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ABSTRACT.  The paper is devoted to classification of two-
generated graded algebras. We show that under some general as-
sumptions there exist two classes of these algebras, namely quan-
tum polynomials and Jordanian plane. We study prime spectrum,
the semigroup of endomorphisms and the Lie algebra of derivations
of Jordanian plane.

Introduction

Let Ay = K be a field and A = @ A, the associative graded algebra

generated over K by elements X, Y E Aj. Suppose that dim Ay = 3. In
the paper we find a criterion for A to be a domain when dim A,,41 = n+1
(see Corollary 5.5). We also show that if K has no quadratic extensions,
A is a domain and either dim A, 41 = n+1 or A is a central algebra then
A is either the algebra of quantum polynomials in two variables

A1 (K,)\):K<X7Y>/(YX_)\XY), AGK*,

or Jordanian plane

A (K) = KXYy xy —v2)

(see Theorems 5.3, 5.4). The other sections of this paper are devoted
to Jordanian plane. We describe its center (see Theorem 2.2), deriva-
tions (see Theorem 4.2) and the Lie algebra of outer derivations for an
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arbitrary field K (see Theorems 4.6, 4.10, 4.16, 4.20, 4.23). In the case
charK = 0 we describe prime spectrum (see Theorem 2.4), the group of
automorphisms (see Theorem 3.1), the endomorphisms with non-trivial
kernels (see Proposition 3.2). Similar problems for quantum polynomials
have been considered by V. A. Artamonov [1]. Some properties of quan-
tum polynomials are also considered in details in [4]. Note that a study
of non-commutative graded algebras is motivated by non-commutative
algebraic geometry [6].

The author is grateful to professor V. A. Artamonov for constant
attention to this work and useful discussions.

1. Definitions

Definition 1.1. The single parameter algebra of quantum polyno-
mials in two variables over K is the K—algebra A; (K, \), A € K*,
given by generators X and Y and defining relation Y X = AXY, i.e.
A (K, N) = K<X7Y>/(YX — AXY)- Jordanian plane over K is the
K—algebra Ay (K) given by generators X and Y and defining relation
YX = XY +Y2 ie Ay (K) = K&, Y)/(YX _XY - Y?2)

Proposition 1.2. The basis of Ay (K) is {Xin|i,j € NO}. In particu-
lar,

m\(mtn—1-1)_, 1
YmX" = Xtymtn N
;@ (m 1) L mne

and Ay (K) is a domain.

Proof. 1. We claim that the monomials X*®Y® are linear independent.
Let us consider the linear space L = (U'V7|i,j € Ng) with basis U*V*®.
Denote by p: A2 (K) — £ (L) the linear map such that

p(X)U™VT) = UV, p(Y) (V) = Vi

p(Y) (U™V) = p(Y) p (V) (U™V") + p(X) p (V) (U™V"),

m,n € Ng. We shall check that the map p is well defined. It is enough to
prove that p (Y) (U™V™) C (U'V? | i <m) for m € N and n € Ng. We
shall proceed by induction on m. If m =1, then

p(Y)(UV™) =V UVt C(U'V? |i<1).
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We now assume that p (Y) (U™V") C (U'VY | i <m) forallm =0, ...,1.
If m =14 1, then by the inductive assumption we have

(V) (UHV) = p () p(¥) (U'V") + p(X) p(¥) (U'V")

=p(Y) (X aUVI) +p(X) (X ayU'V)

i<l,j i<l,j
=S iy 3 SuyupU'VI + 3 UV C(UWVI i <1+1).
1<l,j V' <i,j’ 1<l,j

Thus, the linear map p is well defined and

p(Y)p(X)=p(X)p(¥)+p(¥)p).
In fact, for basic elements we have

p(Y) p(X) (U™V™) = p(Y) UV
— p(X) p(Y) (U™V™) +p(Y) p (V) (U™VT).

Thus, p is an algebra homomorphism. Note that
p (med) (1) =Umve.
Now assume that monomials X*Y® are linear dependent, i.e.
D i Xy =0
i,

for some coefficients o;; € K. Then
Yo aUVI=Y ayp (X') p (Y7) (1) =0,
1,J 4.

which is impossible since the monomials U®*V*® are linear independent.
So, the monomials X*Y* are linear independent too.

2. We claim that the monomials X*Y® span Ay (K). It is enough to

n

check that Y"X" = 3 (?) tmtn= S Xty min—l for all m,n € N. We
shall proceed by induction on n. If n = 1, then an easy induction on m
shows that Y™X = XY™ + mY ™! m € N. Assume that for n = [ our
statement is holds. If n = [+ 1, then using the inductive assumption and



E. N. SHIRIKOV 63

the equality Y™X = XY™ 4+ mY ™! m € N, we obtain

l
(m—1)!

