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Abstract. We define the canonical coarse structure on the
spaces of the form FX, where F is a finitary normal functor of
finite degree and show that every finitary (i.e., preserving the class
of finite spaces) normal functor of finite degree in Comp has its
counterpart in the coarse category.

1. Introduction

The coarse category first introduced by J. Roe [1] turned out to be an
appropriate universe for different areas of modern mathematics (see, e.g.
[2], [3]). In [4] the authors considered the hyperspace functor in the coarse
category and established some properties of the monad generated by this
functor. In particular, it was proved in [4] that the G-symmetric power
functor can be extended onto the Kleisli category of this monad.

Both the hyperspace functor and the G-symmetric power functor have
their counterparts in the category Comp of compact Hausdorff spaces.
These functors in Comp are examples of normal functors in the sense of
Shchepin [5]. The theory of normal functors was developed by different
authors [6]; in [5] this theory was applied to the topology of nonmetriz-
able compact Hausdorff spaces and in [7] to the topology of infinite-
dimensional manifolds.

The aim of this paper is to show that every finitary (i.e., preserving
the class of finite spaces) normal functor of finite degree in Comp has
its counterpart in the coarse category. These functors are completely
determined by their restrictions onto the category of spaces of cardinality
≤ n, where n denotes the degree of the functor. We show, in particular,

Key words and phrases: coarse space, coarse map, normal functor.
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that our construction coincides with the Vietoris coarse structure on the
hypersymmetric power functors (defined in [4]).

2. Preliminaries

2.1. Coarse structures

For the convenience of reader we recall some definitions of the coarse
topology; see, e.g. [1], [8] for details.

Let X be a set and M,N ⊂ X ×X. The composition of M and N is
the set

MN = {(x, y) ∈ X ×X | there exists z ∈ X

such that (x, z) ∈M, (z, y) ∈ N},

the inverse of M is the set M−1 = {(x, y) ∈ X ×X | (y, x) ∈M}.
A coarse stucture on a set X is a family E of subsets, which are

called the entourages, in the product X ×X that satisfies the following
properties:

1. any finite union of entourages is contained in an entourage;

2. for every entourageM , its inverseM−1 is contained in an entourage;

3. for every entourages M , N their composition MN is contained in
an entourage;

4. ∪E = X ×X.

A coarse space is a pair (X, E), where E is a coarse structure on a set
X.

A coarse structure on X is called unital, if the diagonal ∆X is con-
tained in an entourage. A coarse structure on X is called anti-discrete,
if X ×X is an entourage.

If E1, E2 are coarse structures on X, then E1 ≤ E2 means that for
every M ∈ E1 there is N ∈ E2 such that M ⊂ N .

Two coarse structures E1 and E2 are said to be equivalent, if E1 ≤ E2

and E2 ≤ E1. We usually identify coarse spaces with equivalent coarse
structures. The weight of the coarse structure is the cardinal number
w(E) = min{|E ′| | E and E ′ are equivalent }.

If E is a coarse structure on X, then, obviously, the coarse structure
E1 = {M ∪M−1 | M ∈ E} is equivalent to E and is symmetric in the
sense that N−1 ∈ E1 for every N ∈ E1.
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Given M ∈ E and A ⊂ X we define the M -neighborhood M(A) of A
as follows: M(A) = {x ∈ X | (a, x) ∈ M for sone a ∈ A}. We use the
notation M({a}) instead of M(a). A set A ⊂ X is bounded if there exists
x ∈ X such that A ⊂M(x).

Let (Xi, Ei), i = 1, 2, be coarse spaces. A map f : X1 → X2 is called
coarse, if the following two conditions hold:

1. for every M ∈ E1 there exists N ∈ E2 such that (f × f)(M) ⊂ N ;

2. for any bounded subset A of X2 the set f−1(A) is bounded.

Let f, g : X1 → X2 be coarse maps. If there exists U ∈ E2 (here E2 is
the coarse structure on X2) such that (f(x), g(x)) ∈ U for every x ∈ X1

then the maps f, g are said to be U -close.
Let (X, d) be a metric space. The family

Ed = {{(x, y) ∈ X ×X | d(x, y) < n} | n ∈ N}

forms a metric coarse structure on X.
It is easy to see that the coarse spaces and coarse maps form a cat-

egory. We denote it by CS. Let U : CS → Set denote the forgetful
functor into the category Set of sets.

