG KGKG is two-sided ideal of the KG, then

(1 + U) ∩ G = {g ∈ G | g − 1 ∈ U} = ker (KG/U, G) .

If ϕ : S → R is a homomorphism of rings, then over every R-module VR

we can define the structure of an S-module: v ◦ s = vsϕ (v ∈ V , s ∈ S).
We say in this case that S-module V is defined by the homomorphism ϕ
and sometimes it is denoted by (V )ϕ.
Proposition 1.3. If ϕ : S → R is an epimorphism of rings and U ≤ RR

is a right ideal of the ring R, then R/U ∼= S/Uϕ−1
as S-modules. If

U ≤R RR a two-sided ideal, then R/U ∼= S/Uϕ−1
as rings.

Corollary 1. Let ϕ : S → R is an epimorphism of rings, U ≤ RR a
right ideal of the ring R. Then

S/annS (R/U) ∼= R/ (annS (R/U))ϕ = R/annR (R/U)

as rings.
The epimorphism of groups ϕ : F → G can be extended to the epi-

morphism of associative algebras ϕ : KF → KG. So, we have
Corollary 2. If F = F (X) is the free n-generated group, G is another
n-generated group, U ≤ KGKG is a right ideal of the ring KG, then

KF/annKF (KG/U) ∼= KG/annKG (KG/U)

as associative algebras.
Proposition 1.4. Let VR

∼= WR as R-modules, then annR (VR) =
annR (WR). ([Pi, 2.1])

2. Operators on classes of representations of groups

Let X be a class of algebras in some variety Θ (many sorted in general).
We consider the following operators on classes of algebras:

S: algebra H ∈ SX if and only if H is a subalgebra of some algebra
G ∈ X;

C: algebra H ∈ CX if and only if H is a Cartesian product of a family
of algebras from the class X;

F : algebra H ∈ FX if and only if H is a filtered product of a family
of algebras {Gi | i ∈ I} from the class X by an arbitrary filter over the
set I;

Cup: algebra H ∈ CupX if and only if H is a filtered product of a
family of algebras {Gi | i ∈ I} from the class X by an arbitrary ultrafilter
over the set I;
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L: algebra H ∈ LX if and only if H0 ∈ X for every finitely generated
subalgebra H0 ≤ H.
Definitions 2.1. Let X be a class of algebras in some variety Θ.

If U is an operator on the classes of algebras, we say that class of
algebras X is closed under the operator U if UX = X.

An operator U on the classes of algebras is called closed operator
if UUX = UX for every class of algebras X.

An operator U on the classes of algebras is called monotone if UX1 ⊂
UX2 holds when X1 ⊂ X2 (X1, X2 - classes of algebras of the variety Θ).

An operator U on the classes of algebras is called the operator of
extension on the fixed class X if UX ⊃ X, an operator U on the classes
of algebras is called the operator of extension if it is an operator of
extension on all class of algebras.

If U1, . . . ,Un are operators on the classes of algebras and X is a class
of algebras, we denote by {U1, . . . ,Un}X the minimal class of algebras
which contain the class X and closed under all operators U1, . . . ,Un. Of
course, {U1, . . . ,Un} will also be the operator on the classes of algebras.

It is clear that operators L, S, C, F , Cup are monotone. Operators
S, C are closed and operators of extension. F is also an operator of
extension, because over the set {1} the family of sets {{1}} is a filter.
And F is a closed operator (see [Ma]).

It is well-known that for every class of algebras X fulfills

CSX ⊂ SCX (2.1)

and
FSX ⊂ SFX. (2.2)

About operator L in [PPT, Theorem 3] it was proved that if X is a
class of algebras, then

SLX = LX; (2.3)

CLX ⊂ LSCX; (2.4)

if SX = X, then X ⊂ LX (2.5)

and
LLX = LX, (2.6)

and it was induced from this that {L,S, C} = LSC.
Let X be a class of representations. On classes of representations we

can consider some special operators:
Qr: a representation (V, G) ∈ QrX if and only if there exists a rep-

resentation (V, D) ∈ X, such that (idV , ϕ) : (V, D) → (V, G) is a homo-
morphism of representations and ϕ : D → G is an epimorphism ([PV,
1.3]);
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Q0: a representation (V, G) ∈ Q0X if and only if there exists a rep-
resentation (V, D) ∈ X, such that (idV , ϕ) : (V, G) → (V, D) is a homo-
morphism of representations and ϕ : G → D is an epimorphism ([PV,
1.3]);

Sr: a representation (V, G) ∈ SrX if and only if G ≤ H and (V, H) ∈
X.

It is clear that operators Q0, Qr, Sr are monotone, closed and oper-
ators of extension.

Now we prove

Lemma 2.1.

QrLX ⊂ LQrX, (2.7)

Q0LX ⊂ LQ0X, (2.8)

FQ0X ⊂ Q0FX, (2.9)

FQrX ⊂ QrFX, (2.10)

for every class of representations X.

Proof:

Let X be a class of representations.

Let (V, G) ∈ QrLX. Then there exists representation (V, D) ∈ LX

and epimorphism ϕ : D → G, such that (idV , ϕ) is the homomorphism of
representations. Let (V0, G0) be a finitely generated subrepresentation of
(V, G) and G0 = 〈g1, . . . , gn〉. Let dϕ

i = gi (di ∈ D, 1 ≤ i ≤ n). Denote
D0 = 〈d1, . . . , dn〉. v ◦ d = v ◦ dϕ for every v ∈ V , d ∈ D. So (V0, D0) ≤
(V, D) and (V0, D0) is a finitely generated representation, because V0 is
finitely generated KG0-module. (V, D) ∈ LX, so (V0, D0) ∈ X. Therefore
(V0, G0) ∈ QrX and (V, G) ∈ LQrX. (2.7) is proved.

Similarly we can prove (2.8).

Let (V, G) ∈ FQ0X. Then

(V, G) =

((
∏

i∈I

Vi

)
/ ∼F,

(
∏

i∈I

Gi

)
/ ∼F

)
,

where {(Vi, Gi) | i ∈ I} ⊂ Q0X. So, there is an epimorphism ϕi : Gi → Di

and a representation (Vi, Di), such that (Vi, Di) ∈ X and (idVi
, ϕi) :

(Vi, Gi) → (Vi, Di) is a homomorphism of representations, exist for every
i ∈ I. Hence,

(
idQ

i∈I

Vi
, ϕ

)
:

(
∏

i∈I

Vi,
∏

i∈I

Gi

)
→

(
∏

i∈I

Vi,
∏

i∈I

Di

)
,
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where ϕ =
∏
i∈I

ϕi, is a homomorphism of representations. Let πi :
∏
i∈I

Gi → Gi and ρi :
∏
i∈I

Di → Di be projections. Let g1, g2 ∈
∏
i∈I

Gi

and g1 ∼F g2, i.e. {i ∈ I | gπi

1 = gπi

2 } ∈ F. Then

F ∋{i ∈ I | gϕρi

1 = gϕρi

2 } ⊃ {i ∈ I | gπi

1 = gπi

2 } ,

so gϕ
1 ∼F gϕ

2 . Then we can define

ϕ̃ :

(
∏

i∈I

Gi

)
/ ∼F∋ [g]

∼F
→ [gϕ]

∼F
∈

(
∏

i∈I

Di

)
/ ∼F .