! l
=3 ( >(m(+wll li)rl) xk (Xmerl k_i_(m_i_l_k)ymﬂntlfk)

=3 (k l 1) (Tnjl 1;@ xkymt++i-k

B

= i <<k > < >> (m+l 1;‘«")'Xkym+l+1—k+Xl+lym
=1

k
e = ()
m — . k=0

In the same way one can prove

Proposition 1.3. The basis of A1 (K, \) is {Xin\i,j € No}. In parti-
cular, Y X" = X" XY™ for all m,n € N and Ay (K, \) is a domain.

In what follows we assume that elements of A (K, \) or Ag (K) are
presented in the canonical form ) a;; X 'YJ. The X —degree of an element

w = Z Xip; (Y) of A1 (K, ) or of Ay (K) is equal to n, provided ¢, # 0.

We shall write degxy w = n. It is clear that the family of linear spans
of monomials of degree n, n € Ng, in X and Y induces the gradings
of A1 (K, \) and of A (K). So, these algebras are graded. Note that
the algebras A (K, A) and As (K) have the structure of iterated skew
polynomial rings [4], [7].

Theorem 1.4. A; (K, \) 2 Az (K), X € K*.

Proof. Put

A=KV v )

B=KY)/y x, Xy - 1)
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Assume that there exists an isomorphism ¢ : B — A. Let ¢ (X3) =
S X1, 0 (Ya) = Bi; X1Y] . Since Y2 Xo = XoYs + Y, we have
2 1,J

(3 By X1YT) (3 i X{YY)

7] 7]
(Z i X{Y7 (3 B XiYY) + (3 By XiY7)2.
7] Z’J
Since the algebra A is graded, we can conclude that agoBpg = ﬁgo—i—aooﬁoo
and

(B10X1 + Bor1Y1) (@10X1 + ao1Y1) + (B20X7 + B11X1Ya + Bo2Y?) cuo
= (a10X1 + a0 Y1) (B10X1 + Bor1Y1) + ano (B20XT + B11.X1Y1 + Bo2Y?)
+ (BroX1 + BorY1)?.

Therefore, Byg = 0 and ﬂloX%—k{XlYl +B01 Y = 0 for some ¢ € K. Since
the monomials X?, X1Y; and Y7 are linear independent, we can conclude
that 810 = Bo1 = 0. Consider the inverse isomorphism ¢ = 1)~ 1. 4A— B.
Let ¢ (X;) = ZCZ]XQY';, () = ZdUXQYJ Since Y1.X7 = A X4 Y7,

’] 7.]
we have

Z di; X5Y3) Z i X5Yd) = Z i X5Yd) Z dig X5Y3).

Since the algebra B is graded, we have Coodoo = )\Coodoo. The algebra B
is non-commutative, so A # 1. Hence cggdpg = 0. Suppose that cogg = 0
and dog # 0. Since ¢(X1) # 0, there exists a positive integer n such
that ¢;; = 0 provided that i + j < n and ¢yj» # 0 for some 7,5’ € N,
i'+j' = n. Since the algebra B is graded, we have doo( Y.  ¢;; X3Vy) =
i,J:114+7=n
Moo( > ¢jX5Y3). The monomials X3Y3 are linear independent and
B,J:9+j=n
A # 1, thus ¢y = 0, a contradiction. Similarly, the case cpo # 0 and
doo = 0 is impossible too. Thus, cop = dgo = 0. Finally, we obtain
p(Yo) = 3 BiXiY{,and
6§ >2
Yo = (1 (Y2))
( J
> By Y eXsvy > dyX5vy

i,jii7>2 i 5 >1 i §' 4§ >1

But the polynomial ¢ (¢ (Y2)) either vanishes or the degree of each mono-
mial of ¢ (¢ (Y2)) is at least 2. This contradiction proves Theorem
1.4. O
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2. Centre and Spectrum of A; (K, \) and A, (K)

As in Proposition 1.2 we have

Proposition 2.1. Let w= Y «;;X'V7 € Ay (K). Then
120,520

Yw= ng?)YkH,
k>0
where wg?) = > aij(ifi!k)!Xi_ij s the formal partial derivative w
i>k,j>0

i>k,j>
by X and

wX = Xw + wi Y2,
where wy, = Y jainin_l 1s the formal partial derivative w by Y.
120,521
The following Theorem 2.2 describes the centre Z (Az (K)) of Ay (K)

depending on the characteristic of K and the centre Z (A; (K, \)) of
A; (K, A) depending on the parameter A.

