Algebra and Discrete Mathematics Number 2. (2005). pp. 80 – 89 © Journal "Algebra and Discrete Mathematics"

On strongly graded Gorestein orders

RESEARCH ARTICLE

Th.Theohari-Apostolidi and H. Vavatsoulas

Communicated by D. Simson

ABSTRACT. Let G be a finite group and let $\Lambda = \bigoplus_{g \in G} \Lambda_g$ be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ_1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor $ind : Mod\Lambda_H \rightarrow$ $Mod\Lambda$ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor.

1. Introduction

Throughout this paper, R is a Dedekind domain with quotient field K, G is a finite group and A a finite dimensional separable K-algebra. An R-order Λ in A is a subring of A such that i) the center of Λ contains R, ii) Λ is finitely generated R-module and iii) $K\Lambda = A$. A Λ -lattice is a left Λ -module which is a finitely generated and projective R-module. Let us denote by $_{\Lambda}M$ (resp. M_{Λ}) a left (resp. right) Λ -module M. An R-order Λ in A is Gorenstein if $(_{\Lambda}\Lambda)^* = Hom_R(\Lambda, R)$ is projective as a right Λ -lattice (see [3], p.778).

The importance of Gorenstein orders in integral representation theory appears in the next fact, taking into account that the property of being a Gorenstein order is a local property: Let Λ be a Gorenstein *R*-order in a separable *K*-algebra, where *R* is a complete discrete valuation ring. Then

²⁰⁰⁰ Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50.

Key words and phrases: strongly graded rings, Gorenstein orders, symmetric algebras.

every nonprojective indecomposable left Λ -lattice M is a lattice relative to some strictly larger R-order in A ([3], 37.13).

We recall from [8] that, for a group G, a ring Λ is a strongly G-graded ring if $\Lambda = \bigoplus_{g \in G} \Lambda_g$, where each Λ_g is an additive subgroup, and $\Lambda_g \Lambda_h = \Lambda_{gh}$, for every $g, h \in G$. In particular, if Λ_g has a unit for every $g \in G$, then Λ is said to be a crossed product $\Lambda_1 * G$ of Λ_1 by G.

In the Section 2 of this paper we prove that if Λ is a strongly graded R-order in a finite dimensional separable K-algebra A, for a finite group G, and Λ_1 is a Gorenstein order, then Λ is also a Gorenstein order.

In the special case of the group ring, $\Lambda = RG$ is a Gorenstein order in KG ([3], 10.29). In case Λ is the classical crossed product S * G, where S is the integral closure of R in a Galois extension L/K with Galois group G, it was proved in [10] that Λ is not only a Gorenstein order, but a symmetric order, that is, $(\Lambda\Lambda)^* \cong \Lambda$ as a two-sided Λ -module. This extends the corresponding result for group algebras over a field given in [10], Theorem 1.

The proof of the symmetricity of a classical crossed product order was one of the motivations of this paper. The question that appears is the following: When a strongly G-graded R-algebra Λ , for a finite group G, R a commutative artinian ring and an artinian R-algebra Λ_1 , is symmetric? It seems that the question is extremely complicated even in the case of algebras over a field. M.E. Harris has proved in [5] that if Λ_1 is a finite dimensional semisimple algebra over a field K and G is a finite group, then any crossed product $\Lambda_1 * G$ is a symmetric K-algebra. On the other hand E.C. Dade has proved in [4] (see also [7], p.62) that there exists a finite dimensional algebra A over a field K such that Ais a crossed product $A_1 * G$ of a K-algebra A_1 by a finite group G, and A is symmetric K-algebra, while A_1 is not symmetric. Continuing this direction, we prove that if Λ is a twisted group ring of Λ_1 by a finite group G, R is a commutative ring and Λ_1 is a symmetric artinian Ralgebra, then Λ is a symmetric *R*-algebra. Moreover we prove that if A is a strongly G-graded K-algebra for a finite group such that A_1 is a Frobenius K-algebra, then A is also Frobenius. This extends the relative result for crossed product algebras given in [7], Ch2, Theorem 2.4.

