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Abstract. Let G be a finite group and let Λ = ⊕g∈GΛg be a

strongly G-graded R-algebra, where R is a commutative ring with

unity. We prove that if R is a Dedekind domain with quotient field

K, Λ is an R-order in a separable K-algebra such that the algebra

Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order.

Moreover, we prove that the induction functor ind : ModΛH →
ModΛ defined in Section 3, for a subgroup H of G, commutes with

the standard duality functor.

1. Introduction

Throughout this paper,R is a Dedekind domain with quotient field
K,G is a finite group and A a finite dimensional separable K-algebra.
An R-order Λ in A is a subring of A such that i) the center of Λ contains
R, ii) Λ is finitely generated R-module and iii) KΛ = A. A Λ-lattice is
a left Λ-module which is a finitely generated and projective R-module.
Let us denote by ΛM (resp. MΛ) a left (resp. right) Λ-module M . An
R-order Λ in A is Gorenstein if (ΛΛ)∗ = HomR(Λ, R) is projective as a
right Λ-lattice (see [3], p.778).

The importance of Gorenstein orders in integral representation theory
appears in the next fact, taking into account that the property of being a
Gorenstein order is a local property: Let Λ be a Gorenstein R-order in a
separable K-algebra, where R is a complete discrete valuation ring. Then
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every nonprojective indecomposable left Λ-lattice M is a lattice relative
to some strictly larger R-order in A ([3], 37.13).

We recall from [8] that, for a group G, a ring Λ is a strongly G-
graded ring if Λ =

⊕

g∈G Λg, where each Λg is an additive subgroup, and
ΛgΛh = Λgh, for every g, h ∈ G. In particular, if Λg has a unit for every
g ∈ G, then Λ is said to be a crossed product Λ1 ∗G of Λ1 by G.

In the Section 2 of this paper we prove that if Λ is a strongly graded
R-order in a finite dimensional separable K-algebra A, for a finite group
G, and Λ1 is a Gorenstein order, then Λ is also a Gorenstein order.

In the special case of the group ring, Λ = RG is a Gorenstein order in
KG ([3], 10.29). In case Λ is the classical crossed product S ∗ G, where
S is the integral closure of R in a Galois extension L/K with Galois
group G, it was proved in [10] that Λ is not only a Gorenstein order, but
a symmetric order, that is, (ΛΛ)∗ ∼= Λ as a two-sided Λ-module. This
extends the corresponding result for group algebras over a field given in
[10], Theorem 1.

The proof of the symmetricity of a classical crossed product order
was one of the motivations of this paper. The question that appears
is the following: When a strongly G-graded R-algebra Λ, for a finite
group G, R a commutative artinian ring and an artinian R-algebra Λ1,
is symmetric? It seems that the question is extremely complicated even
in the case of algebras over a field. M.E. Harris has proved in [5] that if
Λ1 is a finite dimensional semisimple algebra over a field K and G is a
finite group, then any crossed product Λ1 ∗G is a symmetric K-algebra.
On the other hand E.C. Dade has proved in [4] (see also [7], p.62) that
there exists a finite dimensional algebra A over a field K such that A
is a crossed product A1 ∗ G of a K-algebra A1 by a finite group G, and
A is symmetric K-algebra, while A1 is not symmetric. Continuing this
direction, we prove that if Λ is a twisted group ring of Λ1 by a finite
group G, R is a commutative ring and Λ1 is a symmetric artinian R-
algebra, then Λ is a symmetric R-algebra. Moreover we prove that if
A is a strongly G-graded K-algebra for a finite group such that A1 is a
Frobenius K-algebra, then A is also Frobenius. This extends the relative
result for crossed product algebras given in [7], Ch2, Theorem 2.4.

In the Section 3 of this paper we prove a result on induced modules
of strongly graded modules relative to the Hom functor, extending the
well-known results for group rings given in [9]. As a consequence, we get
another proof of Theorem 2.1 by applying Corollary 3.3.

The reader is referred to [3] for a back-ground material on the rep-
resentation theory and Gorenstein orders, to [1] and [2] for basic facts
on the theory of artin algebras, to [7] for the properties of symmetric
algebras, to [6] for basic results on Gorenstein orders and to [9], [11] for
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induced representations.