The product of coarse spaces (X1, E1), (X2, E2) is the coarse space
(X1 ×X2, E1 × E2), where E1 × E2 = {U1 × U2 | U1 ∈ E1, U2 ∈ E2}. By
induction, we define the product of coarse spaces (Xi, Ei), i = 1, . . . , n.
We denote the n-th power of a coarse space (X, E) by (Xn, En). Note
that Xn can be naturally identified with C(n,X), the set of all maps from
n to X; we say that f, g ∈ C(n,X) are U -close whenever (f, g) ∈ Un,
where U ∈ E .

2.2. Normal functors

We briefly recall some notions from the theory of normal functors in the
category Comp of compact Hausdorff spaces; see, e.g., [5] for details. An
endofunctor F in Comp is called normal if it is continuous , monomor-
phic, epimorphic, preserves weight of infinite compacta, intersections,
preimages, singletons and empty set.

Suppose that F is a monomorphic functor that preserves the inter-
sections, and a ∈ FX. The support of a is the set

suppF,X(a) = ∩
{
A ⊂ X | A is closed and a ∈ FA

}
.

In the obvious situation the notation suppF,X(a) is abbreviated to suppF (a)
or even to supp(a). We say that a functor is finitary if it preserves the
finite spaces.
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Examples of normal finitary functors are:
1) The hypersymmetric power functor expn. Here

expnX = {A ⊂ X | 1 ≤ A ≤ n}, expn f = f(A).

2) The G-symmetric power functor SPn
G, where G is a subgroup of

the symmetric group Sn. Define an equivalence relation ∼G on Xn by the
conditions: (x1, . . . , xn) ∼G (y1, . . . , yn) if and only if there exists σ ∈ G
such that xi = yσ(i) for all i = 1, . . . , n. We denote by [x1, . . . , xn]G
the equivalence class that contains (x1, . . . , xn). By the definition, the
G-symmetric power of X is SPn

GX = Xn/∼G
.

Given a map f : X → Y , we define a map SPn
Gf : SPn

GX → SPn
GY

by the formula:

SPn
Gf([x1, . . . , xn]G) = [f(x1), . . . , f(xn)]G.

3) The subfunctor Pn,k of the functor of probability measures, k ∈ N.
Let

Pn,k =

{
n∑

i=1

αiδxi
| x1, . . . , xn ∈ X, αi =

pi

k
, pi ∈ {0, 1, . . . , },

n∑

i=1

αi = 1

}
.

Let F be a normal functor. The degree of a point a ∈ FX is the
cardinality of supp(a), whenever supp(a) is finite and ∞, otherwise. The
degree of a is denoted by deg(a). The maximal possible value of deg(a)
is called the degree of the functor F and denoted by deg(F ). If F is
not a functor of degree n for any n ∈ N then is said to be a functor of
infinite degree (this is denoted by degF = ∞). Let F be a finite normal
functor of degree n in the category Comp. For every normal functor
F : Comp → Comp construct the functorFβ : Tych → Tych by the
following manner (Tych denotes the category of Tychonov spaces). For
every X ∈ |Tych| let

FβX = {a ∈ FβX | supp(a) ⊂ X} ⊂ FβX

(here βX denotes the Čheh-Stone compactification of the space X).
Given a map f : X → Y of Tychonov spaces, we have F (βf)(FβX) ⊂
FβY . Let Fβf = Fβ|FβX : FβX → FβY , which is the restriction F (βf)
on FβX. Obviously, Fβ is an endofunctor in Tych. By definition, Fβ is
an extension of F onto Tych. We keep the notion F for its canonical
extension onto Tych.

For every a ∈ Fn, the subfunctor Fa of F is defined as follows:

Fa = ∩{F ′ | F ′ is a normal subfunctor ofF such that a ∈ F ′n}.
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Every functor of the form Fa is a quotient functor of the power
functor (−)deg(a) in the sense that there exists a natural transforma-
tion πa : (−)deg(a) → Fa such that all the maps πaX : Xdeg(a) → Fa are
onto. Indeed, define πaX as follows: πaX(x1, . . . , xn) = Ff(a), where
f : {1, . . . , n} → X is the map sending i to xi. Note, that from the
normality of F , the preimages of the map πaX are finite.