Theorem 2.2. (i) If charK = 0, then Z (A2 (K)) = K; if charK = p > 0,
then Z (A2 (K)) is the subalgebra generated by XP, YP. (ii) If X is not a
root of unity, then Z (A1 (K;A)) =K; if X is a root of unity of the degree
m, m € N, then Z (A1 (K, X)) is the subalgebra generated by X™, Y™,

Proof. (i) Let f € Z (Aa () \{0}, f = 3" Xith;(Y). Then Xf = fX
i=0
and Y f = fY. By Proposition 2.1 we have fX = X f + f;,Y? and

VF(x) =3 FP 0y,

k>0

Therefore, fi, Y2 =0and f)((k) (X)Y* 1 = 0. Since the algebra Az (K)
i>1

is a domain, we conclude that f{, = 0. We shall consider two cases.
Let first charK = 0. Since f{, = 0, we have ¢/(Y) =0, i.e. ¢¥;(Y) =
n .
a; € Kforalli=0,...,n. Hence f = > a; X", a,, #0. If n > 1 then the
i=0
coefficient in X" 1Y?2 in f)(?) (X)Y*+ = 0 is equal to na, # 0, which
E>1
is impossible. Hence n =0 and f = ag. Thus, Z (A3 (K)) = K.
Suppose secondly that charK = p > 0. By Proposition 2.1 elements
XP, YP are central in Ag (K). Since fi, =0, we have ¢;(Y") = ¢;(Y?) for
alli =0,...,n and ¢; € K[V]. Set fi = > ; X%; (YP), where the sum X
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is taken over all ¢ = 0, ..., p such that pM. Since f =)o X (YP) 4 f1,
where the sum 35 is taken over all i = 0,...,p such that p | i, we see that
fi € Z (A2 (K)), ie. Z (f ) ( )Y#+1 = 0. Assume that f; # 0. Then

! A
degy fi = ni, where p f ny. Let ¢, (YP) = Z a;YP where a; # 0.

Then the coefficient in X™~1yP+2 in 3 (fl) k ) (X)Y*+1 = 0 is equal
E>1

to nia; # 0, a contradiction. Therefore, f{ = 0 and f =), Xiap; (YP).
Now the proof follows.

(43)It is easy to check that if w = Y ;;X"V7 € Ay (K, \), then
120,520

wX = Z aininX: Z al-j)\in"'le,

i>0,5>0 i>0,j>0
> VXY= > ap N XY
i>0,5>0 i>0,j>0

Let f = Z X (Y), ¥, (Y) # 0, be a non-zero central element in
A1 (K, \). Assume that A is not a root of unity. Since Y f = fY, we have
Z N XU (Y)Y = Z X (Y)Y In particular, A", (Y) = ¢, (Y), i.

)\” = 1. Since A is not a root of unity, we can conclude that n = 0, i.e.
f=19(Y). Let f = Z ;Y7 where ap, # 0. Since X f = fX, we have
j=0

Yoo NXY) = Y o XY7. In particular, apm A = oy, e, A" = 1.
j=0 §=0

Since A is not a root of unity, we can conclude that m = 0, f = «p.
Thus, Z (A1 (K, \)) = K. The case when X is a root of unity of degree m

is similar. O

Proposition 2.3. If charK =0 and I is a proper two-sided ideal of the
algebra Ao (K), then INK[Y] = (Y™) for some n € N.

Proof. We first claim that I N K[Y] # (0). Choose an element f =
S X4 (Y) € I\ {0} of least possible X —degree, m say, i.e. ¥, (Y) # 0.
i=0

Assume that m # 0. Consider the element Y f — fY = > f)(?)Y”“+1 el,
k>1
degx (Y f—fY) < m—1. Because of the choice of f, we have Y f—fY = 0.
The coefficient in X™~ ! in Yf — fY = 0 is equal to ma,,(Y)Y? #
0, a contradiction. So, m = 0 and f = ¢o(Y) € I NK[Y]. Clearly,
INK[Y]<K[Y]. Since K[Y] is a principal ideal ring, we have that
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INK[Y] = (¢(Y)). Let ¥ (V) = i a;Y* and a, # 0, n > 1. Consider
i=0

the element (V)X — X¢(Y) =¢/(Y)Y2 € I. Then ¢/(Y)Y? € (v(Y)),
Le. Y(YV)Y2 =) (aY +03). Let ap = ... = aj_1 = 0 and a; # 0.
Considering the coefficients in Y7, we get (j — 1)aj—s = aa;_1 + Baj, i.e.
3 = 0. Therefore, ¢'(Y)Y? = a)(Y)Y. Comparing coefficients in Y7 in
both sides, we get (r —1)a,—1 = aa,—1. Thus (r—1—a)a,—; =0. In
particular &« = n and therefore a; = 0 for all ¢ < n. O

Theorem 2.4. If charK = 0 and I is a proper prime ideal of As (K),
then either I = (Y), or I = (Y,¥(X)) for some irreducible polynomial
$(X) € K[X].