ϕ̃ is an epimorphism and


id Q

i∈I

Vi

!
/∼F

, ϕ̃


 is a homomorphism of rep-

resentations.
((

∏

i∈I

Vi

)
/ ∼F,

(
∏

i∈I

Di

)
/ ∼F

)
∈ FX,

so

(V, G) =

((
∏

i∈I

Vi

)
/ ∼F,

(
∏

i∈I

Gi

)
/ ∼F

)
∈ Q0FX.

(2.9) is proved.

Similarly we can prove (2.10).

Corollary. {
Qr,Q0,L,S, C

}
= LQ0QrSC (2.11)

and {
Q0,Qr,S,F

}
= Q0QrSF . (2.12)

Proof:

By the results of [PV, 1.3.2] and by (2.2), (2.9) and (2.10) we have
immediately (2.12).

To prove (2.11) we must use (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), and
methods of [PPT, Theorem 3].

3. Basic notions of algebraic geometry of representations

Let (V, G) ∈ Θ be a fixed representation. Let Hom (WΘ (X, Y ) , (V, G))
be the affine space of finite rank over the (V, G).
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Consider in this affine space the algebraic set

A = (T1, T2)
′

(V,G) =

= {(α, β) ∈ Hom (WΘ (X, Y ) , (V, G)) | kerα ⊃ T1, kerβ ⊃ T2} ,

defined by an arbitrary pair (T1, T2) of sets of equations (T1 ⊂ EΘ(X, Y ),
T2 ⊂ FΘ (Y )).

On the other hand, for an arbitrary set of points A ⊂ Hom(WΘ (X, Y ) ,
(V, G)) in the affine space we have the "ideal of equations" (in our case -
normal subrepresentation of the WΘ (X, Y ) ), defined by this set:

T = A′

(V,G) =


 ⋂

(α,β)∈A

ker α,
⋂

(α,β)∈A

kerβ


 .

Then, the (V, G)-closure of the pair (T1, T2) of sets of equations is:

(T1, T2)
′′

(V,G) =




⋂

(α,β)∈(T1,T2)′(V,G)

ker α,
⋂

(α,β)∈(T1,T2)′(V,G)

kerβ


 .

The (V, G)-closure of the set of points A ⊂ Hom (WΘ (X, Y ) , (V, G)) is:

A′′

(V,G) = {(µ, ν) ∈ Hom(WΘ(X, Y ), (V, G)) | ker µ ⊃ T1, ker ν ⊃ T2}

where (T1, T2) = A′

(V,G).

We say that a pair of sets of equations (S1, S2) is contained in a pair
of sets of equations (T1, T2) (S1, T1 ⊂ EΘ(X, Y ), S2, T2 ⊂ FΘ (Y )) and
denote

(S1, S2) ⊂ (T1, T2) (3.1)

if S1 ⊂ T1 and S2 ⊂ T2. The correspondence ′ is the Galois correspon-
dence between sets of points and pairs of sets of equations, that is:

1) ((S1, S2) ⊂ (T1, T2) ⊂ WΘ (X, Y )) ⇒
(
(S1, S2)

′

(V,G) ⊃ (T1, T2)
′

(V,G)

)
,

2) (A ⊂ B ⊂ Hom (WΘ (X, Y ) , (V, G))) ⇒
(
B′

(V,G) ⊃ A′

(V,G)

)
,

3) ((T1, T2) ⊂ WΘ (X, Y )) ⇒
(
(T1, T2) ⊂ (T1, T2)

′′

(V,G)

)
,

4) (A ⊂ Hom (WΘ (X, Y ) , (V, G))) ⇒
(
A ⊂ A′′

(V,G)

)
-

for every X and Y and every representation (V, G).
Definitions 3.1. We say that a pair of sets of equations (T1, T2) is
(V, G)-closed if (T1, T2) = (T1, T2)

′′

(V,G) and that a set of points A is

(V, G)-closed if A = A′′

(V,G).



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.B. Plotkin, A. Tsurkov 61

If the pair of sets of equations (T1, T2) is (V, G)-closed, then (T1, T2)
is the normal subrepresentation of the WΘ (X, Y ).

As usual:

Proposition 3.1. The (V, G)-closure of a pair of sets (T1, T2) is equal
to the smallest (V, G)-closed pair containing the pair (T1, T2).

By [Pl2, Proposition 3] we have

Proposition 3.2. Let Θ1, Θ2 are a subvariety of Rep − K, (V, G) ∈
Θ1 ⊂ Θ2. There is a one-to-one order preserving correspondence be-
tween lattices of (V, G)-closed subrepresentations in WΘ2 (X, Y ) and in
WΘ1(X, Y ).

By this proposition we can consider the lattices of (V, G)-closed sub-
representations in the biggest variety of representations: in Rep − K.

Quasi-identity in Rep − K can have the forms:

((
n1∧

i=1

(wi = 0)

)
∧

(
n2∧

i=1

(fi = 1)

))
⇒ (w0 = 0) (3.2.1)

and ((
n1∧

i=1

(wi = 0)

)
∧

(
n2∧

i=1

(fi = 1)

))
⇒ (f0 = 1) , (3.2.2)

where wi ∈ XKF (Y ) (0 ≤ i ≤ n1), fi ∈ F (Y ) (0 ≤ i ≤ n2). We say
that a representation (V, G) satisfies (3.2.1) and denote:

(V, G) �

(((
n1∧

i=1

(wi = 0)

)
∧

(
n2∧

i=1

(fi = 1)

))
⇒ (w0 = 0)

)

if wα
0 = 0, for every homomorphism (α, β) ∈ Hom (W (X, Y ) , (V, G))

which satisfies wα
i = 0 for every i ∈ {1, . . . , n1} and fβ

i = 1 for every i ∈

{1, . . . , n2}. Similarly, a representation (V, G) satisfies (3.2.2) if fβ
0 = 1,

for every (α, β) ∈ Hom (W (X, Y ) , (V, G)) such that wα
i = 0 for every

i ∈ {1, . . . , n1} and fβ
i = 1 for every i ∈ {1, . . . , n2}.

Also we can consider the infinite "quasi-identities":




∧

i∈I1

(wi = 0)


 ∧


∧

i∈I2

(fi = 1)




⇒ (w0 = 0) (3.2.1’)

and



∧

i∈I1

(wi = 0)


 ∧


∧

i∈I2

(fi = 1)




⇒ (f0 = 1) , (3.2.2’)
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where wi ∈ XKF (Y ) (i ∈ I1∪{0}), fi ∈ F (Y ) (i ∈ I2∪{0}), I1, I2 is not
necessary finite. We say that a representation (V, G) satisfies (3.2.1’) if
wα

0 = 0, for every (α, β) ∈ Hom (W (X, Y ) , (V, G)) such that wα
i = 0 for

every i ∈ I1 and fβ
i = 1 for every i ∈ I2. Similarly, a representation (V, G)

satisfies (3.2.2’) if fβ
0 = 1, for every (α, β) ∈ Hom (W (X, Y ) , (V, G)),

such that wα
i = 0 for every i ∈ I1 and fβ

i = 1 for every i ∈ I2.