3. Normal functors in the coarse category

3.1. Construction

Let F be finitary normal functor of degree n ≥ 1, (X, E) a coarse space.
For any U ∈ E define

Û ={(a, b) ∈ FX × FX | there exist W1, . . . ,Wk ∈ E ,

f1, . . . , f2k ∈ C(n,X), c1, . . . , ck ∈ Fn such that

W1 . . .Wk ⊂ U, are f2i−1, f2i U -close, i = 1, . . . , k,

i Ff1(c1) = a, Ff2k(ck) = b,

Ff2j(cj) = Ff2j+1(cj+1), j = 1, . . . , k − 1}.

Note that here we consider the set X as a discrete topological space, that
is why it is possible to consider the discrete space FX, which is identified
with the underlying set.

Proposition 3.1. The family {Û | U ∈ E} forms a coarse structure on

FX.

Proof. It is easy to see that Û−1 = (Û)−1.

Suppose that Û , V̂ ∈ Ê . Let us show that for any W ∈ E we have
Û V̂ ⊂ Ŵ . Let (a, b) ∈ Û V̂ , this means that there exists c ∈ FX
such that (a, c) ∈ Û , (c, b) ∈ V̂ . There exist U1, . . . , Uk, V1, . . . , Vl ∈ E ,
a1, . . . , ak, b1, . . . , bl ∈ Fn, and f1, f2, . . . , f2k, g1, g2, . . . , g2l : n→ X such
that the following holds:

1. U1 . . . Uk ⊂ U , V1 . . . Vl ⊂ V ;

2. Ff1(a1) = a, Ff2i(ai) = Ff2i+1(ai+1) for every i = 1, 2, . . . , k − 1,
Ffk(ak) = Fg1(b1) = c, Fg2j(bj) = Fg2j+1(bj+1) for every j =
1, 2, . . . , l − 1, Fg2l(bl) = b;

3. the maps f2i−1, f2i are Ui-close, i = 1, . . . , k and the maps g2j−1,
g2j are Vj-close, j = 1, . . . , l.
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Since U1 . . . UkV1 . . . Vl ⊂ UV ⊂W , from the definition of E it follows
that (a, b) ∈ Ŵ .

We are going to show that ∪Ê = FX × FX. Choose arbitrary a, b ∈
FX and x ∈ X and check that (a, ηX(x)) ∈ Û , (ηX(x), b) ∈ Û for some
U ∈ E . There exists U ∈ E such that (y, x) ∈ U for every y ∈ supp(a).
Let a′ ∈ Fn and f ∈ Xn be such that Ff(a′) = a. Denote by g : n→ X
the constant map with value {x}. Since f and g is U -close, we see that
(a, ηX(x)) ∈ Û . Similarly, one can show that (ηX(x), b) ∈ Û for some
U ∈ E .

In the sequel, we will denote the defined above coarse structure on
FX by EF .

Proposition 3.2. The coarse structure EF is unital if and only if so is E.

Proof. Choose an arbitrary a ∈ FX. Since E is a unital coarse structure,
there exists U ∈ E such that (xi, xi) ∈ U for every i = 1, . . . , n, where
xi ∈ supp(a).

Let us consider the map φ : n → X acting in the following way:
φ(i) = xi and b ∈ Fn such that Fφ(b) = a. Notice that Fφ(b) = a and
for every i = 1, . . . , n, (φ(i), φ(i)) ∈ U . Thus (a, a) ∈ Û . Therefore, we
obtain that ∆FX ⊂ Û

Lemma 3.3. Let (X, E) be a coarse space and F a finitary functor of

finite degree. Let a ∈ FX, x ∈ X and a ∈ Û(ηX(x)). Then supp(a) ⊂
U(x).

Proof. Since (a, ηX(x)) ∈ Û , there exist U1, . . . , Uk ∈ E , a1, . . . , ak ∈ Fn,
and maps f1, f2, . . . , f2k : n→ X such that the following holds:

(1) U1 . . . Uk ⊂ U ;
(2) Ff1(a1) = a, Ff2k(ak) = ηX(x), and Ff2i(a2i) = Ff2i+1(a2i+1)

for every i = 1, . . . , k − 1;
(3) the maps f2i−1, f2i are Ui-close, i = 1, . . . , k.
Let y ∈ supp(a). By induction, one can find points zi ∈ supp(ai), i =

1, . . . , k, such that f1(z1) = y, f2i(zi) = f2i+1(zi+1), i = 1, . . . , k − 1.
Since (f2i−1(zi), f2i(zi)) ∈ Ui, i = 1, . . . , k, we conclude that (y, x) ∈
U1 . . . Uk ⊂ U .