In the Section 3 of this paper we prove a result on induced modules of strongly graded modules relative to the *Hom* functor, extending the well-known results for group rings given in [9]. As a consequence, we get another proof of Theorem 2.1 by applying Corollary 3.3.

The reader is referred to [3] for a back-ground material on the representation theory and Gorenstein orders, to [1] and [2] for basic facts on the theory of artin algebras, to [7] for the properties of symmetric algebras, to [6] for basic results on Gorenstein orders and to [9], [11] for induced representations.

2. Strongly graded Gorenstein orders

Let R be an artinian commutative ring. If Λ is an artinian R-algebra, let $mod\Lambda$ be the category of finitely generated left Λ -modules and Λ^{op} the opposite ring of Λ . We denote by J the injective envelope of the direct sum of the non-isomorphic simple R-modules. For an object X in $mod\Lambda$, the R-module $Hom_R(X, J)$ becomes a right Λ -module by the rule $(f\lambda)(x) = f(\lambda x)$, for $f \in Hom_R(X, J)$ and $\lambda, x \in \Lambda$. Hence $Hom_R(X, J)$ is a left Λ^{op} -module. Similary, if X is a right Λ -module, then $Hom_R(X, J)$ becomes a left Λ -module. The contravariant R-functor:

$$D: mod\Lambda
ightarrow mod\Lambda^{op}, \ X \mapsto Hom_R(X,J)$$

is a duality called the standard duality, ([2], II, Theorem 3.3). The *R*-algebra Λ is said to be symmetric if there exists an isomorphism $\Lambda \cong D(\Lambda)$ of Λ - Λ -bimodules.

We suppose now that

$$\Lambda = \bigoplus_{g \in G} \Lambda_g$$

is a strongly G-graded ring, for a finite group G, and Λ_1 an artinian R-algebra. Then Λ is also an artinian R-algebra. Since Λ is a strongly G-graded ring, from the relation $\Lambda_g \Lambda_{g^{-1}} = \Lambda_1$, for $g \in G$, it follows that are element $a_g^{(i)} \in \Lambda_g$ and $b_{g^{-1}}^{(i)} \in \Lambda_{g^{-1}}$ such that

$$\sum_{i=1}^{n_g} a_g^{(i)} b_{g^{-1}}^{(i)} = 1$$
(2.1)

for some positive integer n_g depending on $g \in G$. Using the above notation we prove the following result.

Theorem 2.1. Assume that $\Lambda = \bigoplus_{g \in G} \Lambda_g$ is a strongly *G*-graded artinian *R*-algebra such that there exists an isomorphism $\Lambda_1 \cong D(\Lambda_1)$ of left (resp. right) Λ_1 – modules. Then there exists an isomorphism $\Lambda \cong D(\Lambda)$ of left (resp. right) Λ – modules.

Proof. We prove the left part of the proposition because the "right" one is dual. Let $\phi : \Lambda_1 \to D(\Lambda_1)$ be an isomorphism of left Λ_1 -modules. We define a map $\psi : \Lambda \to D(\Lambda)$ by the rule

$$\psi(\lambda)(x) = \phi(1)[(\lambda x)_1], \text{ for } \lambda, x \in \Lambda.$$

Let $\lambda = \sum_{g \in G} \lambda_g$ and $x = \sum_{g \in G} x_g$. Then $(\lambda x)_1 = \sum_{g \in G} \lambda_g x_{g^{-1}}$. It is clear that $\psi(\lambda)$ is an *R*-homomorphism. We prove that $\psi(\lambda)$ is a Λ -homomorphism of left Λ -modules. Let $\lambda, \mu, x \in \Lambda$, then

$$[\psi(\lambda)\mu](x) = \psi(\lambda)(\mu x) = \phi(1) ([\lambda(\mu x)]_1) = \phi(1) ([(\lambda\mu)x]_1) = \psi(\lambda\mu)(x).$$

