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ABSTRACT. Let G be a finite group and let A = G4cqA4 be a
strongly G-graded R-algebra, where R is a commutative ring with
unity. We prove that if R is a Dedekind domain with quotient field
K, A is an R-order in a separable K-algebra such that the algebra
A, is a Gorenstein R-order, then A is also a Gorenstein R-order.
Moreover, we prove that the induction functor ind : ModAy —
ModA defined in Section 3, for a subgroup H of G, commutes with
the standard duality functor.

1. Introduction

Throughout this paper,R is a Dedekind domain with quotient field
K ,G is a finite group and A a finite dimensional separable K-algebra.
An R-order A in A is a subring of A such that i) the center of A contains
R, ii) A is finitely generated R-module and iii) KA = A. A A-lattice is
a left A-module which is a finitely generated and projective R-module.
Let us denote by A M (resp. My) a left (resp. right) A-module M. An
R-order A in A is Gorenstein if (A\A)* = Hompg(A, R) is projective as a
right A-lattice (see [3], p.778).

The importance of Gorenstein orders in integral representation theory
appears in the next fact, taking into account that the property of being a
Gorenstein order is a local property: Let A be a Gorenstein R-order in a
separable K-algebra, where R is a complete discrete valuation ring. Then
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every nonprojective indecomposable left A-lattice M is a lattice relative
to some strictly larger R-order in A (|3], 37.13).

We recall from [8] that, for a group G, a ring A is a strongly G-
graded ring if A = P geG Ay, where each A, is an additive subgroup, and
AgAy = Agp, for every g, h € G. In particular, if Ay has a unit for every
g € G, then A is said to be a crossed product Ay x G of A1 by G.

In the Section 2 of this paper we prove that if A is a strongly graded
R-order in a finite dimensional separable K-algebra A, for a finite group
G, and A is a Gorenstein order, then A is also a Gorenstein order.

In the special case of the group ring, A = RG is a Gorenstein order in
KG ([3], 10.29). In case A is the classical crossed product S % G, where
S is the integral closure of R in a Galois extension L/K with Galois
group G, it was proved in [10] that A is not only a Gorenstein order, but
a symmetric order, that is, (AA)* = A as a two-sided A-module. This
extends the corresponding result for group algebras over a field given in
[10], Theorem 1.

The proof of the symmetricity of a classical crossed product order
was one of the motivations of this paper. The question that appears
is the following: When a strongly G-graded R-algebra A, for a finite
group G, R a commutative artinian ring and an artinian R-algebra Ai,
is symmetric? It seems that the question is extremely complicated even
in the case of algebras over a field. M.E. Harris has proved in [5] that if
A1 is a finite dimensional semisimple algebra over a field K and G is a
finite group, then any crossed product Aj * G is a symmetric K-algebra.
On the other hand E.C. Dade has proved in [4] (see also [7], p.62) that
there exists a finite dimensional algebra A over a field K such that A
is a crossed product A1 x G of a K-algebra A; by a finite group G, and
A is symmetric K-algebra, while A; is not symmetric. Continuing this
direction, we prove that if A is a twisted group ring of A; by a finite
group G, R is a commutative ring and A; is a symmetric artinian R-
algebra, then A is a symmetric R-algebra. Moreover we prove that if
A is a strongly G-graded K-algebra for a finite group such that A; is a
Frobenius K-algebra, then A is also Frobenius. This extends the relative
result for crossed product algebras given in [7], Ch2, Theorem 2.4.

In the Section 3 of this paper we prove a result on induced modules
of strongly graded modules relative to the Hom functor, extending the
well-known results for group rings given in [9]. As a consequence, we get
another proof of Theorem 2.1 by applying Corollary 3.3.

The reader is referred to [3] for a back-ground material on the rep-
resentation theory and Gorenstein orders, to [1] and [2] for basic facts
on the theory of artin algebras, to [7]| for the properties of symmetric
algebras, to [6] for basic results on Gorenstein orders and to [9], [11] for
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induced representations.