Let X be a class of representations. Denote by qIdX the set of quasi-
identities satisfied by all representations of this class. Let now Q be a set
of quasi-identities of representations. Denote by qV arQ the class of all
representations, which satisfy all quasi-identities from the Q; this class is
called a quasi-variety of representations. The quasi-variety generated by
the class X , i.e. qV arqIdX, is denoted by qV arX. If X= {(V, G)} then
we denote qIdX = qId (V, G), qV arX = qV ar (V, G).

It is easy to see that

Proposition 3.3. If {wi | i ∈ I1} ∪ {w0} ⊂ XKF (Y ), {fi | i ∈ I2} ∪
{f0} ⊂ F (Y ), (T1, T2) = ({wi | i ∈ I1} , {fi | i ∈ I2})

′′

(V,G) then

(V, G) �






∧

i∈I1

(wi = 0)


 ∧


∧

i∈I2

(fi = 1)




⇒ (w0 = 0)




if and only if w0 ∈ T1 and

(V, G) �






∧

i∈I1

(wi = 0)


 ∧


∧

i∈I2

(fi = 1)




⇒ (f0 = 1)




if and only if f0 ∈ T2.

Proposition 3.4. (T1, T2) ⊂ WΘ (X, Y ) is a (V, G)-closed subrepresen-
tation ( (V, G) ∈ Θ) if and only if WΘ (X, Y ) / (T1, T2) ∈ SC (V, G).

Proof:

We apply the Remak theorem for representations to the representa-
tion WΘ (X, Y ) / (T1, T2).

Corollary. Let (V, G) , (W, H) ∈ Θ. Every (W, H)-closed representation
is a (V, G)-closed representation if and only if (W, H) ∈ LSC (V, G).

This corollary we can prove by the method of [Pl2, Proposition 14].

Definition 3.2. Representations (V1, G1) , (V2, G2) ∈ Θ are called geo-
metrically equivalent (denoted (V1, G1) ∼ (V2, G2)) if (T1, T2)

′′

(V1,G1) =

(T1, T2)
′′

(V2,G2) for every X and Y and for every pair of sets (T1, T2) ⊂
WΘ (X, Y ).
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Corollary from Proposition 3.1. (V1, G1) ∼ (V2, G2) if and only if every
(V1, G1)-closed representation is a (V2, G2)-closed representation and vice
versa.

This corollary and Proposition 3.2 imply that the definition of geomet-
rical equivalence is correct: if we can state the geometrical equivalence
of two representations (V1, G1) and (V2, G2) in a variety Θ, containing
both of them, then these representations are geometrically equivalent in
every variety with the same property, in particular, in the biggest vari-
ety of representations Rep − K. Below in this paper we calculate the
geometrical equivalence of representations only in the variety Rep − K.

Corollary 1 from Proposition 3.3. If (V1, G1) ∼ (V2, G2) then qId(V1, G1)
= qId(V2, G2).

Corollary 2 from Proposition 3.3. (V1, G1) ∼ (V2, G2) if and only if rep-
resentations (V1, G1) and (V2, G2) have same infinite "quasi-identities".

By [PPT, Theorem 3], we have:

Proposition 3.5. Let (V1, G1) and (V2, G2) be representations. Then
(V1, G1) ∼ (V2, G2) if and only if LSC (V1, G1) = LSC (V2, G2).

Corollary. Let (V1, G1) and (V2, G2) be representations. If (V1, G1) ∼
(V2, G2) then G1 ∼ G2 as groups.

Proof: Let G0
1 ≤ G1 be a finitely generated subgroup. There is a

finitely generated subrepresentation
(
V 0

1 , G0
1

)
⊂ (V1, G1) and there is

an embedding of representations
(
V 0

1 , G0
1

)
→֒ (V2, G2)

I =
(
V I

2 , GI
2

)
(I -

some set of indices). So, there is the embedding of groups: G0
1 →֒ GI

2.
Therefore G1 ∈ LSC (G2). By symmetry, G2 ∈ LSC (G1). By [PPT,
Theorem 3], the proof is complete.

A subrepresentation (V0, G0) ≤ (V, G) is finitely generated as a nor-
mal subrepresentation if this is a normal subrepresentation, the group G0

is finitely generated as a normal subgroup and V0 is a finitely generated
KG0-module.

Define now the notions of Noetherian variety of representations (sub-
variety of Rep−K), geometrically Noetherian representation and logically
Noetherian representation:

Definitions 3.3. We call a variety Θ ⊂ Rep − K Noetherian if for
every X and Y every normal subrepresentation of WΘ(X, Y ) is finitely
generated as a normal subrepresentation.

A representation (V, G) ∈ Θ is called geometrically Noetherian if
for every sets X and Y and every pair of sets (T1, T2) ⊂ WΘ (X, Y ), there
is a pair of finite subsets (R1, R2) ⊂ (T1, T2), such that (T1, T2)

′

(V,G) =

(R1, R2)
′

(V,G).

A representation (V, G) ∈ Θ is called logically Noetherian if for
every sets X and Y , every pair of sets (T1, T2) ⊂ WΘ (X, Y ) and every
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w ∈ EΘ (X, Y ) ( f ∈ FΘ (Y )) belongs to the first (second) component of
the pair (T1, T2)

′′

(V,G) exists a pair of finite subsets (R1, R2) ⊂ (T1, T2),
such that w ( f) belongs to the first (second) component of the pair
(R1, R2)

′′

(V,G).
It is clear that Noetherianity of the variety Θ of representations is

equivalent to the ascending chain condition for normal subrepresentations
in every finitely generated relatively free representation WΘ(X, Y ) and
geometrical Noetherianity of the representation (V, G) ∈ Θ is equivalent
to the ascending chain condition for (V, G)-closed normal subrepresenta-
tions in every WΘ (X, Y ) .

By (3.1) the order on a family of pairs of sets
{(R, T ) | (R, T ) ⊂ W (X, Y )} is defined. We can consider directed
systems by this order. Also we can consider the union of two pairs
of sets: (R1, T1) ∪ (R2, T2) = (R1 ∪ R2, T1 ∪ T2). According to [Pl4,
Proposition 7]:
Proposition 3.6. A representation (V, G) ∈ Θ is logically Noetherian
if and only if the union of any directed system of (V, G)-closed subrepre-
sentations in the WΘ (X, Y ) for every X and Y is also a (V, G)-closed
subrepresentation.

So, by Proposition 3.2, geometric Noetherianity and logic Noetheri-
anity of representation is not depend in what subvariety Θ we consider
those. Also every representation (V, G) from the Noetherian variety Θ is
geometrically Noetherian. And every geometrically Noetherian represen-
tation is logically Noetherian.

By Proposition 3.3, if a representation (V, G) is logically Noetherian
then for every infinite quasi-identity of the form (3.2.1’) ( (3.2.2’) ) which
is fulfilled in the (V, G) there is a finite quasi-identity with the minor
premise and the same conclusion which is also fulfilled in the (V, G). A
representation (V, G) is geometrically Noetherian if and only if in this
reduction choosing of a premise is not dependent on the conclusion, but
only on the infinite premise.
Proposition 3.7. If a representation (V, G) is geometrically (logically)
Noetherian, then the group G is geometrically (logically) Noetherian too.