First we show that ψ is a monomorphism. For, let $\lambda \neq 0$ be an element of Λ . Then $\lambda_t \neq 0$, for some $t \in G$. We consider the relation on (2.1) for $g = t^{-1}$,

$$\sum_{i \in I} a_{t^{-1}}^{(i)} b_t^{(i)} = 1$$

for a finite index set I depending on t. Since $\lambda_t \neq 0$, it follows that $\lambda_t a_{t^{-1}}^{(j)} \neq 0$ for some $j \in I$. Now since ϕ is an isomorphism we get that $\phi(\lambda_t a_{t^{-1}}^{(j)}) \neq 0$. Hence there exists an element $x_1 \in \Lambda_1$ such that $\phi(\lambda_t a_{t^{-1}}^{(j)})(x_1) \neq 0$. Therefore

$$\psi(\lambda)(a_{t^{-1}}^{(j)}x_1) = \phi(1)\left[(\lambda a_{t^{-1}}^{(j)}x_1)_1\right] = \phi(1)\left(\lambda_t a_{t^{-1}}^{(j)}x_1\right) = \\ = \left(\phi(1)\lambda_t a_{t^{-1}}^{(j)}\right)(x_1) = \phi\left(\lambda_t a_{t^{-1}}^{(j)}\right)(x_1) \neq 0.$$

Hence $\psi(\lambda) \neq 0$ and ψ is a monomorphism. Next we prove that ψ is an epimorphism. Since Λ is a finitely generated *R*-module, it follows that ([2] II 3.1), $l(\Lambda) = l(Hom_R(\Lambda, J))$, where l(X) denotes the length of the Λ -module X. We consider the exact sequence

$$0 \to \Lambda \xrightarrow{\psi} Hom_R(\Lambda, J) \to Coker\psi \to 0.$$

It follows that

 $l(\Lambda) + l(Cocker\psi) = l(D(\Lambda))$

and hence $l(Cocker(\psi)) = 0$, so $Cocker(\psi) = 0$ and hence ψ is surjective. This completes the proof.

If R in the above theorem is a field K, then A is a strongly G-graded K-algebra and from the above proposition $A \cong Hom_K(A, K)$ as left A-modules. So extending the relevant result for crossed product algebras ([7], Ch.2, Theorem 2.4) we get the following useful fact.

Corollary 2.2. Let K be a field, G a finite group and $A = \sum_{g \in G} A_g a$ strongly G-graded K-algebra. If A_1 is a Frobenius K-algebra, then A is also a Frobenius K-algebra.

Below, we apply again the notation introduced above.

Proposition 2.3. Let $\Lambda = \bigoplus_{g \in G} \Lambda_g$ be a strongly *G*-graded *R*-algebra for a finite group *G*. Let Λ_1 be a symmetric artinian *R*-algebra, with a Λ_1 - Λ_1 -bimodule isomorphism $\phi : \Lambda_1 \to D(\Lambda_1)$. The following conditions are equivalent:

$$\begin{split} &i) \ \phi(1) \ [(\mu\lambda)_1] = \phi(1) \ [(\lambda\mu)_1], \ for \ \lambda, \mu \in \Lambda. \\ &ii) \ \phi(1)(\lambda_g\mu_{g^{-1}}) = \phi(1)(\mu_{g^{-1}}\lambda_g), \ for \ \lambda_g \in \Lambda_g, \ \mu_{g^{-1}} \in \Lambda_{g^{-1}}, \ g \in G. \\ &iii) \ \phi(1) \left(\sum_{i=1}^{n_g} b_{g^{-1}}^{(i)} \lambda_1 a_g^{(i)}\right) = \phi(1)(\lambda_1), \ for \ \lambda_1 \in \Lambda_1 \ and \ a_g^{(i)}, \ b_{g^{-1}}^{(i)}, \ n_g \ as \\ &in \ the \ relation \ (2.1). \end{split}$$

Proof. Let $\phi : \Lambda_1 \to D(\Lambda_1)$ be Λ_1 - Λ_1 -bimodule isomorphism and $\Lambda = \bigoplus_{g \in G} \Lambda_g$, a strongly *G*-graded *R*-algebra. We remark that, for λ_1 , x_1 elements in Λ_1 , we have

$$\phi(\lambda_1)(x_1) = [\lambda_1 \phi(1)](x_1) = \phi(1)(x_1 \lambda_1)$$

and

$$\phi(\lambda_1)(x_1) = [\phi(1)\lambda_1](x_1) = \phi(1)(\lambda_1 x_1)$$

Hence

$$\phi(1)(x_1\lambda_1) = \phi(1)(\lambda_1x_1).$$
 (2.2)