Proof. Tt is easy to check that the ideals (Y') and (Y, (X)), ¥(X) € K[X]
is irreducible, are prime. We claim that there is no other prime ideal in
Az (K). It follows from Proposition 2.3 that if I is a proper prime ideal of
Ag (K), then INK[Y] = (Y™)<K [Y] forsomen € N. If n > 2, then Y ¢ I,
Yl ¢ Tand YA2(K)Y" 1 C Ay(K)Y™ C I, i.e. the ideal I is not prime.
Therefore, n = 1, i.e. Y € I. Suppose that I # (V). Each element of
A (K) can be represented in the form w (X,Y)Y + ¢ (X) and therefore
INK[X] = (¢ (X)) #0and I = (Y;9(X)). Now A2 (K)/7 is isomorphic
to K [X]/I N K [x] and therefore Y(X) € K[X] is irreducible. O

Similarly, one can prove

Theorem 2.5. If A € K* is not a root of unity and I is a proper prime
ideal of A1 (K, \), then I is one of ideals (X), (Y), (X, ¢ (Y)), (Y, ¥(X))
for some irreducible polynomial ¥ in one variable.

3. Endomorphisms of A; (K)

Now we shall study endomorphisms of algebra As (K).

Theorem 3.1. If charK = 0 and ¢ s an automorphism of the algebra
Ao (K), then ¢ (X) =X +9(Y), ¢ (Y) = ~Y for some v € K* and
g(Y)eKI[Y].

Proof. From Theorem 2.4 it follows that (Y') is a minimal nonzero prime
ideal of Ag (K). Therefore, ¢ ((Y)) = (Y), i.e. ¢(Y) =~Y for some v €
K*. Ifp 1 (X) = ;}X%’ (V) then X = ¢ (97 (X)) = 2 (¢ (X)) i (YY),
It is clear that degy ¢ (X) > 1 and n > 1. Then degy ¢(X) = 1
and n = 1, ie. o(X) = Xf(Y) + g(Y) for some f # 0. Then X =
P 1 (X)) = (XF(Y)+9(Y) 1 (3Y) + % (7Y). In particular, 1 =
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fY)1 (7Y). Then f=a € K" ie. ¢(X)=aX +¢g(Y). Since YX =
XY +Y2 we have o (V) o (X) = ¢ (X) @ (Y)+ (¢ (Y))% Then we have
VY (aX +g(Y)) = (aX +9g(Y))7Y + ~+2Y2. Therefore, aY? = yY?,
ie. a=7. O

Proposition 3.2. If charK = 0 and ¢ is an endomorphism of the algebra
Ao (K) with nonzero kernel, then ¢ (Y) = 0.

Proof. Since the algebra As (K) is a domain, we can conclude that the
ideal ker ¢ is prime. From Theorem 2.4 it follows that Y € ker ¢, i.e.
¢ (Y) = 0. Note that ¢ can take X to any element of Ay (K). O

Notes. So, in the case charK = 0 we have described the group
of automorphisms of Ay (K) and all endomorphisms ¢ of Ag (K) when
kerp # 0. It is clear from Theorem 3.1 that AutAs (K) = K* x K[Y]
with respect to the operation o such that (y2,92(Y)) o (71,91 (Y)) =
(m172, 7192 (Y) 4+ 91 (12Y)). The semigroup EndAs (K) has not been de-
scribed yet. Note that there exist some endomorphisms ¢ : Ag (K) —
Az (K) such that ker o = 0 and Img # Ag (K). It is easy to check that
maps X — n 1 XY" L4+ g(Y), Y — Y forall g(Y) € K[Y], n € N
and X — aX?2+ XY, Y — 2aXY +2(a+3)Y? for all a,8 € K
satisfy these properties. One can prove that if ¢ € EndAj (K), then
e(Y) =w(X,Y)Y for some w(X,Y) € Ay (K). Note that endomor-
phisms of Ay (K, \) are classified in [3].

4. Derivations of A, (K)

In this section we shall consider derivations of the algebra A (K). All
derivations of A (K, \) in the case when A is not a root of unity were
classified in [2].