Proof:
Let (V, G) be a logically Noetherian representation. Let the group G

satisfies the infinite group quasi-identity

(
∧

i∈I

(fi = 1)

)
⇒ (f0 = 1) ,

where {fi | i ∈ I} ∪ {f0} ⊂ F (Y ). This quasi-identity can be considered
as a special case of (3.2.2’) and can be reduced in (V, G) to the finite
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quasi-identity 
∧

i∈I0

(fi = 1)


⇒ (f0 = 1) ,

where I0 ⊂ I, |I0| < ℵ0. Every group homomorphism β ∈ Hom (F (Y ) , G)
can be realized as the second component in a homomorphism of repre-
sentations (α, β) ∈ Hom (W (X, Y ) , (V, G)), for example, as the second
component in the pair (0, β) ∈ Hom (W (X, Y ) , (V, G)) (for every X).
Therefore, G fulfill the quasi-identity


∧

i∈I0

(fi = 1)


⇒ (f0 = 1) .

Hence, the group G is logically Noetherian.
Analogously, we can prove that if representation (V, G) is geometri-

cally Noetherian, then the group G is geometrically Noetherian too. The
proof is complete.

This proposition and the Corollary from Proposition 3.5 show that
algebraic geometry over representations of groups in the regular sense,
i.e. the algebraic geometry which deals with equations on acting groups
and action-type equations, is very closely connected with the algebraic
geometry over groups. For example, if a group G is non geometrically
(logically) Noetherian, then every representation of this group is non
geometrically (logically) Noetherian and this fact does not depend on the
action of this group on a module. So, in order to study the geometry
which enjoys the peculiarities of the action one has to consider not the
"two-sided" geometry above, but the one-sided action-type geometry.

4. Basic notions of action type algebraic geometry of rep-

resentations

In action type algebraic geometry of representations, we consider alge-
braic sets in the affine space Hom (WΘ (X, Y ) , (V, G)) defined only by
action type equations: w = 0 - where w ∈ EΘ(X, Y ).

We have, as above, the Galois correspondence between sets of "points"
and sets of action type equations:

1) (S ⊂ T ⊂ EΘ(X, Y )) ⇒
(
S∇

(V,G) ⊃ T∇

(V,G)

)
,

2) (A ⊂ B ⊂ Hom (WΘ (X, Y ) , (V, G))) ⇒
(
B∇

(V,G) ⊃ A∇

(V,G)

)
,

3) (T ⊂ EΘ(X, Y )) ⇒
(
T ⊂ T∇∇

(V,G)

)
,

4) (A ⊂ Hom (WΘ (X, Y ) , (V, G))) ⇒
(
A ⊂ A∇∇

(V,G)

)
-
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for every X and Y and every arbitrary representation (V, G) ∈ Θ.

Definition 4.1. We say that a set of action type equations T is action
type (V, G)-closed if T = T∇∇

(V,G).

If the set of equations T is action type (V, G)-closed, then T is a
KFΘ (Y )-submodule of the EΘ(X, Y ).

The Galois correspondence implies

Proposition 4.1. The action type (V, G)-closure of the set T is equal to
the smallest action type (V, G)-closed submodule, containing the set T .

Proposition 4.2. Let (V, G) ∈ Θ. A KFΘ (Y )-submodule T ≤ EΘ(X, Y )
is an action type (V, G)-closed if and only if there exists a normal sub-
group H E FΘ (Y ) such that (T, H) ⊂ WΘ (X, Y ) is the (V, G)-closed
subrepresentation.

Proof:

It is clear that (T, H)′(V,G) ⊂ T∇

(V,G) for every H ⊂ FΘ (Y ). So, if

(T, H) = (T, H)′′(V,G) then T ⊃ T∇∇

(V,G) ⊃ T . Therefore T is an action type

(V, G)-closed submodule.

Let T = T∇∇

(V,G). Denote
⋂

β∈Hom(FΘ(Y ),G)

kerβ = IdΘ (G, Y ). It is

clear that (T, IdΘ (G, Y ))′(V,G) = T∇

(V,G). Thus, (T, IdΘ (G, Y ))′′(V,G) =

(T, IdΘ (G, Y )) since (0, β) ∈ T∇

(V,G) for every group homomorphism β :

FΘ (Y ) → G. The proof is complete.

Corollary 1. T ≤ XKF (Y ) is an action type (V, G)-closed submod-
ule if and only if there exists a normal subgroup H E F (Y ), such that
(XKF (Y ) /T, F (Y ) /H) ∈ SC (V, G).

Proof: By Proposition 3.4.

Remark 4.1. We can see from the proof, that in Proposition 4.2 and its
Corollary 1 one can always take H = IdΘ (G, Y ).

From Proposition 4.2 and Proposition 3.2 we can easy conclude

Proposition 4.3. Let Θ1, Θ2 are a subvariety of Rep − K, (V, G) ∈
Θ1 ⊂ Θ2. There is a one-to-one order preserving correspondence be-
tween lattices of action type (V, G)-closed submodules in EΘ2 (X, Y ) and
in EΘ1(X, Y ).

By this proposition we can consider the lattices of action type (V, G)-
closed submodules in the biggest variety of representations: in Rep−K.

We have immediately

Proposition 4.4.

(V, G) �

((
∧

i∈I

(wi = 0)

)
⇒ (w0 = 0)

)
,

where {w0}∪{wi | i ∈ I} ⊂ XKF (Y ), if and only if w0 ∈ {wi | i ∈ I}∇∇

(V,G).
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Definition 4.2. We say that a quasi-variety of representations X is an
action type quasi-variety if it can be defined by a set of action type
quasi-identities.

It means that X is an action type quasi-variety of representations if
and only if there exists a set of action type quasi-identities Q such that
X = qV arQ.

The set of all action type quasi-identities satisfied by representation
(V, G) is denoted by qIda.t. (V, G). Let X ⊂ Rep−K be a class of represen-
tations. Denote by qIda.t.X the set of action type quasi-identities satisfied

by all representations from X. Clearly, qIda.t.X =
⋂

(V,G)∈X

qIda.t. (V, G) .

We denote qV ar (qIda.t.X) = qV ara.t.X.
Definition 4.3. The action type quasi-variety qV ara.t.X we call action
type quasi-variety, generated by the class X.

5. Action type geometrical equivalence of representations

Corollary from Proposition 4.1. Let (V1, G1) , (V2, G2) ∈ Θ. Then
(V1, G1) ∼a.t. (V2, G2) if and only if for every finite X and Y every action
type (V1, G1)-closed submodule of E (X, Y ) is the action type (V2, G2)-
closed submodule and vice versa.

By this Corollary and by Proposition 4.3, action type geometrical
equivalence of representations (V1, G1) and (V2, G2) can be recognized in
all subvariety Θ ⊆ Rep − K, such that (V1, G1) , (V2, G2) ∈ Θ. Below we
use for this purpose the biggest variety of representations: Rep − K.