2. Strongly graded Gorenstein orders

Let R be an artinian commutative ring. If Λ is an artinian R-algebra,
let modΛ be the category of finitely generated left Λ-modules and Λop

the opposite ring of Λ. We denote by J the injective envelope of the
direct sum of the non-isomorphic simple R-modules. For an object X in
modΛ, the R-module HomR(X, J) becomes a right Λ-module by the rule
(fλ)(x) = f(λx), for f ∈ HomR(X, J) and λ, x ∈ Λ. Hence HomR(X, J)
is a left Λop-module. Similary, ifX is a right Λ-module, thenHomR(X, J)
becomes a left Λ-module. The contravariant R-functor:

D : modΛ → modΛop, X 7→ HomR(X, J)

is a duality called the standard duality, ([2], II, Theorem 3.3). The R-
algebra Λ is said to be symmetric if there exists an isomorphism Λ ∼= D(Λ)
of Λ-Λ-bimodules.

We suppose now that

Λ =
⊕

g∈G

Λg

is a strongly G-graded ring, for a finite group G, and Λ1 an artinian
R-algebra. Then Λ is also an artinian R-algebra. Since Λ is a strongly
G-graded ring, from the relation ΛgΛg−1 = Λ1, for g ∈ G, it follows that

are element a
(i)
g ∈ Λg and b

(i)
g−1 ∈ Λg−1 such that

ng
∑

i=1

a(i)
g b

(i)
g−1 = 1 (2.1)

for some positive integer ng depending on g ∈ G. Using the above nota-
tion we prove the following result.

Theorem 2.1. Assume that Λ =
⊕

g∈G Λg is a strongly G-graded ar-
tinian R-algebra such that there exists an isomorphism Λ1

∼= D(Λ1) of left
(resp. right) Λ1−modules. Then there exists an isomorphism Λ ∼= D(Λ)
of left (resp. right) Λ −modules.

Proof. We prove the left part of the proposition because the "right" one
is dual. Let φ : Λ1 → D(Λ1) be an isomorphism of left Λ1-modules. We
define a map ψ : Λ → D(Λ) by the rule

ψ(λ)(x) = φ(1)[(λx)1], for λ, x ∈ Λ.
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Let λ =
∑

g∈G λg and x =
∑

g∈G xg. Then (λx)1 =
∑

g∈G λgxg−1 .
It is clear that ψ(λ) is an R-homomorphism. We prove that ψ(λ) is a
Λ-homomorphism of left Λ-modules. Let λ, µ, x ∈ Λ, then

[ψ(λ)µ](x) = ψ(λ)(µx) = φ(1) ([λ(µx)]1) = φ(1) ([(λµ)x]1) = ψ(λµ)(x).

First we show that ψ is a monomorphism. For, let λ 6= 0 be an
element of Λ. Then λt 6= 0, for some t ∈ G. We consider the relation on
(2.1) for g = t−1,

∑

i∈I

a
(i)
t−1b

(i)
t = 1

for a finite index set I depending on t. Since λt 6= 0, it follows that

λta
(j)
t−1 6= 0 for some j ∈ I. Now since φ is an isomorphism we get

that φ(λta
(j)
t−1) 6= 0. Hence there exists an element x1 ∈ Λ1 such that

φ(λta
(j)
t−1)(x1) 6= 0. Therefore

ψ(λ)(a
(j)
t−1x1) = φ(1)

[

(λa
(j)
t−1x1)1

]

= φ(1)
(

λta
(j)
t−1x1

)

=

=
(

φ(1)λta
(j)
t−1

)

(x1) = φ
(

λta
(j)
t−1

)

(x1) 6= 0.

Hence ψ(λ) 6= 0 and ψ is a monomorphism. Next we prove that ψ is an
epimorphism. Since Λ is a finitely generated R-module, it follows that
([2] II 3.1), l(Λ) = l(HomR(Λ, J)), where l(X) denotes the length of the
Λ-module X. We consider the exact sequence

0 → Λ
ψ

−→ HomR(Λ, J) → Cokerψ → 0.

It follows that
l(Λ) + l(Cockerψ) = l(D(Λ))

and hence l(Cocker(ψ)) = 0, so Cocker(ψ) = 0 and hence ψ is surjective.
This completes the proof.

If R in the above theorem is a field K, then A is a strongly G-graded
K-algebra and from the above proposition A ∼= HomK(A,K) as left A-
modules. So extending the relevant result for crossed product algebras
([7], Ch.2, Theorem 2.4) we get the following useful fact.