The implication i) \Rightarrow ii) is obvious. ii) \Rightarrow i) Let $\lambda = \sum_{g \in G} \lambda_g$ and $\mu = \sum_{g \in G} \mu_g$ be elements of Λ . Then

$$\phi(1) [(\lambda \mu)_1] = \phi(1) \left(\sum_{g \in G} \lambda_g \mu_{g^{-1}} \right) = \sum_{g \in G} \phi(1) (\lambda_g \mu_{g^{-1}}) =$$
$$= \sum_{g \in G} \phi(1) (\mu_{g^{-1}} \lambda_g) = \phi(1) [(\mu \lambda)_1].$$

ii) \Rightarrow iii) Let $\lambda_1 \in \Lambda_1$. Then

$$\phi(1)\left(\sum_{i=1}^{n_g} b_{g^{-1}}^{(i)} \lambda_1 a_g^{(i)}\right) = \phi(1)\left(\sum_{i=1}^{n_g} a_g^{(i)} b_{g^{-1}}^{(i)} \lambda_1 =\right) \phi(1)(\lambda_1).$$

iii) \Rightarrow ii) Let $\lambda_g \in \Lambda_g$ and $\mu_{g^{-1}} \in \Lambda_{g^{-1}}$. Then using the equations (2.1) and (2.2) we get

$$\phi(1)(\mu_{g^{-1}}\lambda_g) = \phi(1)\left(\sum_{i=1}^{n_g} \mu_{g^{-1}} a_g^{(i)} b_{g^{-1}}^{(i)} \lambda_g\right) =$$
$$= \phi(1)\left(\sum_{i=1}^{n_g} b_{g^{-1}}^{(i)} \lambda_g \mu_{g^{-1}} a_g^{(i)}\right) = \phi(1)(\lambda_g \mu_{g^{-1}}).$$

Remarks 2.4. i) It is clear that if one of the relations of Proposition 2.3 holds, then the map ψ in the proof of Theorem 2.1 is an isomorphism of Λ - Λ -bimodules and hence Λ is symmetric.

ii) Suppose that $\Lambda = \Lambda_1 * G$ is a crossed product of Λ_1 by G, that is $\Lambda = \bigoplus_{g \in G} \Lambda_1 \overline{g}$ for some units \overline{g} in Λ . It is clear that the condition iii) of Proposition 2.3 is equivalent to the following one

$$\phi(1)(x^g) = \phi(1)(x), \ x \in \Lambda_1, \ g \in G,$$
 (2.3)

where $x^g = \overline{g}x\overline{g}^{-1}$.

We finish this section by a useful result for twisted group algebras.

Theorem 2.5. Let Λ be a twisted group ring of the artinian *R*-algebra Λ_1 by the finite group *G*. If Λ_1 is a symmetric *R*-algebra, then Λ is also symmetric.

Proof. The fact that Λ is a twisted group ring is equivalent to the fact that the action of G on Λ_1 is inner, that is $\overline{g}x\overline{g}^{-1} = \varepsilon(g)x\varepsilon(g)^{-1}$, for $x \in \Lambda_1$ and $\varepsilon(g)$ is a unit of Λ_1 depending on g, for $g \in G$ (see [8] Ch.2, Proposition 14). Then the equalities (2.2), (2.3) yield

$$\phi(1)(x^g) = \phi(1)\left(\varepsilon(g)x\varepsilon(g)^{-1}\right) = \phi(1)\left(x\varepsilon(g)\varepsilon(g)^{-1}\right) = \phi(1)(x),$$

since $x\varepsilon(g)^{-1} \in \Lambda_1$. Hence the equality iii) of Proposition (2.3) holds and by Remarks (2.4) i) it follows that Λ is symmetric.