Notes. Let A be an algebra over field K. Recall that a K—linear
map 0 : A — A is a derivation of A if for all a,b € A we have 0 (ab) =
0 (a)b+ad (b). Given an element w € A consider the inner derivation
ad w such that ad w (a) = wa — aw, a € A. The space of all derivations of
A is a Lie algebra with respect to the operation of commutation. Denote
this algebra by DerA. The subspace DerintA of inner derivations is
always an ideal in DerA. Let

L= DerA/DerintA

be an algebra of outer derivations of A.
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Proposition 4.1. Let w = X®Y? € Ay (K). Then

adw (X) = bX°Y"™  adw(Y) = - Z (x0)k) ybth+1,
k>1

Proof. By Proposition 2.1 we have

adw(X) = wX — Xw = X°YV’X — xotly?
_ Xa(XYb + byb-‘rl) o Xa+1Yb _ bXaYb+1
adw(Y) = wY — Yw = Xy —y xoy?

— xayb+l _ (% (Xa)(k) Yk+l)yb =- (Xa)(k)yb-i-k:—i-l.
£>0 E>1

Proposition 4.2 (Derivations of Ay(K)).
(1) If charK = 0, then each derivation O of A2 (K) can be represented in
the form

A(X)=aY + ¢ (X)+adw(X), d(Y) = (X)Y +adw (V)

for some a € K, ¢ € K[X], w € Az (K).
(II) If charK = p > 2, then each derivation 0 of A2 (K) can be represented
i the form

ID(X)=v(X)+T(XP,YP)Y +adw (X),
(YY) =9 (X)Y +8(XP,YP)YXPY +adw (V)
for some p e K[X], T, S € Z (A2 (K)), w € A (K).

(III) If charK = 2, the each derivation O of Ay (K) can be represented in
the form

Q
>
u

Y (X)+T(X%Y?)Y +adw (X),
O(Y)=p(X)+ (¢ (X)+¢' (X)) Y + S (X2 Y?) YXY +adw (Y)

for some p,p € K[X], T,S € Z (A2 (K)), w € A (K).

Proof. The linear map 9 : Ay (K) — As(K) is a derivation of Ag (K)
if and only if 0(YX) = 9(XY) + 9 (Y?), ie. 0(Y)X +Y0(X) =
OX)Y+X0(Y)4+90(Y)Y +Y0O(Y). It can easily be checked that if
the linear map 0 : Ay (K) — Ag (K) satisfies the conditions of Proposition
4.1, then 0 is the derivation of Ag (K). We claim that there is no other
derivations of Ay (K). Let 9 € DerAs (K). Put U =9 (X), V=0 (Y).
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Then VX + YU = UY + XV +VY +YV. If U = Y ¢; (X)Y" and
i=0

n .
V =3 i (X)Y? then by Proposition 2.1 we get VX = XV + V{. Y2,

=0
YV =3 viPyktt v — 5 P yErL Hence,
k>0 k>0
VY24 Y UPyR vy 4+ 3 viPy ke, (4.2.1)
E>1 k>1

We shall consider three cases.

(I) Let charK = 0. If m > 2, then put w = > (k — 1)~ 4 (X)YF 1
k=2

01 = 0 —adw. From Proposition 4.1 we get 01 (X) =U —adw (X) =

1 (X)Y 419 (Y). Without loss of generality we can assume that 0 = 01,

ie. 9(X) =11 (X)Y + 1 (Y). Consider the coefficients in Y, Y2 and

Y3 in (4.2.1). We have, respectively, 209 = 0, @1 + 1) = 2¢1 + ©,

202 + Y] + 9 = 202 + ) + ;. Then pg =0, ¥y = ¢1, ) = 0.

Lemma. ¢, = gpg_Q) for all r > 2.

Proof. We shall proceed by induction on 7. The case r = 2 is clear.
Assume that ¢, = (PZ) for all r = 2,...; k and consider the coefﬁcients of

Y#+2in (4.2.1). We have (k+1)¢k+1+2 D = 2sok+1+§j P10,

where Y3 = ... = Y = 0, g =0 and (N (kt1) gk). By 1nduction

(ng-kl )= ( Y for all i = 2,...;k. Therefore, (k: + Dpr+1 = 20541 +
k—1 -1

(k—1)90§ ) Jie. 1 =@y =

So, d(Y) = ¢y (X)Y + > cpék) (X)Y* 2 From Proposition 4.1 it
k>0

follows that 37 o) (X) VA2 = — (ad @5 (X)) (Y), where 5 € K[X]
k>0
and @, (X) = 2 (X). Clearly, (ad P2 (X)) (X) =0 and so

0 (X) = Y1 (X) Y + 10 (V) — (ad @ (X)) (X)),
9(Y) = h(X)Y — (ad @ (X)) (V).