Corollary 2.2. Let K be a field, G a finite group and A =
∑

g∈GAga
strongly G-graded K-algebra. If A1 is a Frobenius K-algebra, then A is
also a Frobenius K-algebra.

Below, we apply again the notation introduced above.
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Proposition 2.3. Let Λ =
⊕

g∈G Λg be a strongly G-graded R-algebra
for a finite group G. Let Λ1 be a symmetric artinian R-algebra, with a
Λ1-Λ1-bimodule isomorphism φ : Λ1 → D(Λ1). The following conditions
are equivalent:
i) φ(1) [(µλ)1] = φ(1) [(λµ)1], for λ, µ ∈ Λ.
ii) φ(1)(λgµg−1) = φ(1)(µg−1λg), for λg ∈ Λg, µg−1 ∈ Λg−1, g ∈ G.

iii) φ(1)
(

∑ng

i=1 b
(i)
g−1λ1a

(i)
g

)

= φ(1)(λ1), for λ1 ∈ Λ1 and a
(i)
g , b

(i)
g−1, ng as

in the relation (2.1).

Proof. Let φ : Λ1 → D(Λ1) be Λ1-Λ1-bimodule isomorphism and Λ =
⊕g∈GΛg, a strongly G-graded R-algebra. We remark that, for λ1, x1

elements in Λ1, we have

φ(λ1)(x1) = [λ1φ(1)] (x1) = φ(1)(x1λ1)

and
φ(λ1)(x1) = [φ(1)λ1] (x1) = φ(1)(λ1x1).

Hence
φ(1)(x1λ1) = φ(1)(λ1x1). (2.2)

The implication i)⇒ii) is obvious.
ii)⇒i) Let λ =

∑

g∈G λg and µ =
∑

g∈G µg be elements of Λ. Then

φ(1) [(λµ)1] = φ(1)





∑

g∈G

λgµg−1



 =
∑

g∈G

φ(1)(λgµg−1) =

=
∑

g∈G

φ(1)(µg−1λg) = φ(1) [(µλ)1] .

ii)⇒iii) Let λ1 ∈ Λ1. Then

φ(1)

(

ng
∑

i=1

b
(i)
g−1λ1a

(i)
g

)

= φ(1)

(

ng
∑

i=1

a(i)
g b

(i)
g−1λ1 =

)

φ(1)(λ1).

iii)⇒ii) Let λg ∈ Λg and µg−1 ∈ Λg−1 . Then using the equations (2.1)
and (2.2) we get

φ(1)(µg−1λg) = φ(1)

(

ng
∑

i=1

µg−1a(i)
g b

(i)
g−1λg

)

=

= φ(1)

(

ng
∑

i=1

b
(i)
g−1λgµg−1a(i)

g

)

= φ(1)(λgµg−1).
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Remarks 2.4. i) It is clear that if one of the relations of Proposition 2.3
holds, then the map ψ in the proof of Theorem 2.1 is an isomorphism of
Λ-Λ-bimodules and hence Λ is symmetric.
ii) Suppose that Λ = Λ1 ∗ G is a crossed product of Λ1 by G, that is
Λ = ⊕g∈GΛ1g for some units g in Λ. It is clear that the condition iii) of
Proposition 2.3 is equivalent to the following one

φ(1)(xg) = φ(1)(x), x ∈ Λ1, g ∈ G, (2.3)

where xg = gxg −1.

We finish this section by a useful result for twisted group algebras.

Theorem 2.5. Let Λ be a twisted group ring of the artinian R-algebra
Λ1 by the finite group G. If Λ1 is a symmetric R-algebra, then Λ is also
symmetric.

Proof. The fact that Λ is a twisted group ring is equivalent to the fact
that the action of G on Λ1 is inner, that is gxg −1 = ε(g)xε(g)−1, for
x ∈ Λ1 and ε(g) is a unit of Λ1 depending on g, for g ∈ G (see [8] Ch.2,
Proposition 14). Then the equalities (2.2), (2.3) yield

φ(1)(xg) = φ(1)
(

ε(g)xε(g)−1
)

= φ(1)
(

xε(g)ε(g)−1
)

= φ(1)(x),

since xε(g)−1 ∈ Λ1. Hence the equality iii) of Proposition (2.3) holds and
by Remarks (2.4) i) it follows that Λ is symmetric.