Now we assume that R is a complete discrete valuation ring with quotient field K and A a finite dimensional separable K-algebra. Let Λ be an R-order in A which is a strongly G-graded ring by a finite group G, such that Λ_1 is an R-order in a separable K-algebra A_1 . Then $D(\Lambda)$ (resp. $D(\Lambda_1)$) is $\Lambda^* = Hom_R(\Lambda, R)$ (resp. $\Lambda_1^* = Hom_R(\Lambda_1, R)$) (see [3]) and the proof of Theorem 2.1 also holds for Λ_1^* and Λ^* . Now the condition $\Lambda^* \cong \Lambda$ as right Λ -modules, becomes $\Lambda^* \cong \Lambda$ as right Λ -lattices, which means that Λ^* is projective as right Λ -lattice. In other words, Λ is a Gorenstein order and since the property of being a Gorenstein order is a local property we get the following

Theorem 2.6. Let R be a Dedekind domain with quotient field K and A a finite dimensional separable K-algebra. Let $\Lambda = \bigoplus_{g \in G} \Lambda_g$ be a strongly G-graded R-algebra which is an R-order in A and let Λ_1 be an R-order in a separable K-algebra A_1 . If Λ_1 is a Gorenstein R-order then Λ is also a Gorenstein R-order.

3. The induction functor commutes with the standard duality

Let G be a finite group and $\Lambda = \bigoplus_{g \in G} \Lambda_g$ a strongly G-graded ring. Let R be a commutative ring with unity such that

$$R \subseteq C_{\Lambda_1}(\Lambda) = \{\lambda \in \Lambda_1 : \lambda x = x\lambda, \text{ for every } x \in \Lambda\}.$$

Then Λ is an *R*-algebra. Let *H* be a subgroup of *G*, then $\Lambda_H = \bigoplus_{h \in H} \Lambda_h$ is a strongly *H*-graded *R*-algebra. If *V* is a left (resp. right) Λ_H -module by V^G we denote the left (resp. right) Λ -module $\Lambda \otimes_{\Lambda_H} V$ (resp. $V \otimes_{\Lambda_H} \Lambda$). We denote by

$$ind: Mod\Lambda_H \longrightarrow Mod\Lambda$$

the induction functor defined by $V \mapsto V^G = \Lambda \otimes_{\Lambda_H} V$. The first result of this section generalizes a result on induced modules of group rings to strongly graded rings. We use the above notation.

Theorem 3.1. Let G be a finite group, $H \subseteq G$ a subgroup and $\Lambda = \bigoplus_{g \in G} \Lambda_g$ a strongly G-graded R-algebra. Let V be a left Λ_H -module and B a left R-module.

i) There is a functorial isomorphism $[Hom_R(V,B)]^G \cong Hom_R(V^G,B)$ of right Λ -modules.

ii) If Λ is a crossed product of Λ_1 over G, then there is a functorial isomorphism

$$[Hom_R(B,V)]^G \cong Hom_R(B,V^G)$$
 of Λ -modules.

Proof. i) We remark that for rings S and R, X a left S-module and Y a left R-module, the group $Hom_R(X, Y)$ is a right S-module via the rule fs(x) = f(sx), for $f \in Hom_R(X, Y)$, $s \in S$ and $x \in X$.

Let now V be a left Λ_H -module and B a left R-module, then $Hom_R(V, B)$ is a right Λ_H -module. We define the map

$$F: [Hom_R(V,B)]^G \to Hom_R(V^G,B)$$

by the formula $x = \sum_{t \in T} f_t \otimes \lambda_{t^{-1}} \mapsto F_x$, where T is a left transversal of H in G, $f_t \in Hom_R(V, R)$, $\lambda_g \in \Lambda_g$ for $g \in G$ and

$$F_x: V^G \to B$$

is defined by the formula $\sum_{t\in T} l_t \otimes v_t \mapsto \sum_{t\in T} f_t(\lambda_{t^{-1}}l_tv_t)$, for $l_t \in \Lambda_t$, $v_t \in V$ and $t \in T$. It is enough to define F on x and then to extent it on $\sum_{t\in T}\sum_{i\in I} f_t^{(i)} \otimes \lambda_{t^{-1}}^{(i)}$ for a finite index set I and similarly for the elements of V^G .