Let now f : (X, EX) → (Y, EY ) be a coarse map between coarse spaces.
It is natural to define the map Ff : FX → FY .

Proposition 3.4. The map Ff : (FX, EXF ) → (FY, EY F ) is coarse if so

is f .
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Proof. Let us verify that the map Ff is coarsely uniform. Given Û ∈ ÊXF

and (a, b) ∈ Û , find U1, . . . , Uk ∈ E , a1, . . . , ak ∈ Fn, and f1, . . . , f2k :
n→ X such that the following holds:

(1) U1 . . . Uk ⊂ U ;

(2) Ff1(a1) = a, Ff2k(ak) = b, and Ff2i(a2i) = Ff2i+1(a2i+1) for
every i = 1, . . . , k − 1;

(3) the maps f2i−1, f2i are Ui-close, i = 1, . . . , k.

Since f is coarsely uniform, for every i = 1, . . . , k, there exists Vi ∈ EY

such that (f × f)(Ui) ⊂ Vi. Find V ∈ EY such that V1 . . . Vk ⊂ V . Let
gi = ffi : n → Y . With these g1, . . . , g2k, V1, . . . , Vk and a1, . . . , ak we
see that (Ff(a), Ff(b)) ∈ V̂ . This means that (Ff × Ff)(Û) ⊂ V̂ and
the coarse uniformity of Ff is proved.

Let us demonstrate that the map Ff is coarsely proper. Suppose
that a set A is bounded in FY , i.e. there exists V ∈ EY and y ∈ Y such
that A ⊂ V̂ (ηY (y)). Since f is coarsely proper, there exists x ∈ X and
U ∈ EX such that f−1(Y (y)) ⊂ U(x) .

We are going to show that (Ff)−1(A) ⊂ V̂ (ηX(x)).

Suppose then there exists a ∈ FX with Ff(a) = b ∈ A. Since
(b, ηY (y)) ∈ V̂ , by Lemma 4.2, supp(b) ⊂ V and, therefore supp(a) ⊂
U(x). It is obvious that then (a, ηX(x)) ∈ Û .

3.2. Hypersymmetric power

Let (X, E) be a coarse space. On the hypersymmetric power expn one
can consider, in addition to the Vietoris coarse structure, Ẽ , the defined
above structure Ê .

Proposition 3.5. The coarse structures Ẽ and Ê on the set expnX are

coarsely equivalent.

Proof. Consider an arbitrary entourage U ∈ E and show that Ũ ⊂
Û(A,B) ∈ Û . Given (a, b) ∈ Û , find a1, . . . , ak ∈ expn n and f1, . . . , f2k :
n→ X such that the following holds:

(1) U1 . . . Uk ⊂ U ;

(2) expn f1(a1) = a, expn f2k(ak) = b, and
expn f2i(a2i) = expn f2i+1(a2i+1) for every i = 1, . . . , k − 1;

(3) the maps f2i−1, f2i are Ui-close, i = 1, . . . , k.

For any x ∈ a there exists c1 ∈ a1 ⊂ n with f1(c1) = x. Since
expn f2i(ai) = expn f2i+1(ai+1), one can choose a sequence ci ∈ ai, for
i = 2, . . . , k so that (f2i−1(ci), f2i(ci)) ∈ Ui, i = 1, . . . , k. Let f2k(c2k) =
y. Then (x, y) ∈ U1 . . . Uk ⊂ U . Therefore, a ⊂ U(b). One can similarly
show that b ⊂ U(a). This means that (a, b) ∈ Ũ .



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.V. Frider 23

Let (a, b) ∈ Ũ , i.e. a ⊂ U(b) and b ⊂ U(a). For every x ∈ a, find
h(x) ∈ b such that (x, h(x)) ∈ U . Similarly, for every y ∈ b, find g(y) ∈ a
such that (g(y), y) ∈ U . Denote by r : a → g(b) the retraction such that
r(x) = g(h(x)), for every x ∈ a \ g(b).

Let f1 : n→ X be a map for which f1(n) = a, f2 = rf1, f4 : n→ X
be a map for which f4(n) = b, f3 = gf4, then

f2(n) = rf1(n) = r(a) = g(b) = gf4(n) = f3(n).