Corollary 1 from Proposition 4.4. If (V1, G1) ∼a.t. (V2, G2) then
qIda.t. (V1, G1) = qIda.t. (V2, G2).

Corollary 2 from Proposition 4.4. (V1, G1) ∼a.t. (V2, G2) if and only if
representations (V1, G1) and (V2, G2) have the same infinite action type
quasi-identities.

Also we have
Corollary 2 from Proposition 4.2. If two representations (V1, G1) and

(V2, G2) are geometrically equivalent then they are action type geometri-
cally equivalent.
Remark 5.1. In spite of this Corollary and Corollary from Proposition
3.5, if two representations (V1, G1) and (V2, G2) are action type geometri-
cally equivalent and groups G1 and G2 are geometrically equivalent, the
representations (V1, G1) and (V2, G2) are not necessarily geometrically
equivalent.
Definitions 5.1. Two representations (V1, G1) and (V2, G2) are called
(algebraically) equivalent if the corresponding faithful representations
are isomorphic.
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A class of representations X is called saturated if with a represen-
tation (V, G) ∈ X it contains all representations which are algebraically
equivalent to the representation (V, G).

By [PV, 1.3], two representations (V1, G1) and (V2, G2) are al-
gebraically equivalent if and only if Q0Qr (V1, G1) = Q0Qr (V2, G2),
so a class of representations X is saturated if and only if{
Q0,Qr

}
X = Q0QrX = X.

Theorem 5.1. Let (Z, H) , (V, G) ∈ Rep−K. Every action type (Z, H)-
closed submodule T ≤ (XKF (Y ))KF (Y ) is an action type (V, G)-closed

submodule if and only if (Z, H) ∈ LQ0QrSC (V, G).

Proof:

Let (Z, H) ∈ LQ0QrSC (V, G). Let T ≤ (XKF (Y ))KF (Y )

be an action type (Z, H)-closed submodule. By Proposition 4.2,
there exists a normal subgroup P E F (Y ) such that (T, P ) ⊂
W (X, Y ) is the (Z, H)-closed subrepresentation. By Proposition 3.4
and by (2.11) (XKF (Y )/T, F (Y )/P )∈ SC(Z, H) ⊂ LQ0QrSC(V, G).
(XKF (Y )/T, F (Y )/P ) is finitely generated, so, by projectivity of the
free groups, there exists S E F (Y ) such that (XKF (Y ) /T, F (Y ) /S) ∈
SC (V, G). So, by Proposition 3.4 and Proposition 4.2, T is an action
type (V, G)-closed submodule.

Let every action type (Z, H)-closed submodule be an action type
(V, G)-closed submodule. Let (Z0, H0) ≤ (Z, H) be a finitely gener-
ated subrepresentation of the (Z, H). (Z0, H0) ∼= W (X, Y ) / (T, L),
where (T, L) is a normal subrepresentation of W (X, Y )). By Propo-
sition 3.4 and Proposition 4.2, T is an action type (Z, H)-closed sub-
module and an action type (V, G)-closed submodule. Hence, by Proposi-
tion 4.2 and by Proposition 3.4, there exists a normal subrepresentation
(T, D) ≤ W (X, Y ) such that W (X, Y ) / (T, D) ∈ SC (V, G). Therefore
(Z0, H0) ∈ Q0QrSC (V, G) and (Z, H) ∈ LQ0QrSC (V, G). The proof is
complete.

We shall denote (Z, H) ≺ (V, G) if and only if (Z, H) ∈
LQ0QrSC (V, G). By consideration of action type closed submodules we
have

Proposition 5.1. The relation "≺" is the preorder in the Rep − K.

By Corollary from the Proposition 4.1 we have

Corollary 1 from the Theorem 5.1. Let (V1, G1) , (V2, G2) ∈ Rep − K.
(V1, G1) ∼a.t. (V2, G2) if and only if (V1, G1) ≺ (V2, G2) and (V2, G2) ≺
(V1, G1) i.e., if and only if (V1, G1) ∈ LQ0QrSC (V2, G2) and (V2, G2) ∈
LQ0QrSC (V1, G1).

By (2.11), (2.5) and monotony of operators: Qr, Q0, L, S, C we have

Corollary 2 from the Theorem 5.1. Let (V1, G1) , (V2, G2) ∈ Rep −
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K. (V1, G1) ∼a.t. (V2, G2) if and only if LQ0QrSC (V1, G1) =
LQ0QrSC (V2, G2).

Corollary 3 from the Theorem 5.1. Let (V, G) ∈ Rep − K. Then

LQ0QrSC (V, G) ⊂ qV ara.t. (V, G) .

Proof:

Let (Z, H) ∈ LQ0QrSC (V, G). If

(V, G) �

((
∧

i∈I

wi = 0

)
⇒ (w0 = 0)

)
,

then, by Proposition 4.4, w0 ∈ {wi | i ∈ I}∇∇

(V,G). Every action type
(Z, H)-closed submodule is also an action type (V, G)-closed submodule,
therefore {wi | i ∈ I}∇∇

(Z,H) ⊃ {wi | i ∈ I}∇∇

(V,G) ∋ w0. Thus,

(Z, H) �

((
∧

i∈I

wi = 0

)
⇒ (w0 = 0)

)
.

The proof is complete.

Corollary 4 from the Theorem 5.1. If two representations (V1, G1),
(V2, G2) ∈ Rep−K are equivalent then they are action type geometrically
equivalent. In particular, every representation (V, G) ∈ Rep−K is action

type geometrically equivalent to its faithful image
(
V, G̃

)
.

Proof:

Let representations (V1, G1) and (V2, G2) be equivalent; then

Q0Qr (V1, G1) = Q0Qr (V2, G2) .

So

LQ0QrSC (V1, G1) ⊃ Q0Qr (V2, G2) ∋ (V2, G2) ,

i.e., (V2, G2) ≺ (V1, G1). By symmetry the proof is complete.

6. Action type Noetherianity of representations

Definitions 6.1. We call a variety Θ ⊂ Rep−K action type Noetherian
if for every finite X and Y every KFΘ (Y )-submodule of EΘ(X, Y ) is
finitely generated.

It is clear that action type Noetherianity of the variety Θ is equivalent
to the ascending chain condition for KFΘ (Y )-submodules of EΘ (X, Y )
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for every X and Y . Action type geometrical Noetherianity of the repre-
sentation (V, G) is equivalent to the ascending chain condition for action
type (V, G)-closed submodules of EΘ(X, Y ). So, by Proposition 4.3, every
representation (V, G) from the action type Noetherian variety Θ is action
type geometrically Noetherian.

Similarly to [Pl4, Proposition 7] one can prove that:
Proposition 6.1. A representation (V, G) ∈ Θ is action type logically
Noetherian if and only if the union of any directed system of action type
(V, G)-closed submodules of EΘ(X, Y ) for every X and Y is also an
action type (V, G)-closed submodule.

Hence every action type geometrically Noetherian representation is
also action type logically Noetherian.

If (V, G) is an action type logically Noetherian representation, then,
by Proposition 4.4, every infinite action type quasi-identity (0.1’) can be
reduced to the finite action type quasi-identity (0.1).