2. Strongly graded Gorenstein orders

Let R be an artinian commutative ring. If A is an artinian R-algebra,
let modA be the category of finitely generated left A-modules and AP
the opposite ring of A. We denote by J the injective envelope of the
direct sum of the non-isomorphic simple R-modules. For an object X in
modA, the R-module Hompg(X, J) becomes a right A-module by the rule
(fN)(x) = f(Ax), for f € Homp(X,J) and A,z € A. Hence Homp(X, J)
is a left A°’-module. Similary, if X is a right A-module, then Homp(X, J)
becomes a left A-module. The contravariant R-functor:

D : modA — modA°?; X — Homp(X,J)

is a duality called the standard duality, (|2], II, Theorem 3.3). The R-
algebra A is said to be symmetric if there exists an isomorphism A 2 D(A)
of A-A-bimodules.

We suppose now that

A=A,

geG

is a strongly G-graded ring, for a finite group G, and A; an artinian
R-algebra. Then A is also an artinian R-algebra. Since A is a strongly
G-graded ring, from the relation AjA -1 = Ay, for g € G, it follows that

are element aéi) € Ay and b, € A,-1 such that

-1
ng ' (
S al!, =1 (2.1)
=1

for some positive integer n, depending on g € G. Using the above nota-
tion we prove the following result.

Theorem 2.1. Assume that A = @geG Ay is a strongly G-graded ar-
tinian R-algebra such that there exists an isomorphism Ay = D(A1) of left
(resp. right) Ay —modules. Then there exists an isomorphism A = D(A)
of left (resp. right) A — modules.

Proof. We prove the left part of the proposition because the "right" one
is dual. Let ¢: Ay — D(A;) be an isomorphism of left Aj-modules. We
define a map ¢ : A — D(A) by the rule

(A (z) = ¢(1)[(Ax)1], for A,z € A.
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Let A = >  coAg and @ = 37 oz Then (A\z)1 = Y 5 Agzg1.
It is clear that ¥ (\) is an R-homomorphism. We prove that ¥ ()) is a
A-homomorphism of left A-modules. Let A, u, x € A, then

[ Mul(x) = M) (pz) = 6(1) (Mpz)l) = o(1) ([(Aw)z]i) = P (Ap)(2).

First we show that v is a monomorphism. For, let A # 0 be an
element of A. Then \; # 0, for some ¢t € G. We consider the relation on

(2.1) for g = t71,

Z aii_)lby) =1

icl
for a finite index set I depending on t. Since A; # 0, it follows that
)\ta L F 0 for some j € I. Now since ¢ is an isomorphism we get
that gb(/\ta 1) # 0. Hence there exists an element 27 € A; such that
gb(/\ta( 1)(z1) # 0. Therefore

w(A)(QE{)lg;l) = ¢(1) [()\al(i)liﬂl)l} =¢(1) (Ataij)lxl) -

= (snas ) (@) = ¢ (Ma,) (@1) # 0.

Hence 1(\) # 0 and ¢ is a monomorphism. Next we prove that ¢ is an
epimorphism. Since A is a finitely generated R-module, it follows that
([2] IT 3.1), I(A) = I(Hompg(A,J)), where [(X) denotes the length of the
A-module X. We consider the exact sequence

0— A% Hompg (A, J) — Cokery — 0.

It follows that
I(A) + I[(Cockery) = 1(D(A))

and hence [(Cocker(y)) = 0, so Cocker(y) = 0 and hence v is surjective.
This completes the proof. O

If R in the above theorem is a field K, then A is a strongly G-graded
K-algebra and from the above proposition A = Homg (A, K) as left A-
modules. So extending the relevant result for crossed product algebras
([7], Ch.2, Theorem 2.4) we get the following useful fact.

Corollary 2.2. Let K be a field, G a finite group and A = EgeG
strongly G-graded K-algebra. If Ay is a Frobenius K -algebra, then A 18
also a Frobenius K -algebra.

Below, we apply again the notation introduced above.
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Proposition 2.3. Let A = ®96G Ay be a strongly G-graded R-algebra
for a finite group G. Let A1 be a symmetric artinian R-algebra, with a
Ay-Aq-bimodule isomorphism ¢ : A1 — D(Ay1). The following conditions
are equivalent:

i) ¢(1) [(pA)] = ¢(1) [(Aw)a], for A, € A.

1) 9(1)gttg-1) = (1) (g1 ), for Ay € Ay, pig1 € g1, g € G

ii1) (1) (Z?gl bs) )\1(15)) = ¢(1)(A1), for A1 € Ay and aéz), bg)l, ng as
in the relation (2.1).