Since, for every i ∈ n, (f1(i), h(f1(i))) ∈ U and (h(f1(i)), g(h(f1(i)))) ∈
U , we see that (f1(i), f2(i)) ∈ U2. Similarly, (f3(i), f4(i)) ∈ U , therefore

the maps f1 and f4 are U3-close. Finally, Ũ ⊂ Û3.

3.3. G-symmetric power

The G-symmetric power functor SPn
G is endowed with the coarse struc-

ture Ê defined in the following way:
M̂ ∈ Ê ⇔ M̂ = {([x1, . . . , xn]G, [y1, . . . , yn]G) | there exist σ ∈ G,

such that for all i = 1, . . . , n, (xi, yσ(i)) ∈M ∈ E} (see [4] for details).

Further we will denote ESP n
G

by Ẽ .

Proposition 3.6. The coarse structures Ê and Ẽ are equivalent.

Proof. Consider an arbitrary entourage M ∈ E and show that M̃ and M̂
are coarsely equivalent.

Let ([x1, . . . , xn]G, [y1, . . . , yn]G) ∈ M̂ , this means that there exists
σ ∈ G such that (xi, yσ(i)) ∈ M for all i = 1, . . . , n. Taking the maps
f1 : n → X sending i to xi and f2 : n → X sending i to yσ(i) we
obtain that SPn

Gf1([1, . . . , n]G) = [x1, . . . , xn]G and SPn
Gf2([1, . . . , n]G) =

[y1, . . . , yn]G. Note that f1 and f2 are M -close.

Hence, ([x1, . . . , xn]G, [y1, . . . , yn]G) ∈ M̃ .

To show that every ([x1, . . . , xn]G, [y1, . . . , yn]G) ∈ M̃ is containing in

M̂ we choose entourages U1, . . . , Uk ∈ E , points a1, . . . , ak ∈ SPn
Gn and

maps f1, . . . , f2k ∈ C(n,X) for which
SPn

Gf1(a1) = [x1, . . . , xn]G, SPn
Gf2k(ak) = [y1, . . . , yn]G,

SPn
Gf2i(ai) = SPn

Gf2i+1(ai+1) for i = 1, . . . , n and
f2i−1, f2i are Ui-close for every i = 1, . . . , k , where U1 · . . . ·Uk ⊂M .
We have (xi, f2(i)) ∈ U1, (f3(i), f4(i)) ∈ U2, . . . , (f2k(i), yi) ∈ Uk and

[f2i(1), . . . , f2i(n)]G = SPn
Gf2i(ai) = SPn

Gf2i+1(ai+1) =

= [f2i+1(1), . . . , f2i+1(n)]G.
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Therefore, we conclude that f2i(j) = f2i+1(j) for every i = 1, . . . , k and
j = 1, . . . , n and that implies (xi, yi) ∈ U1 · . . . · Uk ⊂M .

Now taking σ = e, where e is the identity permutation we obtain that
[x1, . . . , xn]G, [y1, . . . , yn]G) ∈ M̂ .

4. Normality properties

In this section we define counterparts of the properties from the definition
of the normal functor for the functors in the asymptotic category.

Definition 4.1. Recall a map f : (X, EX) → (Y, EY ) between coarse
spaces to be monomorphic, if there exists a map g : f(X) → Y such
that the following holds: there exists UX ∈ EX , UY ∈ EY , such that for
every x ∈ X, y ∈ f(X) we have (x, gf(x)) ∈ UX , (y, fg(y)) ∈ UY .

Proposition 4.2. The functor F : CS → CS defined above preserves the

class of monomorphic maps.

Proof. Let f , g and Ui, i = 1, 2 be as above. The map Ff : FX → FY
is monomorphic, this follows from the commutative diagram:

FX

Ff

��

Ff //

idFX

!!{
w

s
o

k g c _ [ W S
O

K
G

C

Ff(FX)
Fg // FX

Ff

��
Ff(FX)

Fg
//

idFf(FX)

==
G

K
O

S W [ _ c g k
o

s
w

FX

Ff

OO

Ff
// Ff(FX)

Definition 4.3. Recall a map f : (X, EX) → (Y, EY ) between coarse
spaces to be epimorphic, if the image f(X) is coarsely dense in Y . This
means that exists UY ∈ EY such that UY (f(X)) ⊃ Y .

Proposition 4.4. The functor F : CS → CS preserves the class of epi-

morphic maps.