We shall give some examples of these notions.
Proposition 6.2. The variety Sn of representation over the Noetherian
ring K is the action type Noetherian variety for every n ∈ N.

Proof:
We denote

⊕
x∈X

x (KF (Y ) /∆n) = X (KF (Y ) /∆n), where ∆ is the

augmentation ideal of the KF (Y ).

WSn (X, Y ) =

(
XKF (Y ) /

⊕

x∈X

x∆n, F (Y )

)
∼= (X (KF (Y ) /∆n) , F (Y )) .

If |Y | = m, then, by the Taylor formula for Fox derivation ([Vvs]),

w = wε +
m∑

i1=1

(∂i1w)ε (yi1 − 1) +
m∑

i1,i2=1

(∂i1i2w)ε (yi1 − 1) (yi2 − 1) + . . .

. . . +
m∑

i1,...,ik−1=1

(
∂i1,...,ik−1

w
)ε

(yi1 − 1) . . .
(
yik−1

− 1
)
+

m∑

i1,...,ik=1

(∂i1,...,ikw) (yi1 − 1) . . . (yik − 1)

for every w ∈ KF (Y ) and for every k ∈ N, where ε : KF (Y ) → K
is the augmentation homomorphism, ∂i1,...,is : KF (Y ) → KF (Y ) is
the s-th Fox derivation by the variables yi1 , . . . , yis (1 ≤ s ≤ k). So,
KF (Y ) /∆n is the finitely generated K-module for every Y . Hence,
X (KF (Y ) /∆n) is the finitely generated K-module for every X and Y .
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K is the Noetherian ring, so, every K-submodule and every KF (Y )-
submodule of X (KF (Y ) /∆n) is finitely generated. The proof is com-
plete.
Proposition 6.3. Every faithful finitely dimension representation (V, G)
over the field K is action type geometrically Noetherian.

This proposition we can prove by using ideas from [BMR, Theorem
B1].
Corollary. Every finite dimension representation (V, G) over the field
K is action type geometrically Noetherian.

Proof: By Corollary 4 from the Theorem 5.1 and Corollary from the
Proposition 4.1.
Theorem 6.1. Let (V1, G1) and (V2, G2) be action type logically
Noetherian representations. Then (V1, G1) ∼a.t. (V2, G2) if and only if
qIda.t. (V1, G1) = qIda.t. (V2, G2).

Proof: By Proposition 4.4, Corollary 1 from Proposition 4.4 and
Corollary from Proposition 4.1.
Corollary. In an action type Noetherian variety of representations Θ
there is bijection between classes of action type geometrical equivalent
representations and action type quasi-varieties generated by one repre-
sentation.

Proof:
Let (V, G) ∈ Θ. We denote by [(V, G)] the class of all representations

in Θ which are action type geometrically equivalent to the representa-
tion (V, G). It is easy to check that the correspondence [(V, G)]ϕ =
qV ara.t. (V, G) is well defined, and bijection.
Proposition 6.4. Let (V, G) be an action type logically Noetherian rep-
resentation. Then qV ara.t. (V, G) ⊂ LQ0QrSC (V, G).

Proof:
Let (Z, H) ∈ qV ara.t. (V, G) and T ⊂ XKF (Y ) is the action type

(Z, H)-closed submodule, but not action type (V, G)-closed submodule.
Let w ∈ T∇∇

(V,G)\T . There is T0 = {w1, . . . , wn} ⊂ T , such that w ∈

(T0)
∇∇

(V,G). Therefore,

(V, G) �

((
n∧

i=1

(wi = 0)

)
⇒ (w = 0)

)

and

(Z, H) �

((
n∧

i=1

(wi = 0)

)
⇒ (w = 0)

)
.

So w ∈ (T0)
∇∇

(Z,H) ⊂ T∇∇

(Z,H), but w /∈ T . By this contradiction, T is

the action type (V, G)-closed submodule. By Theorem 5.1, the proof is
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complete.
Theorem 6.2. LQ0QrSC (V, G) = qV ara.t. (V, G) if and only if (V, G)
is an action type logically Noetherian representation.

Proof:
By Corollary 3 from the Theorem 5.1, we always have

LQ0QrSC (V, G) ⊂ qV ara.t. (V, G) .

If (V, G) is an action type logically Noetherian representation, then, by
Proposition 6.4,

LQ0QrSC (V, G) = qV ara.t. (V, G) .

Let
LQ0QrSC (V, G) = qV ara.t. (V, G) .

Let {Ti | i ∈ I} be a direct system of action type (V, G)-closed submod-
ules of XKF (Y ) and T =

⋃
i∈I

Ti.

Let (V, G) � q where q is an action type quasi-identity. By Proposition
4.2 and Proposition 3.4

(XKF (Y ) /Ti, F (Y )) ∈ Q0SC (V, G) ⊂ qV ara.t. (V, G)

for every i ∈ I, so, using the method of [Pl4, Theorem 1], we can prove
that (XKF (Y ) /T, F (Y )) � q. Hence

(XKF (Y ) /T, F (Y )) ∈ qV ara.t. (V, G) = LQ0QrSC (V, G) .

Consequently, there exists H E F (Y ), such that

(XKF (Y ) /T, F (Y ) /H) ∈ SC (V, G) .

Therefore, by Proposition 3.4 and Proposition 4.2 T is an action type
(V, G)-closed submodule. The proof is complete.

7. Action type quasi-varieties of representations

Definition 7.1. We say that a class of representations X is right hered-
itary if SrX = X.

In [Ma] it was proved that a class of algebras which contains the
unit algebra is a quasi-variety if and only if this class is closed under
the operators S and F . Later on in [Gv] this result was established for
the case of many sorted algebras. We use this fact in order to describe
the action type quasi-varieties of representations. It is clear that every
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non empty class of representations which is closed under the operators
S contains the unit representation ({0} , {1}), so the non empty class of
representations is a quasi-variety if and only if this class is closed under
the operators S and F .

Let X be a class of representations. Denote by XG the class of all KG-
modules VKG, such that the corresponding representation (V, G) belongs
to the class X.

Lemma 7.1. A class X is a saturated quasi-variety of representations
if and only if X is saturated, right hereditary and XG is a quasi-variety
of KG-modules for every group G.

Proof:

Let X be a saturated quasi-variety. It is clear that X is a right hered-
itary class.

If G is a group and M is a submodule of the KG-module V , then
(M, G) is a subrepresentation of the (V, G). So SXG ⊂ XG.

Let {(Vi)KG | i ∈ I} ⊂ XG, F be a filter in the I. (Vi, G) ∈ X for
every i ∈ I. The filtered product of the family {(Vi)KG | i ∈ I} as

KG-modules is

(
∏

i∈I

(Vi)KG

)
/ ∼F. The filtered product of represen-

tations {(Vi, G) | i ∈ I} is

((
∏

i∈I

Vi

)
/ ∼F,

(
GI
)
/ ∼F

)
. The representa-

tion

((
∏

i∈I

Vi

)
/ ∼F, G

)
is its subrepresentation, because the diagonal

of
(
GI
)
/ ∼Fis isomorphic to G, so

(
∏

i∈I

(Vi)KG

)
/ ∼F∈ XG. Therefore

FXG ⊂ XG and, by [Ma], XG is a quasi-variety of KG-modules for every
group G.