First we prove that F is independent of T. Let T' be another left transversal of H in G. Then for any $t' \in T'$ there exists a unique element h_t of H and a unique $t \in T$ such that $t' = th_t$. From the relations $\Lambda_{t'} =$ $\Lambda_t \Lambda_{h_t}$ and $\Lambda_{t'-1} = \Lambda_{h_t^{-1}} \Lambda_{t^{-1}}$ we get the next expressions of arbitrary elements $l_{t'} \in \Lambda_{t'}$ and $\lambda_{t'-1} \in \Lambda_{t'-1}$

$$l_{t'} = \sum_{i} l_t^{(i)} l_{h_t}^{(i)}$$
 and $\lambda_{t'^{-1}} = \sum_{j} \lambda_{h_t^{-1}}^{(j)} \lambda_{t^{-1}}^{(j)}$

for $l_g^{(i)}$, $\lambda_g^{(j)} \in \Lambda_g$, $g \in G$ and i, j running over finite index sets. Then

$$F(\sum_{t'\in T'} f_{t'} \otimes \lambda_{t'^{-1}})(\sum_{t'\in T'} l_{t'} \otimes v_{t'}) =$$

$$= F(\sum_{t\in T} \sum_{j} f_{t'} \lambda_{h_{t}^{-1}}^{(j)} \otimes \lambda_{t^{-1}}^{(j)})(\sum_{t\in T} \sum_{i} l_{t}^{(i)} \otimes l_{h_{t}}^{(i)} v_{t'}) =$$

$$= \sum_{t\in T} \sum_{i} \sum_{j} (f_{t'} \lambda_{h_{t}^{-1}}^{(j)})(\lambda_{t^{-1}}^{(j)} l_{t}^{(i)} l_{h_{t}}^{(i)} v_{t'}) = \sum_{t\in T} f_{t'}(\lambda_{t'^{-1}} l_{t'} v_{t'})$$

=

It is easy to see that F_x is an *R*-homomorphism, since $R \subseteq C_{\Lambda_1}(\Lambda)$. The map *F* is a monomorphism. Indeed; let $F(\sum_{t \in T} f_t \otimes \lambda_{t^{-1}}) = 0$, then for $a_g \in \Lambda_g$, $g \in G$ and $v \in V$ we conclude that the equality

$$F(\sum_{t\in T} f_t \otimes \lambda_{t^{-1}})(a_g \otimes v) = 0$$

implies the equalities $f_g \lambda_g a_g = 0$ for $g \in G$, $a_g \in \Lambda_g$. Hence we conclude, by taking $a_t^{(i)}$ as in the equality (2.1), the equalities

$$\sum_{t \in T} f_t \otimes \lambda_{t^{-1}} = \sum_{t \in T} \sum_i f_t \lambda_{t^{-1}} a_t^{(i)} \otimes b_{t^{-1}}^{(i)} = 0.$$

Now we prove that the map F is surjective. If $f \in Hom_R(V^G, B)$ we define $f_t^{(i)}: V \to B$ by $f_t^{(i)}(v) = f(a_t^{(i)} \otimes v)$ for $a_t^{(i)}$ as in (2.1). Since f is an R-homomorphism then for $r \in R$, $v \in V$ we get

$$f_t^{(i)}(rv) = f(a_t^{(i)} \otimes rv) = rf(a_t^{(i)} \otimes v) = rf_t^{(i)}(v)$$

Now we prove that $f = F(\sum_{t \in T} \sum_{i} f_t^{(i)} \otimes b_{t^{-1}}^{(i)})$. We remark that for $\sum_{t \in T} l_t \otimes v_t \in V^G$ we have

$$F(\sum_{t\in T}\sum_{i}f_{t}^{(i)}\otimes b_{t^{-1}}^{(i)})(\sum_{t\in T}l_{t}\otimes v_{t})=\sum_{t\in T}\sum_{i}f_{t}^{(i)}(b_{t^{-1}}^{(i)}l_{t}v_{t})=$$

$$\sum_{t \in T} \sum_{i} f(a_t^{(i)} \otimes b_{t^{-1}}^{(i)} l_t v_t) = \sum_{t \in T} \sum_{i} f(a_t^{(i)} b_{t^{-1}}^{(i)} l_t \otimes v_t) = f(\sum_{t \in T} l_t \otimes v_t).$$