(II) Let charK = p > 2. Then for any ¥ € K [X] we have ¢®) (X) =
0. From (4.2.1) we get

vivie Y uPyr—ovy 4y vPyEHL (422)
1<k<p—1 1<k<p—1
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From Proposition 4.1 it follows that vy (X)Y* = ( d ¢’“( )Yk 1) (X)

when pt (k—1). Put w =), %Yk_l, where the sum ), is taken
over all £ > 1 such that p{ (k—1), 01 = 0 —adw. Then 0; (X) =

l
Yo (X)+ Y rpr1 (X) YT for some [ € Ny. Without loss of generality
k=0

we can assume that § = 01. As in the case charK = 0 it follows from
(4.2.2) that ¢p = 0 and | = ¢1.

Lemma. zpan = 0 and pnproti = <p£fl))+2 for all n > 0 and
1=0,...,p— 1.

Proof. We shall proceed by induction on n. Let n = 0. As in the case
charK = 0 by (4.2.2) we get ¢} = 0. Let us check by induction on i that

Voti = gag) for all i = 0,...,p — 1. The case 4 = 0 is trivial. Assume that

Voti = gog) when 0 < i < k < p—2 and consider the coefficients in yk+4
n (4.2.2). We have

k+2 k+2 .
(k43— (k+3—
(k+3)pr+3 + Z %/) 9 = 20445 + Z <PJ ),
J= J=
where ¢ = 0, Y] = w(k+3 = (k+2) . Since k + 2 < p, we have

Yy = ... = Ygyo = 0. By inductive assumption 90§k+3—j) = @ékﬂ)

2 < j < k+2. Combining these results, we get (k+1)pr11 = (/c—l—l)(pgk_l).

Since 1 < k+1<p—1, we have £+ 1 # 0 in the field K. So, ¢r+1 =
(k-1)
')

when

. Assume that the statement of lemma holds for all n = 0,...,m
and consider the coefficients of YP(m+1)+3 in (4.2.2). We have

p(m+1)+1

(2+p(m+1)epmeny+2 + 2 ¢
j=pm-+3

p(m-+1)+2-)

p(m~+1)+1 .
+1)+2—
= 290p(m+1)+2 + §: ¢§p(m ) J)7
j=pm+3

where ¥pm43 =... = ¥p(me1) = 0. By inductive assumption

m+1)4+2—
PP _ ) g

when pm+3 < j < p(m+1)+1. So, p(m+1)+1 = (p— 1)¢;%+2 = 0. Now

one can check by induction on i as above that ©(,,41)p+24

_ @
. = Plm+1)p+2
forall i =0,....,p— 1. O
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Since ;11 =0, 0 < j <1, we have ;41 (X) = 1/~)j (XP). So,

l
U =4o(X)+ D hj(XP)YPH = g (X) + YT (XP,YP),
j=0

U A
where ) 1;(XP)YP =T(XP,YP) € Z (Az (K)). We have already proved

that V = ¢{(X)Y + E ¢pk+2(X)ka+2+i. Ifh(X) = XPrti O(X) =

k>0 1=
Xp;:“, r €Ny, 0<i<p-—2, then ¥ (X) =1 (X) and from Proposi-

tion 4.1 we get

pr (X) YPR+2Hi = Z WU (X)) YRR = (adq’ (X) ka) &)

Sk )
where (ad ¥ (X) YP¥) (X) = 0 for all k > 0. Let @p12(X) = Z ak X1,

l

w=Y Y o XY 9 =0 —adw. Then d5(X) = 9(X)
k=0 0<i<sg,p(i+1)
and
P
B(Y)=9vo(X)Y+ > X am ¥YP
k0> 1,pi1<sk =1
p
=9 (XY +(X X L Xi=Dypky (3 gp o) xp-sy st
kZDiZl,piflgsk = =)

:1/16 (X)Y+R(X,Y)S(XP,YP),
where

S(XPYP) =Y > of  XTUYPR e Z(Ay (K)),
k>0i>1,pi—1<sg

P
Z Xp iyitl — y xpr-ly.
]*1

(IIT) Let charK = 2. Then for any ¢ € K[X] we have 9" (X) = 0.
From (4.2.1) we get Vi, Y2 + UL Y? = VL Y? ie.