Let X be saturated, right hereditary and XG be a quasi-variety of
KG-modules for every group G. Let (M, H) ≤ (V, G), (V, G) ∈ X. Then
VKH ∈ XH and MKH ∈ SXH = XH . Therefore SX = X.

Let {(Vi, Gi) | i ∈ I} ⊂ X, F be a filter over the I. Denote
∏

i∈I

Gi = G.

The filtered product of the family of representations {(Vi, Gi) | i ∈ I}

is

((
∏

i∈I

Vi

)
/ ∼F, G/ ∼F

)
. Let πi : G → Gi be projections. Epi-

morphism πi defines representation (Vi, G) and (idVi
, πi) is a homomor-

phism of representations for every i ∈ I. Hence, (Vi, G) ∈ Q0X ⊂ X

and (Vi)KG ∈ XG for every i ∈ I. So

(
∏

i∈I

(Vi)KG

)
/ ∼F∈ XG and
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((
∏

i∈I

Vi

)
/ ∼F, G

)
∈ X. So,

((
∏

i∈I

Vi

)
/ ∼F, G/ ∼F

)
∈ QrX ⊂ X.

Therefore FX ⊂ X and, by [Gv], X is a quasi-variety. The proof is com-
plete.

Theorem 7.1. A quasi-variety of representations X is an action type
quasi-variety of representations if and only if X is a saturated quasi-
variety.

Proof:

Let X be an action type quasi-variety of representations. Let (V, G) ∈
X and a representation (M, H) is equivalent to the representation (V, G).
By Corollary 4 from the Theorem 5.1, (V, G) ∼a.t. (M, H) and, by
Corollary 1 from Proposition 4.4, qIda.t. (V, G) = qIda.t. (M, H) , so
(M, H) ∈ X. Therefore X is a saturated class of representations.

Let X be a saturated quasi-variety of representations. By Lemma
7.1, XF (Y0) is a quasi-variety of KF (Y0)-modules, i.e., XF (Y0) = qV arQ,
where Q = {qi | i ∈ I} ,

qi ≡


∀x1 . . .∀xni






ki∧

j=1

(wij = 0)


⇒ (wi0 = 0)




 , (7.1)

wij = wij (x1, . . . , xni
, y1, . . . , ymi

) ∈ X0KF (Y0). In (7.1) we consider
x1, x2, . . . as variables and y1, y2, . . . as constants. But we can consider
y1, y2, . . . also as variables. By this point of view, q̃i = ∀y1 . . .∀ymi

qi is

an action type quasi-identity in Rep−K and the set Q̃ = {q̃i | i ∈ I} will
be a set of action type quasi-identities in Rep − K. We shall prove that
X = qV arQ̃.

Let (V, G) � Q̃. Let G0 ≤ G be a finitely generated subgroup of the
group G. Also, (V, G0) � Q̃. There is an epimorphism β : F (Y0) → G0.
Denote by (V )β the KF (Y0)-module defined by the homomorphism β
and by (V, F (Y0)) the representation corresponding to this module. Let
q̃i ∈ Q̃. The mapping α : {xl | l ∈ X0} → V can be extended to the
homomorphism of KF (Y0)-modules α : X0KF (Y0) → (V )β. It is clear
that in this situation the pair (α, β) will be a homomorphism of represen-
tations: (α, β) : (X0KF (Y0) , F (Y0)) → (V, G0). The result wα

ij does not
depend on point of view on α: as a homomorphism of KF (Y0)-modules or
as a left component of homomorphism of representations. So (V, G0) � q̃i

if and only if (V )β � qi. Hence, (V )β � Q. Therefore, (V )β ∈ XF (Y0)

and (V, G0) ∈ QrX ⊂ X. X is a quasi-variety, so (V, G) ∈ X, because all
quasi-identities which define X are checked in finitely generated represen-
tations.

Let (V, G) ∈ X. Let (α, β) : (X0KF (Y0) , F (Y0)) → (V, G) be a
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homomorphism of representation. Denote by (V )β the KF (Y0)-module,
defined by the homomorphism β, and (V, F (Y0)) - the representation
corresponding to this module. We have that (V, imβ) ∈ X, (V, F (Y0)) ∈
Q0X ⊂ X and (V )β ∈ XF (Y0). Therefore (V )β � Q. Because α :
X0KF (Y0) → (V )β is a homomorphism of KF (Y0)-modules, as above,

(V, G) � Q̃. The proof is complete.

Corollary 1. qV ara.t.X = Q0QrSFX for every class of representations
X.

Proof:

qV ara.t.X = qV ar (qIda.t.X) is a quasi-variety, so qV ara.t.X is closed
by S and F . By Theorem 7.1, qV ara.t.X is a saturated class of repre-
sentations. Thus it is closed under Q0 and Qr. X ⊂ qV ara.t.X thus, by
(2.12),

Q0QrSFX ⊂ qV ara.t.X.

Also, by (2.12), Q0QrSFX is closed under S, F , Q0 and Qr. By The-
orem 7.1, Q0QrSFX is an action type quasi-variety of representations,
i.e.,

Q0QrSFX = qV arQ,

where Q is the set of action type quasi-identities. Q0, Qr, S, F are
operators of extension, so

X ⊂ Q0QrSFX = qV arQ.

Hence X � Q and qIda.t.X ⊃ Q. Therefore

qV ara.t.X ⊂ qV arQ = Q0QrSFX.

The proof is complete.

Corollary 2. qV ara.t.X = Q0QrSCCupX for every class of representa-
tions X.

Proof: By [GL], for every class of algebras X we have FX = CCupX.

8. Existing of continuum non isomorphic

simple F2-modules

There is a continuum of non isomorphic simple 2-generated groups ([Ca]).
Using this fact, R.Gobel and S. Shelah proved [GSh] that there is a non
logically Noetherian group.

K in this and the next section is a countable field such that charK 6=
2. We shall prove that there is continuum of non isomorphic simple
modules over KF2, where F2 is the free group with 2 generators. And
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we shall deduce from this fact that there is a non action type logically
Noetherian representation.

Let ∆ be the augmentation ideal of group algebra KG.
Proposition 8.1. Let G be a non periodic group, i.e. ∃ g ∈ G, such
that |g| = ∞. Then the set Ω = {U � KGKG | U * ∆} is non empty
and has a maximal element UG which is a maximal right ideal in KG.

Proof:
The element g + 1 is not invertible in KG, because |g| = ∞. So,

(g + 1)KG � KGKG. Also (g + 1)KG * ∆. So, Ω 6= ∅. By Zorn’s
lemma the set Ω has a maximal element UG. It is easy to check that UG

is a maximal right ideal in KG.
Corollary. KG/UG is a simple KG-module in the situation of Propo-
sition 8.1.

The ideal UG, of course, is not uniquely defined by the group G.
Proposition 8.2. If Γ is a simple non periodic group, then the repre-
sentation (KΓ/annKΓ (KΓ/UΓ) , Γ) is faithful.

Proof:
annKΓ (KΓ/UΓ) = LΓ ⊂ UΓ, by Proposition 1.1. We consider two

representations: (KΓ/LΓ, Γ) and (KΓ/UΓ, Γ).