Proof. Let f : X → Y be an epimorphic map. Show that Ff : FX → FY
is also epimorphic.

Fix an arbitrary b ∈ FY . Since supp(b) = y1, . . . , yn, there exists b∗ ∈
Fn such that Fφ(b∗) = b, where φ : n → Y acts in the following way:
φ(i) = yi.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.V. Frider 25

The map f is epimorphic, this means that there exists UY ∈ EY for
which Y ⊂ UY (f(X)). Hence, for every i there exists y∗I with yi ∈ UY (y∗i ).

Consider the map ϕ : n→ X, ϕ(i) = xi, xi ∈ X and f(xi) = y∗i . Let
a = Fϕ(b∗). Finally, we have to show that (Ff(a), b) ∈ ÛY . With this
aim we notice that:

1) Fψ(b∗) = a, fϕ(b∗) = b;

2) ϕ and ψ are UY -close, because ϕ(i) = yi, ψ(i) = xi and f(xi) = y∗i .

We have (yi, y
∗

i ) ∈ UY , so we are done.

Definition 4.5. Let f : (X, EX) → (Y, EY ) be a coarse map and B ⊂ Y .
A coarse preimage of the set B is the set A together with two maps
g : A→ B, j : A→ X for which the following holds:

if there are two coarse maps α : Z → X, β : Z → B such that
fα ∼ iβ, then exists a map h : Z → A such that gh ∼ β, jh ∼ α.

For the convenience of the reader let us introduce this definition by
the diagram:

Z
α

##

h

��@
@

@
@

β

��

A
j //

g

��

X

f

��
B

i
// Y

Proposition 4.6. Any two coarse preimages of B are coarsely equivalent.

Proof. Let (A, g, j), (A′, g′, j′) be different coarse preimages of the set B.
For the coarse preimage A put Z = A′, α = j′, β = g′. We obtain that
fα = fj′, iβ = ig′.

Since A′ is also a coarse preimage, fj′ ∼ ig′ implies fα ∼ iβ. That is
why we can find the map h : A′ → A such that gh ∼ g′ and jh ∼ j′.

Similarly, one can show that for A′ there exists a map h′ : A → A′

for which g′h′ ∼ g and j′h′ ∼ j. Therefore,

g′ ∼ gh ∼ g′h′h⇒ h′h ∼ idA′

j ∼ j′h′ ∼ jhh′ ⇒ hh′ ∼ idA

This completes the proof.

Proposition 4.7. The functor F preserves coarse preimages.
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Proof. Let f : X → Y be a coarse map and A be a coarse preimage for
B.

Γα

π2

''PPPPPPPPPPPPPP

β   A
A

A
A

A
j

//

g

��

X

f

��
B ⊂ Y

We build the set Γα = {(z, x)|x ∈ suppα(z)} ⊂ Z × X. Note that
f(π2(Γα)) ⊂ B, where π2 is a projection map on the second factor of the
product. Since A is a coarse preimage of B, there exists β : Z → A such
that jβ ∼ π2. Moreover, Ff(α(Z)) ⊂ FB, whence supp(Ff ◦α(Z)) ⊂ B
and ⇒ f(suppα(Z)) ⊂ B. Put ξ(z) = Fβ ◦ α(z). This map is sending
any point x ∈ Z to ξ(z) ∈ FA i.e. ξ : Z → FA. It is easy to see that the
diagram

Z
α

((RRRRRRRRRRRRRRRR

ξ !!C
CC

CC
CC

C

FA
Fj

//

Fg

��

FX

Ff

��
FB ⊂ FY

is commutative, thus FA ∼= (Ff)−1(FB). This ends the proof.

Definition 4.8. A functor F : CS → CS is normal in CS if:
1) F preserves weight;
2) F is monomorphic;
3) F is epimorphic;
4) F preserves preimages;
5) F preserves ∅ (i.e. bounded coarse spaces).

Remark 4.9. There is now sense to consider properties such as preserv-
ing intersections and continuity in coarse category. For example, simple
intersection between sets of odd natural numbers and even natural num-
bers is empty set, but in coarse category their intersection is equivalent
to all natural row.

Proposition 4.10. If F is a finitary normal functor of finite degree

n ≥ 1, then F is normal in CS.

Proof. The preservation of weights is in a follows from the definition of
the coarse structure on FX (see definition). All the other properties
follow from propositions 4.7, 4.9 and 4.12.
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