
Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.

Algebra and Discrete Mathematics RESEARCH ARTICLE

Number 4. (2005). pp. 36 – 47

c© Journal “Algebra and Discrete Mathematics”

Automaton extensions of mappings on the set of

words defined by finite Mealy automata

Miros law Osys

Communicated by V. I. Sushchansky

Abstract. The properties of an automaton extensions of

mappings on the set of words over a finite alphabet is discussed.

We obtain the criterion whether the automaton extension of given

mapping if defined by a finite automaton.

Introduction

In the set of all transformations of the set of finite words over given
alphabet we distinguish a subset of the automaton mappings, i.e. trans-
formations induced by (finite or infinite) Mealy automata . Although
both sets are uncountable, not every function f : X∗ → X∗ is defined by
certain automaton.

In sixties of the XX century has been indicated (e.g. in [3]) that after
addition a new symbol to the alphabet, arbitrary transformation can be
extended to an automaton mapping, that uniquely determines the initial
transformation. Moreover, an effective method for such constructions has
been established. Algol 60 algorithm for finding the minimum necessary
number of the new symbols is developed in [1].

Since mentioned extension is not unique, we define two different possi-
bilities of the construction, the plain extension and the cyclic extension,
and develop some basic properties of them. We discuss the problem
whether exists a finite automaton inducing extension for given transfor-
mation. The main result of this paper is

2000 Mathematics Subject Classification: 68Q70, 68Q45.

Key words and phrases: automaton mapping, Mealy automaton.

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.M. Osys 37

Theorem 1. Let f̂ : X∗
α → X∗

α be the plain or cyclic extension of the
transformation f : X∗ → X∗. The extension f̂ is a finite–state automaton
mapping if and only if the following conditions are satisfied:

1. f(X∗) is a finite set,

2. the inverse image f−1(u) is a regular language for each u ∈ f(X∗).

The contents are organized as follows. In Section 1 we list the basic
notations and recall a notions of a Mealy automaton and a Rabin–Scott
automaton. In Section 2 we define a notion of an automaton extension
of the transformation. In Section 3 we prove Theorem 1.

1. Preliminaries

1.1. Let X be an alphabet, and X∗ be the free monoid over X with an
empty word ε as a neutral element. We shall write uv for the product

of u, v ∈ X∗ and uk for

k︷ ︸︸ ︷
u . . . u. The length of the word u is denoted by

|u|. The word u is a prefix of the word v (denoted by u ≤ v) if v = uw

for the certain word w. The word v is a segment of u if there exist words
u1, u2 ∈ X∗ such that u = u1vu2.

1.2. An initial Mealy-type automaton over the alphabet X is a tuple

A = (Q, q0, X, δ, λ)

which consists of the following data:

⊲ a set Q of the internal states, Q 6= ∅

⊲ a distinguished state q0 ∈ Q called initial

⊲ the alphabet of the automaton, X 6= ∅

⊲ a next-state function δ : Q × X → Q

⊲ an output function λ : Q × X → X

A tuple A = (Q, q0, X, δ, λ) is partial Mealy automaton if either δ or λ

is a partial function. The automaton A is finite if the sets Q and X are
finite.

We often use a notation

qi
x/y
7−→ qj

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.38 Automaton extensions of mappings

instead of
δ(qi, x) = qj , λ(qi, x) = y .

1.3. The next–state function and the output function of the automaton
A = (Q, q0, X, δ, λ) can be extended on the set Q × X∗ by the following
recurrent equalities:

δ(q, ε) = q , δ(q, ux) = δ(δ(q, u), x) ,

λ(q, ε) = ε , λ(q, ux) = λ(δ(q, u), x) ,

where x ∈ X and u ∈ X∗. An initial automaton A defines mapping
fA : X∗ → X∗ as follows:

fA(ε) = ε , fA(x1 . . . xk) = λ(q0, x1)λ(q0, x1x2) . . . λ(q0, x1 . . . xk) .

In case of the partial automaton, fA is a partial function.

Definition 1. [6] A function f : X∗ → X∗ is called an (finite–state)
automaton mapping if there exists an (finite) automaton A, such that
f = fA.