Wy + Uy =Vx (4.2.3)

From Proposition 4.1 it follows that vy (X)Y* = (ad MY’“A) (X)
when & € N, 2 | k. Put w = >, YelX) Yk 1, where the sum >, is
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taken over all & > 1 such that 2 | k, 0 = 0 —adw. Then 0 (X) =
o (X) + Z Yori1 (X) Y2+ for some | € Ny. As above we shall assume

that 0 = 01 From (4.2.3) it follows that o can be equal to any element
of K[X]. Considering monomials in X in (4.2.3) we have @1 + ¢ = ¢,
Le. @1 = )+ ¢y Then ¢} = ¢ + ¢ = 0. Consider the coeflicients
in Y2 n €N, in (4.2.3). We have @o,11 + Wvh, = ¢, where 1y, = 0.
Then o,41 = ¢4, and @5, = ¢y, = 0. Conmderlng the coefficients of
Y21 n €N, in (4.2.3) we have ¢}, | = ¢, =0. Thus,

!
(X )+ D G (XAYHH = 4o (X) + T(X2,Y?)Y,

7=0
O(Y) = @o(X) + (#6(X) + 15(X))Y

) (02 (XY 4 0y (X)Y 2,
i>1

where T (X2,Y?) = Z 0, (X3 Y% € Z(A2(K)). As in the case
charK =p > 2 it is easﬂy shown that
DY) = o (X)+ (0 (X) +2 (X)) Y + R(X,Y) S (X*,Y?) +adw (Y),

2(K)), R(X,Y) = XY24+ Y3 = YXY, w €

where S (X2,Y?) € Z(A
= 0. O

Ay (K) and ad w (X)

The next propositions are technical. We briefly indicate their proofs.

Proposition 4.3. For any n € N

n—1 n—1l
Qu(X, V)= XFy X" 1F =3 (n—1-k)! (“) Xkyn=k
k=0 k=0 k
n—1 nl
- ° Xkynfk
E!'(n —k)
k=0

The proof is a direct calculation based on Proposition 2.1.

Proposition 4.4. If 0 € DerAs (K) and ¢ € K[X], then 0 (¢ (X)) =
¢ (X)0(X) +adwy, (X) for some w, € Ay (K).

Proof. From Proposition 4.2 it follows that 9(X) = zY + ¢(X) for some
z € Z(Ay(K)) and v € K[X]. Tt is enough to check our statement for
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¢(X) = X", ne Ny The cases n =0 and n = 1 are clear. If n > 2,
then from Proposition 4.3 we obtain

n—2
OX")=np (X)X P+ nX" Y +23 (n—1- k)!(Z)XkY”_k.
k=0
From Proposition 4.1 it follows that
n—2 n
2y (n—1- k)!<k>X’“Y”_k = adw, (X),
k=0
n—2 n
where wy, =2 > (n —2 —k)! (k:) XFkyn=k=1_Thus,
k=0

D(X™) = (X" 9(X)+adwy, (X).

Proposition 4.5. Let charK =0 and 01,05 € DerAs (K), where
0 (X) =Y +4i (X), 6(¥)=v;(X)Y

for some «; € K, ¢, € K[X],i = 1,2. Then there exists an element
w € Ay (K) such that

[01,02] (X) = 1 (X) by (X) — 1 (X) b2 (X) +adw (X)),
[01,02] (V) = (11 (X) 95 (X) = ¢ (X) 92 (X)) Y +adw (V).

Proof. From Proposition 4.4 we get
[01,02) (X) = w1 (X) 4 (X) — ¥} (X) ¢ha (X) + ad @ (X)
for some @ € Ag (K). If & = [0y, 03] — ad @, then
0 (X) = b1 (X) ¢ (X) — 9 (X) ¢ha (X) .
As in the proof of Proposition 4.2 it is easily shown that
O(Y) = (1 (X) P (X) — ¢} (X) ¢ (X))'Y +ad b (V)

for some w € Ay (K), where add (X) = 0. Let w = @ + w. Finally, we
obtain

(01, 92) (X) =91 (X) ¢ (X) — 9 (X) 2 (X) + adw (X)),
[01,02] (V) = o1 (X) ¢ (X) — ¢ (X) ¢h2 (X) +adw (V).
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Combining Propositions 4.2 and 4.5 we obtain

Theorem 4.6. If charK = 0, then each derivation 0 of Ag (K) can
be represented in the form 0(X) = oY + ¢ (X) +adw(X), 0(Y) =
P (X)Y+adw (Y), where a € K, ¢ € K[X], w € Ay (K) and the Lie al-
gebra of outer derivations of Ay (K) is isomorphic to the algebra KoK [ X]
with respect to the operation [-,-] such that

[(o1, 901 (X)), (@2, 92 (X))] = (0,1 (X) ¥ (X) = (X) 2 (X))

Note that if A is an algebra over field K, 0 € DerA and z € Z (A), then
0(z) € Z(A). Indeed, for any w € A we have 9 (w) z+wd (z) = 0 (wz) =
0(zw) =0 (z)w+20(w) =0 (2)w+9 (w) z,1.e. O (z)w = wd (z). From

Theorem 2.2 it follows that if 2 € Z (A2 (K)), then 2 = > a;; XPYP.
120,520
Put

p = Y Ao XUTUPYIP ol = N oy Xy U P,
121,520 120,521

Proposition 4.7. If charK =p > 0, z € Z (A2 (K)), 0 € DerA; (K),
(X)) = +YT, () =Y +YXPYS, wherep € K[X], T,S €
Z (A2(K)), then 0(z) = — (2, T (XP,YP)YP + 24,5 (XP,YP) Y?P).