(1 + UΓ) ∩ Γ = {g ∈ Γ | g − 1 ∈ UΓ} ⊃ (1 + LΓ) ∩ Γ.

{g ∈ Γ | g − 1 ∈ UΓ} 6= Γ, otherwise UΓ = ∆. By Corollary from Propo-
sition 1.2,

(1 + LΓ) ∩ Γ = ker (KΓ/LΓ, Γ) ⊳ Γ

Γ is a simple group, so ker (KΓ/LΓ, Γ) = {1}. The proof is complete.
Corollary. The group Γ is embedded into the associative algebra

KΓ/annKΓ (KΓ/UΓ) in the situation of Proposition 8.2.
Proof:

ker (KΓ/annKΓ (KΓ/UΓ) , Γ) = {g ∈ Γ | g − 1 ∈ annKΓ (KΓ/UΓ)} = {1} .

Theorem 8.1. There exists a continuum of non isomorphic simple mod-
ules over KF2, where F2 is a free group with 2 generators.

Proof:
Let ℜ be the set of all non isomorphic simple 2-generated groups,

considered in [Ca] (|ℜ| = ℵ). By constructions of [Ca], every Γ ∈ ℜ is
a non periodic group. So, by Proposition 8.1, we can choose for every
Γ ∈ ℜ the maximal right ideal in KΓ: UΓ < KΓKΓ. It holds that UΓ 6= ∆.
KΓ/UΓ is the simple KΓ-module and the simple KF2-module defined by
the natural homomorphism F2 → Γ. After the choosing of UΓ for every
Γ ∈ ℜ, we define in ℜ the equivalence: Γ1 ≈ Γ2 if KΓ1/UΓ1

∼= KΓ2/UΓ2

as KF2-modules (Γ1, Γ2 ∈ ℜ).
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If KΓ1/UΓ1
∼= KΓ2/UΓ2 as KF2-modules, then, by Proposition 1.4,

annKF2 (KΓ1/UΓ1) = annKF2 (KΓ2/UΓ2) ,

and by Corollary 2 from Proposition 1.3,

KΓ1/annKΓ1 (KΓ1/UΓ1)
∼= KΓ2/annKΓ2 (KΓ2/UΓ2)

as associative algebras. By the Corollary from Proposition 8.2

Γ1 →֒ KΓ1/annKΓ1 (KΓ1/UΓ1)
∼= KΓ2/annKΓ2 (KΓ2/UΓ2) ,

so Γ1 is isomorphic to one of the multiplicative subgroup of the
associative algebra KΓ2/annKΓ2 (KΓ2/UΓ2). |KΓ2| = ℵ0, so
|KΓ2/annKΓ2 (KΓ2/UΓ2)| ≤ ℵ0 and there is a countable set of 2-
generated subgroups of KΓ2/annKΓ2 (KΓ2/UΓ2). Therefore, the cardi-
nality of classes by equivalence "≈" is not bigger than ℵ0. So, there are
ℵ classes by equivalence "≈". The proof is complete.

9. Non action type logically Noetherian representation of

the group F2

In this section we shall prove that there is a non action type logically
Noetherian representation. Let P ⊆ ℜ be the set of all non isomorphic
simple 2-generated groups such that simple KF2-modules {KΓ/UΓ | Γ ∈ P}
are non isomorphic. By the Theorem 8.1, |P| = ℵ.

If ϕΓ : F2 → F2/H = Γ ∈ P is the natural homomorphism of groups,

then, by Proposition 1.3, KΓ/UΓ
∼= KF2/U

ϕ−1
Γ

Γ . Denote KF2/U
ϕ−1

Γ
Γ =

VΓ. VΓ is a simple KF2-module.
Let {Vj | j ∈ J} be the set of all finitely generated right ideals in

KF2. V =
∏
j∈J

(KF2/Vj) is the KF2-module. So, we can consider the

representation (V, F2). |KF2/Vj | = ℵ0 for every j ∈ J , |J | = ℵ0, so
|V | = ℵ0.
Theorem 9.1. The representation (V, F2) is non action type logically
Noetherian.

Proof:

We shall prove that there is Γ ∈ P such that U
ϕ−1

Γ
Γ < (KF2)KF2

is not action type (V, F2)-closed. Let Γ ∈ P and U
ϕ−1

Γ
Γ be the action

type (V, F2)-closed. By Proposition 4.2 and Proposition 3.4, there exists

H E F2 such that

(
U

ϕ−1
Γ

Γ , H

)
E (KF2, F2) and (VΓ, F2/H) ∈ SC (V, F2).

So, there exists a homomorphism of representations (ι, η) : (VΓ, F2) →
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(
V I , F I

2

)
(I is the set of indices), such that ι is a monomorphism. Since VΓ

is a simple KF2-module, we can conclude, that there exists an embedding
of KF2-module VΓ →֒ (V )eη, where η̃ is an endomorphism of F2. |V | = ℵ0,
|End (F2)| = ℵ0 (every endomorphism is defined by values on generators).
In the module (V )eη there is a countable set of simple submodules (every
simple submodule is a cyclic, so it is defined by a generator). So only
the countable set of modules VΓ can be embedded into the modules of
the kind (V )eη. Therefore, by Theorem 8.1, there is Γ0 ∈ P such that the

right side ideal U
ϕ−1

Γ0
Γ0

is not action type (V, F2)-closed.
On the other hand, by Proposition 4.2 and Proposition 3.4, Vj is

action type (V, F2)-closed for every j ∈ J . Therefore,

{
Vj | j ∈ J, Vj ⊆ U

ϕ−1
Γ0

Γ0

}
= {Vj | j ∈ J0}

is the direct system of action type (V, F2)-closed modules, which unit
⋃

j∈J0

Vj = U
ϕ−1

Γ0
Γ0

is not a action type (V, F2)-closed module. So, the rep-

resentation (V, F2) is non action type logically Noetherian. The proof is
complete.

Corollary. There exists
(
Ṽ , F̃2

)
an ultrapower of (V, F2) which is not

action type geometrically equivalent to the (V, F2).
Proof:
If Cup (V, F2) ⊂ LQ0QrSC (V, F2) then, by Corollary 2 from Theorem

7.1 and (2.11),

qV ara.t. (V, F2) = Q0QrSCCup (V, F2) ⊂ LQ0QrSC (V, F2) .

So, by the Corollary 3 from Theorem 5.1,

qV ara.t. (V, F2) = LQ0QrSC (V, F2)

and, by Theorem 6.2, (V, F2) is action type logically Notherian. By this

contradiction, there exists
(
Ṽ , F̃2

)
an ultrapower of (V, F2), such that

(
Ṽ , F̃2

)
/∈ LQ0QrSC (V, F2) .

On the other hand,
(
Ṽ , F̃2

)
∈ LQ0QrSC

(
Ṽ , F̃2

)
,

so
LQ0QrSC

(
Ṽ , F̃2

)
6= LQ0QrSC (V, F2) ,
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and, by Corollary 2 from Theorem 5.1,
(
Ṽ , F̃2

)
≁a.t. (V, F2). The proof

is complete.
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