Proposition 1. A function f : X∗ → X∗ is an automaton mapping if
and only if it has the following properties:

1. it preserves the lengths of the words, that is |f(u)| = |u| for every
u ∈ X∗

2. (common prefix property) if u, v ∈ X∗ then each prefix w of these
words is translated in the same manner, thus it follows that f(u)
and f(v) have common prefix of the length greater or equal |w|.

Definition 2. A function f : X∗ → X∗ is called an partial automaton
mapping if there exists an partial automaton A, such that f = fA.

Proposition 2. A function g : X∗ → X∗ is a partial automaton mapping
if and only if it has the following properties:

1. domain of the function is prefix closed, that is, u ∈ Dom g and
v ≤ u implies that v ∈ Dom g,

2. there exists an automaton mapping f : X∗ → X∗, such that

g = f |Dom g .

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.M. Osys 39

For the details of the proofs refer to [6], [2], [5], [4].

1.4. A Rabin–Scott automaton is a tuple

A = (Q, q0, T, X, δ) ,

which is similar to the Mealy automaton, except deleted function λ and
added set T ⊂ Q which collects the terminal nodes (or accept states). A
set of the words

L(A) = {u ∈ X∗ : δ(q0, u) ∈ T}

will be referred to as the language recognizable by the automaton A.
The language L ⊂ X∗ is said to be regular if there exists a finite

automaton recognizing L. For more information refer to [7], [2].

2. Automaton extension of mapping

2.1. Let f : X∗ → X∗ be a function that satisfies f(ε) = ε. Let
Xα = X ∪ {α}, α 6∈ X be the extended alphabet. With a symbol t we
will denote a homomorphism X∗

α → X∗ given by:

t(α) = ε, t(x) = x, x ∈ X .

Definition 3. An automaton mapping f̂ : X∗
α → X∗

α is called an au-
tomaton extension mapping (or simply extension) of f : X∗ → X∗ if
there exists an embedding µf : X∗ → X∗

α such that the following dia-
gram is commutative:

u ∈ X∗
f

7−→ f(u) ∈ X∗

µf ↓ ↑ t

u′ ∈ X∗
α

bf
7−→ f̂(u′) ∈ X∗

α .

2.2. The extension f̂ of an arbitrary function f : X∗ → X∗ will be
defined in two steps:

1. a partial extension is constructed, that is function X∗
α → X∗

α defined
on the certain fixed subset M ⊂ X∗

α,

2. the domain of the obtained function is extended on the monoid X∗
α.

For the construction related to the first step we will apply a method
described in [3], p.19.

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.40 Automaton extensions of mappings

Definition 4. For every u ∈ X∗ we define

µf (u) = uα|f(u)|

and introduce a set

M = {v′ ∈ X∗
α : v′ ≤ µf (u), u ∈ X∗} .

The mapping f̂ : M → X∗
α is defined as follows:

a) if u′ has the form uα|f(u)|, u ∈ X∗ then

f̂(u′) = f̂(uα|f(u)|) = α|u|f(u) ,

b) if v′ ∈ M and v′ ≤ u′ = uα|f(u)| then

f̂(v′) = w′, w′ ≤ f̂(u′), |w′| = |v′| .

Above definition of the function f̂ is correct since w′ does not depend
on choosing the word u′. Also, for u′ = µf (u), the properties t(u′) = u

and t(f̂(u′)) = f(u) hold. Thus, the diagram from the definition 3 is
commutative.

Proposition 3. The extension f̂ : X∗
α → X∗

α is a partial automaton
mapping over the alphabet Xα.

Proof. For every word u′ ∈ X∗
α of the form uα|f(u)| we have

|u′| = |uα|f(u)|| = |α|u|f(u)| = |f̂(u′)|

and for every prefix v′ ≤ u′

f̂(v′) ≤ f̂(u′), |f̂(v′)| = |v′|.

Therefore f̂ preserves the lengths of the words and has the common prefix
property. It is also clear that the set M is prefix closed.

2.3. Example. Consider a function f : X∗ → X∗, X = {0, 1} defined
by

f(u) =






0 |u| even, |u| > 0,

11 |u| odd,

ε u = ε.