Finally we prove that the map F is a Λ -homomorphism. Let $g \in G$, $\lambda_g \in \Lambda_g$ and $K = \{g^{-1}t : t \in T\}$ another left transversal of H in G. If $k \in K, t \in T, l_k \in \Lambda_k$ and $v \in V$, it is enough to prove that

$$F\left[(f_t \otimes \lambda_{t^{-1}})\lambda_g\right](l_k \otimes v) = \left[F(f_t \otimes \lambda_{t^{-1}})\lambda_g\right](l_k \otimes v).$$

The left hand term of this equality is equal to zero, if $k \neq gt^{-1}$, and is equal to $f_t(\lambda_{t^{-1}}\lambda_g l_k v)$, if $k = gt^{-1}$. For the right hand term we have:

$$F(f_t \otimes \lambda_{t^{-1}})(\lambda_g l_k \otimes v) = \begin{cases} 0, & \text{if } gk \neq t \\ f_t(\lambda_{t^{-1}}\lambda_g l_k v), & \text{if } gk = t. \end{cases}$$

It follows that F is a Λ -homomorphism and the statement i) is proved.

ii) Let $\Lambda = \sum_{t \in T} \bar{t} \Lambda_H$ be a crossed product. We consider the map

$$F: [Hom_R(B,V)]^G \to Hom_R(B,V^G)$$

defined by $\overline{t} \otimes \varphi_t \mapsto \varphi_t^*$, where $\varphi_t^* : B \to \Lambda \otimes_{\Lambda_H} V$, is defined by $b \mapsto \overline{t} \otimes \varphi_t(b)$, for $t \in T$ and $b \in B$. Similarly as in i), we prove that F has the required properties.

Corollary 3.2. Let G be an arbitrary group and H a subgroup of G of finite index, V a left Λ_H -module and W a right Λ -module. Then there exist isomorphism

$$(D(V))^G \cong D(V^G)$$
 and $(V^*)^G \cong (V^G)^*$

of right Λ -modules.

Corollary 3.3. Let G be a finite group. If there exists an isomorphism $D(\Lambda_1) \cong \Lambda_1$ of right Λ_1 -modules then there exists an isomorphism $D(\Lambda) \cong \Lambda$ of right Λ -modules.

References

- I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras, I:Techniques of Representation Theory, Cambridge University Press, 2004.
- [2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, 1995.
- [3] C. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. I, Wiley, New York, 1981.
- [4] E.C. Dade, Group-graded rings and modules, Math. Z. 174 (1980), 241-262.

- [5] M.E. Harris, On classical Clifford theory, Trans. Amer. Math. Soc. 309 (1988), 831-842, .
- [6] J. Haefner, On Gorenstein orders, J. Algebra, 132 (1990), 406-430.
- [7] G. Karpilovsky, Symmetric and G-algebras with Applications to Group Representations, Mathematics and its Applications, Vol. 60, Kluwer Academ Publishers, Dordrecht, 1990.
- [8] G. Karpilovsky, Algebraic Structure of Crossed Products, Mathematics Studies, No 142, North-Holland, 1987.
- [9] G. Karpilovsky, Induced Modules over Group Algebras, No 161, North-Holland, 1990.
- [10] Th. Theohari-Apostolidi and A. Wiedemann, The integral representation theory of local crossed products of finite lattice type, Bayreuther Mathematische Schriften, 40 (1992), 169-176.
- [11] Th. Theohari-Apostolidi and H. Vavatsoulas, On the separability of the restriction functor, J. Alg. and Disc. Math. 3 (2003), 95-101.

CONTACT INFORMATION

Th.Theohari-	Department of Mathematics,
Apostolidi,	Aristotle University of Thessaloniki,
H. Vavatsoulas	Thessaloniki 54124 Greece
	E-Mail: theohari@math.auth.gr,
	vava@math.auth.gr

Received by the editors: 28.05.2004 and final form in 06.07.2005.