Now we assume that R is a complete discrete valuation ring with
quotient field K and A a finite dimensional separable K-algebra. Let Λ
be an R-order in A which is a strongly G-graded ring by a finite group
G, such that Λ1 is an R-order in a separable K-algebra A1. Then D(Λ)
(resp. D(Λ1)) is Λ∗ = HomR(Λ, R) (resp. Λ∗

1 = HomR(Λ1, R)) (see [3])
and the proof of Theorem 2.1 also holds for Λ∗

1 and Λ∗. Now the condition
Λ∗ ∼= Λ as right Λ-modules, becomes Λ∗ ∼= Λ as right Λ-lattices, which
means that Λ∗ is projective as right Λ-lattice. In other words, Λ is a
Gorenstein order and since the property of being a Gorenstein order is a
local property we get the following

Theorem 2.6. Let R be a Dedekind domain with quotient field K and A
a finite dimensional separable K-algebra. Let Λ = ⊕g∈GΛg be a strongly
G-graded R-algebra which is an R-order in A and let Λ1 be an R-order in
a separable K-algebra A1. If Λ1 is a Gorenstein R-order then Λ is also a
Gorenstein R-order.
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3. The induction functor commutes with the standard du-

ality

Let G be a finite group and Λ = ⊕g∈GΛg a strongly G-graded ring.
Let R be a commutative ring with unity such that

R ⊆ CΛ1
(Λ) = {λ ∈ Λ1 : λx = xλ, for every x ∈ Λ}.

Then Λ is an R-algebra. LetH be a subgroup of G, then ΛH = ⊕h∈HΛh is
a strongly H-graded R-algebra. If V is a left (resp. right) ΛH -module by
V G we denote the left (resp. right) Λ-module Λ⊗ΛH

V (resp. V ⊗ΛH
Λ).

We denote by

ind : ModΛH −→ModΛ

the induction functor defined by V 7−→ V G = Λ ⊗ΛH
V . The first result

of this section generalizes a result on induced modules of group rings to
strongly graded rings. We use the above notation.

Theorem 3.1. Let G be a finite group, H ⊆ G a subgroup and Λ =
⊕

g∈G Λg a strongly G-graded R-algebra. Let V be a left ΛH-module and
B a left R-module.
i) There is a functorial isomorphism [HomR(V,B)]G ∼= HomR(V G, B)
of right Λ-modules.
ii) If Λ is a crossed product of Λ1 over G, then there is a functorial
isomorphism
[HomR(B, V )]G ∼= HomR(B, V G) of Λ-modules.

Proof. i) We remark that for rings S and R, X a left S-module and Y a
left R-module, the group HomR(X,Y ) is a right S-module via the rule
fs(x) = f(sx), for f ∈ HomR(X,Y ), s ∈ S and x ∈ X.

Let now V be a left ΛH -module andB a leftR-module, thenHomR(V,B)
is a right ΛH -module. We define the map

F : [HomR(V,B)]G → HomR(V G, B)

by the formula x =
∑

t∈T ft⊗ λt−1 7→ Fx, where T is a left transversal of
H in G, ft ∈ HomR(V,R), λg ∈ Λg for g ∈ G and

Fx : V G → B

is defined by the formula
∑

t∈T lt ⊗ vt 7→
∑

t∈T ft(λt−1 ltvt), for lt ∈ Λt,
vt ∈ V and t ∈ T . It is enough to define F on x and then to extent

it on
∑

t∈T

∑

i∈I f
(i)
t ⊗ λ

(i)
t−1 for a finite index set I and similarly for the

elements of V G.
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First we prove that F is independent of T . Let T ′ be another left
transversal of H in G. Then for any t′ ∈ T ′ there exists a unique element
ht of H and a unique t ∈ T such that t′ = tht. From the relations Λt′ =
ΛtΛht

and Λt′−1 = Λ
h−1

t
Λt−1 we get the next expressions of arbitrary

elements lt′ ∈ Λt′ and λt′−1 ∈ Λt′−1

lt′ =
∑

i

l
(i)
t l

(i)
ht

and λt′−1 =
∑

j

λ
(j)