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.M. Osys 41

We agree that f is not an automaton mapping since it does not preserve
either lengths nor has the common prefix property. Let us show how the

extension mapping works. Instead 01
f

7−→ 0 and 101
f

7−→ 11 we have

01α
bf

7−→ αα0 and 101αα
bf

7−→ ααα11 .

It can be seen that on the input side the letter α is utilized to terminate a
sequence of letters from the set X, whereas on the output it plays role of
an “empty” symbol while the automaton waits for completing the input
word.

2.4. We introduce two different methods for extending f̂ on the set X∗
α,

which will be referred to as ‘plain extension’ and ‘cyclic extension’.

Definition 5. The plain extension of the transformation f : X∗ → X∗

is a mapping f̂1 : X∗
α → X∗

α defined by:

• f̂1|M = f̂ , where f̂ is the automaton extension of f and M is the
set established in definition 4,

• f̂1(α
kv′) = αkf̂1(v

′),

• f̂1(uα|f(u)|v′) = α|u|f(u)α|v′|,

• f̂1(uαmv′) = α|u|f(u)αn, m + |v′| = |f(u)| + n

for m + |v′| ≥ |f(u)|,

• f̂1(uαmv′) = α|u|v, v ≤ f(u), m + |v′| = |v|
for m + |v′| < |f(u)|

where u, v ∈ X∗ and v′ ∈ X∗
α.

The automaton mapping defined this means ignores appended word v′

by treating it as a sequence of “empty” symbols.
For the next definition recall that arbitrary word v′ ∈ X∗

α can be
uniquely written as

v′ = αk0u1α
k1u2α

k2 . . . unαkn , ui ∈ X∗

where k0, kn ≥ 0 and k1, . . . , kn−1 ≥ 1.

Definition 6. The cyclic extension of the transformation f : X∗ → X∗

is a mapping f̂2 : X∗
α → X∗

α defined by:

• f̂2|M = f̂ , where f̂ is the automaton extension of f and M is the
set established in definition 4,

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.42 Automaton extensions of mappings

• f̂2(α
k) = αk,

• f̂2(uα|f(u)|αk) = α|u|f(u)αk,

• f̂2(uαm) = α|u|v, v ≤ f(u), |v| = m for m < |f(u)|,

• f̂2(v
′) = αk0 f̂2(u1α

k1)f̂2(u2α
k2) . . . f̂2(unαkn)

where v′ = αk0u1α
k1u2α

k2 . . . unαkn .

The mapping obtained that way translates independently every segment
of the form uiα

ki .

2.5. Example. Let f : {0, 1} → {0, 1} be function defined by

f(u) =






11 if u = 0,

0 if u = 11,

ε if u 6∈ {0, 11}.

Then the plain extension f̂1 and the cyclic extension f̂2 translate words
in the following manner:

u ∈ X∗
α 0αα 0α 11α 11 0α0α 1α11α

f̂1(u) α11 α1 αα0 αα α1αα ααααα

f̂2(u) α11 α1 αα0 αα α1α1 αααα0

Proposition 4.

1. For every function f : X∗ → X∗, f(ε) = ε the following conditions
hold:

a) plain and cyclic extensions are well defined automaton map-
pings over the alphabet X∗

α,

b) f̂1 6= f̂2 unless f is trivial (i.e. f(u) = ε for all u ∈ X∗).

2. For every f, g : X∗ → X∗, such that f(ε) = g(ε) = ε and f 6= g,
we have:

f̂1 6= ĝ1, f̂2 6= ĝ2 .

Proof. (1a) Clearly, the definitions allow us to calculate f̂1(u
′) and f̂2(u

′)
for all u′ ∈ X∗

α thus extensions are well defined. Furthermore, directly
from the definitions, it can be seen that extensions f̂1 and f̂2 are automa-
ton mappings since for every u′ ∈ X∗

α

|f̂1(u
′)| = |f̂2(u

′)| = |u′|

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.M. Osys 43

and the common prefix property holds as well, directly from definitions.
(1b) If f is trivial, then f̂1(u

′) = f̂2(u
′) = α|u′| for all u′ ∈ X∗

α. Otherwise,
there exists u ∈ X∗ such that f(u) = v 6= ε. The extensions are distinct,
since

f̂1(uα|v|uα|v|) = α|u|vα|u|α|v| and f̂2(uα|v|uα|v|) = α|u|vα|u|v .