Proof. Let ¢ : Ay — D(A1) be Aj-Aj-bimodule isomorphism and A =
®gecly, a strongly G-graded R-algebra. We remark that, for Ai, 23
elements in A1, we have

(A1) (z1) = [Mo(1)] (z1) = d(1) (21 M)
and
d(A1) (1) = [p(D)A1] (21) = o(1)(A21).
Hence
(1) (x1A1) = ¢(1)(A121). (2.2)

The implication i)=+ii) is obvious.
ii)=1) Let A =3 5 Ag and =3 pg be elements of A. Then

o(1) [(A)1] = ¢(1) (Z /\glu’gl> D o) (Agpg—1) =

geG geG

= (1) (pg=1Ag) = B(1) [(uM)1] -

geG

ii)=-iii) Let A\; € A;. Then
ng ) ] g L
1) (Z bgmla;”) =¢(1) (Z afb', Ay :) $(1)(A1).
=1 =1

iii)=-ii) Let Ay € Ay and py,1 € Aj—1. Then using the equations (2.1)
and (2.2) we get

$(1) (g1 ) (Zug-la b, )

= (1) (Z bg)lxguglag’?) = $(1)(Agptg1)-

i=1
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Remarks 2.4. i) It is clear that if one of the relations of Proposition 2.3
holds, then the map v in the proof of Theorem 2.1 is an isomorphism of
A-A-bimodules and hence A is symmetric.

it) Suppose that A = Ay * G is a crossed product of A1 by G, that is
A = ®yeqMg for some units g in A. It is clear that the condition iii) of
Proposition 2.8 is equivalent to the following one

P(1)(2?) = o(1)(2), = € A1, g € G, (2.3)

where 9 = grg ~'.

We finish this section by a useful result for twisted group algebras.

Theorem 2.5. Let A be a twisted group ring of the artinian R-algebra
A1 by the finite group G. If Ay is a symmetric R-algebra, then A is also
symmetric.

Proof. The fact that A is a twisted group ring is equivalent to the fact
that the action of G on Aj is inner, that is grg ~! = e(g)ze(g) !, for
x € A1 and £(g) is a unit of A; depending on g, for g € G (see [8] Ch.2,
Proposition 14). Then the equalities (2.2), (2.3) yield

$(1)(29) = ¢(1) (e(9)ze(g) ") = o(1) (22(9)e(9) ™) = d(1)(2),

since ze(g)~! € A;. Hence the equality iii) of Proposition (2.3) holds and
by Remarks (2.4) i) it follows that A is symmetric. O

Now we assume that R is a complete discrete valuation ring with
quotient field K and A a finite dimensional separable K-algebra. Let A
be an R-order in A which is a strongly G-graded ring by a finite group
G, such that A; is an R-order in a separable K-algebra A;. Then D(A)
(resp. D(A1)) is A* = Homp(A, R) (resp. A = Hompg(A1, R)) (see [3])
and the proof of Theorem 2.1 also holds for A} and A*. Now the condition
A* = A as right A-modules, becomes A* = A as right A-lattices, which
means that A* is projective as right A-lattice. In other words, A is a
Gorenstein order and since the property of being a Gorenstein order is a
local property we get the following

Theorem 2.6. Let R be a Dedekind domain with quotient field K and A
a finite dimensional separable K-algebra. Let A = ®geqy be a strongly
G-graded R-algebra which is an R-order in A and let Ay be an R-order in
a separable K-algebra Ay1. If A1 is a Gorenstein R-order then A is also a
Gorenstein R-order.
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3. The induction functor commutes with the standard du-
ality

Let G be a finite group and A = ©4ecqAy a strongly G-graded ring.
Let R be a commutative ring with unity such that

RCCph(A)={Ne€A1: \x =z, for every z € A}.

Then A is an R-algebra. Let H be a subgroup of G, then Ay = ®pcpg Ay is
a strongly H-graded R-algebra. If V' is a left (resp. right) Ag-module by
V& we denote the left (resp. right) A-module A @5, V (resp. V @4, A).
We denote by

ind : ModAg — ModA

the induction functor defined by V — V& = A ® Ay V. The first result
of this section generalizes a result on induced modules of group rings to
strongly graded rings. We use the above notation.