h−1

t

λ
(j)
t−1

for l
(i)
g , λ

(j)
g ∈ Λg, g ∈ G and i, j running over finite index sets. Then

F (
∑

t′∈T ′

ft′ ⊗ λt′−1)(
∑

t′∈T ′

lt′ ⊗ vt′) =

= F (
∑

t∈T

∑

j

ft′λ
(j)

h−1

t

⊗ λ
(j)
t−1)(

∑

t∈T

∑

i

l
(i)
t ⊗ l

(i)
ht
vt′) =

=
∑

t∈T

∑

i

∑

j

(ft′λ
(j)

h−1

t

)(λ
(j)
t−1 l

(i)
t l

(i)
ht
vt′) =

∑

t∈T

ft′(λt′−1 lt′vt′).

It is easy to see that Fx is an R-homomorphism, since R ⊆ CΛ1
(Λ).

The map F is a monomorphism. Indeed; let F (
∑

t∈T ft⊗λt−1) = 0, then
for ag ∈ Λg, g ∈ G and v ∈ V we conclude that the equality

F (
∑

t∈T

ft ⊗ λt−1)(ag ⊗ v) = 0

implies the equalities fgλgag = 0 for g ∈ G, ag ∈ Λg. Hence we

conclude, by taking a
(i)
t as in the equality (2.1), the equalities

∑

t∈T

ft ⊗ λt−1 =
∑

t∈T

∑

i

ftλt−1a
(i)
t ⊗ b

(i)
t−1 = 0.

Now we prove that the map F is surjective. If f ∈ HomR(V G, B) we

define f
(i)
t : V → B by f

(i)
t (v) = f(a

(i)
t ⊗ v) for a

(i)
t as in (2.1). Since f is

an R-homomorphism then for r ∈ R , v ∈ V we get

f
(i)
t (rv) = f(a

(i)
t ⊗ rv) = rf(a

(i)
t ⊗ v) = rf

(i)
t (v).

Now we prove that f = F (
∑

t∈T

∑

i f
(i)
t ⊗ b

(i)
t−1). We remark that for

∑

t∈T lt ⊗ vt ∈ V G we have

F (
∑

t∈T

∑

i

f
(i)
t ⊗ b

(i)
t−1)(

∑

t∈T

lt ⊗ vt) =
∑

t∈T

∑

i

f
(i)
t (b

(i)
t−1 ltvt) =
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∑

t∈T

∑

i

f(a
(i)
t ⊗ b

(i)
t−1 ltvt) =

∑

t∈T

∑

i

f(a
(i)
t b

(i)
t−1 lt ⊗ vt) = f(

∑

t∈T

lt ⊗ vt).

Finally we prove that the map F is a Λ-homomorphism. Let g ∈ G,
λg ∈ Λg and K = {g−1t : t ∈ T} another left transversal of H in G. If
k ∈ K, t ∈ T , lk ∈ Λk and v ∈ V , it is enough to prove that

F [(ft ⊗ λt−1)λg] (lk ⊗ v) = [F (ft ⊗ λt−1)λg] (lk ⊗ v).

The left hand term of this equality is equal to zero, if k 6= gt−1, and is
equal to ft(λt−1λglkv), if k = gt−1. For the right hand term we have:

F (ft ⊗ λt−1)(λglk ⊗ v) =

{

0, if gk 6= t
ft(λt−1λglkv), if gk = t.

It follows that F is a Λ-homomorphism and the statement i) is proved.
ii) Let Λ =

∑

t∈T tΛH be a crossed product. We consider the map

F : [HomR(B, V )]G → HomR(B, V G)

defined by t ⊗ ϕt 7→ ϕ∗

t , where ϕ∗

t : B → Λ ⊗ΛH
V , is defined by b 7→

t ⊗ ϕt(b), for t ∈ T and b ∈ B. Similarly as in i), we prove that F has
the required properties.

Corollary 3.2. Let G be an arbitrary group and H a subgroup of G of
finite index, V a left ΛH-module and W a right Λ-module. Then there
exist isomorphism

(D(V ))G ∼= D(V G) and (V ∗)G ∼= (V G)∗

of right Λ-modules.

Corollary 3.3. Let G be a finite group. If there exists an isomor-
phism D(Λ1) ∼= Λ1 of right Λ1-modules then there exists an isomorphism
D(Λ) ∼= Λ of right Λ-modules.
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