(2) It is sufficient to prove that f is uniquely determined by f̂ . Let
f̂ : Xα → Xα be the plain or cyclic extension. We will show that for
every u ∈ X∗ a word f(u) can be calculated. Indeed, take a sequence
vi = f̂(uαi), i = 1, 2, . . . Then exists the number j, such that the last
letters of the words vi, i ≤ j are distinct from α and all words vi, i > j

end with the letter α. It is obvious that f(u) = t(vj), therefore the

mapping f is determined by f̂ and the operations f 7→ f̂1 and f 7→ f̂2

are one-to-one.

3. Finite state extensions

3.1. The purpose of this part is to find conditions for the mapping f

under which an automaton corresponding to the extension mapping f̂ is
finite. We assume the set X is finite.

Lemma 1. Let f : X∗ → X∗ be an arbitrary mapping and f̂ : X∗
α → X∗

α

its plain or cyclic extension. If f̂ is finite–state automaton mapping then
the set f(X∗) is finite.

Proof. Let A = (Q, q0, Xα, δ, λ) be a finite automaton defining the map-
ping f̂ . Consider words of the form

u′ = uα|f(u)| , u ∈ X∗ .

If the set f(X∗) is infinite then, since Q is finite, there exist the words
u1 and u2 such that

δ(q0, u1) = δ(q0, u2).

Denote this common state by q. It is clear that

λ(q, α|f(u1)|) = f(u1) and λ(q, α|f(u2)|) = f(u2) .

If |f(u1)| = |f(u2)| then we at once obtain f(u1) = f(u2).
In the opposite case we may assume that |f(u1)| < |f(u2)| and let

k = |f(u2)| − |f(u1)|. By definition of f̂ we have

f̂ : uα|f(u)|α 7→ α|u|f(u)α

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.44 Automaton extensions of mappings

and in particular:
λ(q, α|f(u1)|αk) = f(u1)α

k ,

λ(q, α|f(u2)|) = f(u2) .

From α|f(u1)|αk = α|f(u2)| we obtain an equality

f(u1)α
k = f(u2) ∈ X∗

which is true only with k = 0 and f(u1) = f(u2).
Although f(u) 7→ δ(q, u) need not to be a function (since a nonmin-

imal automaton can include several paths to output f(u)), from above
discussion it follows that for f(u1) 6= f(u2) we have δ(q0, u1) 6= δ(q0, u2).
Thus the set f(X∗) is finite.

3.2. Example. Let P denote the set of prime numbers. Consider an
alphabet X = {1, 2} and a function

f(u) =






ε u = ε,

1 |u| ∈ P,

2 |u| 6∈ P.

The extension mapping f̂ satisfies

f̂ : uα 7→

{
α|u|1 |u| ∈ P,

α|u|2 |u| 6∈ P.

The automaton defined by f̂ cannot be finite. Indeed, were automaton
inducing f̂ be finite then by taking

Q = {δ(q0, u) : |u| ∈ P}

as the set of an accept states we obtain a contradiction since L = {u ∈
X∗ : |u| ∈ P} is not regular.

3.3. Proof of the main theorem.

Both conditions state that a function f has the form

f(u) =






u1 u ∈ L1,

. . .

uk u ∈ Lk,

where Li, i = 1, . . . , k are regular languages satisfying

X∗ = L1 ∪ L2 ∪ · · · ∪ Lk , Li ∩ Lj = ∅ .

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.M. Osys 45

(⇒) Let A = (Q, q0, Xα, δ, λ) be finite automaton inducing f̂ . From the
previous lemma f(X∗) is a finite set. Furthermore, the language
L = f−1(u) is recognizable by the automaton A′ = (Q, q0, T, X, δ′)
where the set of an accept states is taken as

T = {δ(q0, v) : f(v) = u}

and the next-state function δ′ is obtained from δ by deleting arrows
labeled with α on the input side of its label. Since A′ is finite, thus
L is regular.