Theorem 3.1. Let G be a finite group, H C G a subgroup and A =
@geG Ay a strongly G-graded R-algebra. Let V' be a left Ay-module and
B a left R-module.

i) There is a functorial isomorphism [Homg(V, B)]® = Homg(VC, B)
of right A-modules.

it) If A is a crossed product of A1 over G, then there is a functorial
isomorphism

[Homg(B,V)|% = Homg(B,VE) of A-modules.

Proof. 1) We remark that for rings S and R, X a left S-module and Y a
left R-module, the group Hompg(X,Y) is a right S-module via the rule
fs(x) = f(sx), for f € Homp(X,Y), s € S and x € X.

Let now V be a left Ay-module and B a left R-module, then Hompg(V, B)
is a right Ag-module. We define the map

F : [Homg(V, B)]% — Homgz(V¥, B)

by the formula z = >, 1 ft ® \pi-1 +— F, where T' is a left transversal of
Hin G, fy € Homg(V,R), Ay € A4 for g € G and

F,:V¢ - B

is defined by the formula } ", Iy @ vy = >, cp fi(MN-1lyvy), for Iy € Ay,
v € Vandt € T It is enough to define F' on = and then to extent

it on ) ,cr Zze I ft )\(Z for a finite index set I and similarly for the
elements of V¢
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First we prove that F' is independent of T'. Let T” be another left
transversal of H in G. Then for any t' € T' there exists a unique element
hy of H and a unique t € T such that ¢ = th;. From the relations Ay =
AeAp, and Ay = Ah;IAt—l we get the next expressions of arbitrary
elements Iy € Ay and Apy—1 € Ay

o= Y4015 and Ao = 3T NDN
i J

for léi), /\éj) € Ay, g € G and %, j running over finite index sets. Then

FOY foor (Y lp® o) =

t'er’ teT’
FO Y fur h_1®>\ IS 1 @ 1vy) =
tel j tel i
B ZZZ )\(] J) l(z Z(Z th’ Ap—1lpvy).
teT 1 j teT

It is easy to see that F, is an R-homomorphism, since R C Cy, (A).
The map F' is a monomorphism. Indeed; let F(3_,cp ft ® \y-1) = 0, then
for ag € Ay, g € G and v € V we conclude that the equality

FOfi@M-1)(ag@v) =0
tel
implies the equalities fyAga, = 0 for g € G, ay € Ay. Hence we

conclude, by taking agi) as in the equality (2.1), the equalities

Shoxa=3Y fixa) @b =o.

teT teT 4

Now We prove that the map F is surjective. If f € Homp(V®, B) we

define ft :V — B by ftl)( )= f(agl) ®v) for ag " as in (2.1). Since f is
an R-homomorphism then for r € R, v € V we get

o) = flaf) @r0) = rf(a” @v) = £ (v).

Now we prove that f = F(EteT Z ftl X b( 2 1). We remark that for
Zth Iy ® v, € VE we have

FON #2000  howvw) =33 #7061 =

teT i teT teT i
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ZZf ®bt 1ltvt ZZf atl) @ wv) = th@vt

teT 1 teT 1 teT

Finally we prove that the map F' is a A-homomorphism. Let g € G,
Ag € Ay and K = {g~'t : t € T} another left transversal of H in G. If
ke K,teT, Il € Ay and v € V, it is enough to prove that

F(f: @ M=1)Ag] (e ® v) = [F(f; @ A1) Ag] (e @ 0).

The left hand term of this equality is equal to zero, if k& # gt~ !, and is
equal to fi(A-1Aglgv), if kK = gt~!. For the right hand term we have:

0, if gk#t
F(ft @ A1) (Mgl @ v) = { St Aglyv), if gk =t.

It follows that F'is a A-homomorphism and the statement i) is proved.
ii) Let A =) ,.ptApy be a crossed product. We consider the map

F : [Homg(B,V)]¢ — Homgp(B, V%)

defined by t ® ¢ — ¢f, where ¢y : B — A®p,, V, is defined by b
t® p(b), for t € T and b € B. Similarly as in i), we prove that F has
the required properties. ]

Corollary 3.2. Let G be an arbitrary group and H a subgroup of G of
finite index, V a left Ag-module and W a right A-module. Then there
exist isomorphism

(D(V))? = D(VY) and (V)% = (V)

of right A-modules.

Corollary 3.3. Let G be a finite group. If there exists an isomor-
phism D(A1) =2 Ay of right Ay-modules then there exists an isomorphism
D(A) =2 A of right A-modules.
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