(⇐) Let k = |f(X∗)| and Li, i = 1, . . . , k be pairwise distinct regular
languages of the form f−1(u), u ∈ X∗. Then, for each i there exists
a finite Rabin–Scott automaton Ai which accepts the language Li

Ai = (Qi, q
i
0, Ti, X, δi)

where Qi are finite sets and 1 ≤ i ≤ k.

The automaton A = (Q, q0, X, δ, λ) defining f̂ can be carried from
above by taking

1. Q′ = Q1×· · ·×Qk, where Q′ ⊂ Q and the remaining elements
of Q are introduced below,

2. q0 = (q1
0, . . . , q

k
0),

3. (q1, . . . , qk)
x/α
7→ (r1, . . . , rk) iff δi(q

i, x) = ri for 1 ≤
i ≤ k.

Since {Li : i = 1, . . . , k} forms a partition on X∗, then obtained par-
tial automaton has the property, that for every state
q = (q1, . . . , qk) exactly one component is an accept state in the
automaton corresponding to its position.

So far, for the partial automaton, the function δ does not accept
symbol α as second argument and the automaton is not capable to
produce symbols other than α. From earlier mentioned property, we
claim that for every state q = (q1, . . . , qk) there exists corresponding
language Lq = {u : δ(q0, u) = q} and

|f(Lq)| = 1

that is all words from Lq are mapped into the same word, say
v = x1 . . . xs. After adding paths of the form

q
α/x1

7−→ q1
α/x2

7−→ . . .
α/xs

7−→ qs , (∗)

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.46 Automaton extensions of mappings

where q1, . . . , qs are new states, we have the finite partial automaton
that follows the rule

uα|f(u)| 7→ α|u|f(u) .

While δ is still the partial mapping, it needs to be extended in order
to obtain well-defined plain or cyclic extension. This can be done
while preserving finite amount of states. In both cases, consider
paths of the form (*). Let qs be a terminal state of the path. In
case of the plain extension we define

qs
x′/α
7−→ qs, x′ ∈ Xα

and

qi
x/xi

7−→ qs, x ∈ X, i = 1, . . . , s − 1 .

However, for the cyclic extension we apply

qs
α/α
7−→ qs

and

qi
x/α
7−→ δ(q0, x), x ∈ X, i = 1, . . . , s .

Finally, for both plain and cyclic extensions we will apply

q0
α/α
7−→ q0 .

Above definitions complete a construction of the well-defined au-
tomaton inducing the extension f̂ .

Acknowledgments

Thanks to Vitalii Sushchanskii for his kindness and for invaluable help.

References

[1] Čulik K. II, Construction of the Automaton Mapping, (in Russian)
Aplikace Matematiky, Vol. 10, No. 6, 1965

[2] Eilenberg S., Automata, Languages and Machines, Volume A,
Academic Press, New York, 1974

[3] Glushkov V. M., Abstract Theory of Automata, (in Russian)
Russian Math. Surveys, Vol. XVI, 5(101), 1961, pp. 3–62

Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e

M
at

h
.M. Osys 47

[4] Grigorchuk R. I., Nekrashevich V. V., Sushchanskii V. I.,
Automata, Dynamical Systems, and Groups,
Proceedings of Steklov Institute of Mathematics, Vol. 231, 2000, pp. 128–203

[5] Mikolajczak B. (ed.), Algebraic and Structural Automata Theory,
Annals of Discrete Mathematics, Vol. 44, North-Holland, 1991

[6] Raney G.N., Sequential Functions,
J. Assoc. Comput. Math., Vol. 5, 1958, N2, pp. 177–180

[7] Sheng Yu, Regular Languages,
In: Handbook of Formal Languages, Volume 1,
Springer-Verlag, Berlin, 1997, pp. 41–110

Contact information

Miros law Osys Silesian University of Technology,
Faculty of Mathematics and Physics,
ul. Kaszubska 23,
44-100 Gliwice, Poland
E-Mail: odys@zeus.polsl.gliwice.pl

URL: zeus.polsl.gliwice.pl/˜odys

Received by the editors: 29.10.2004
and final form in 15.12.2005.