The proof is a direct calculation based on Propositions 1.2 and 4.3.

Proposition 4.8. If charK=p >0, 0 € DerAs (K), 0(X) =9y +YT,
O(Y) =Y +YXPIYS, wherep € K[X], T,S € Z (A2 (K)), then for

some coefficients a;; € K
O (YXPTY) =/ Y XPHY 4+ 2V XPIY XP1Y' S + 3y XYY,
where the sum is taken over all i,j such that j > 2, pti+ 1.

The proof is a direct calculation based on Propositions 2.1 and 4.4.

Proposition 4.9. If charK =p >0, 0; € DerAy(K), i =1,2, 0; (X) =
bi + YT, 0;(Y) = @Y + YXPIYS;, where v; € K[X], T),S; €
Z (A2 (K)), then for some w € Ay (K)
[01,02] (X) = ad w (X) + 19y, — Pyabg — VP (S1Th — SoTh)
+Y (YP ((T1)'x» T2 = (T2)'x» T1)
+Y? ((T1)ys S2 — (T2)ys S1))
[01,05] (V) =adw (V) + (1 — i) Y
FY XY (((S1)'xn To = (S2) Th) Y7
+ ((S1)ys S2 = (S2)y» S1) Y?P).
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The proof is a direct calculation based on Propositions 2.1, 4.1, 4.2, 4.4,
4.7, 4.8.
Combining Propositions 4.2 and 4.9 we obtain

Theorem 4.10. If charK = p > 2, then each derivation 0 of Ag (K) can
be written in the form

(X)) =y (X)+T(XP,YP)Y +adw (X),
O(Y)=v (X)Y +S(XP,YP)YXPY +adw (Y),

where ¢ € K[X]|, T,S € Z(A2(K)), w € Ay(K) and the Lie alge-
bra of outer derivations of As (K) is isomorphic to the algebra K[X]| @
K[XP, YP] & K[XP,YP] with respect to the operation |-, -] such that

[(wlaTla Sl) ) (1/}2’T27 SQ)] = (w)Tv S) )

where 1 = Y1y — Y9,

—YP (S1T5 — SoTh) + YP ((T1)'yo To — (o) T1)
Y2 ((T yr» 52 — (T2)YP Sl) )
S =YP((S1)xsT2 = (S2)xT1) + Y ((S1)y»S2 — (S2)y»S1) -

Now we shall consider the Lie algebra of outer derivations of Ag (K)
in the case charK = 2. As above we shall omit technical details.

Proposition 4.11. If charK = 2 and § € K [X], then 0 € Z (A2 (K)).

Proof. It is enough to consider the case 8 = X", n € N. If n = 2k, then
0 =nX"1=0.If n=2k+1, then & = nX""! = X% From Theorem
2.2 we get 0’ € Z (A2 (K)). O

Proposition 4.12. If charK = 2, z € Z (A2 (K)), 0 € DerAs (K),
IX)=y+YT,0(Y) =9+ W +¢)Y+YXYS, where ), p € K[X],
T,S € Z (A2 (K)), then 8(z) = 2, TY? + 24,5 (SY? + ¢/) Y2

Proof. Consider derivations 0; € DerAo(K), i = 1,2, 01 (X) =9+ YT,
o1 (Y) = ’QZJ/Y—FYXYS, O (X) =0, 6(Y) = §0+§0/Y. Then 9 = 01 + 0s.
It remains to use Propositions 2.1 and 4.7. O

Proposition 4.13. If charK = 2, 0 € DerAs (K), 0(X) = ¢+ YT,
OY)=p+(W +¢)Y+YXYS, where p,p € K[X], T,S € Z (A2 (K)),
then for some coefficients a;; € K 9 (YXY) = 'Y XY + 3 0 XYY,
where the sum is taken over all i,j such that j > 2, 2| i.
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Proof. Consider derivations 0; € DerAs(K), i = 1,2, 01 (X) =9 + YT,
H(Y) =Y +YXYS »h(X) =0 0)=¢+¢Y. Then 9 =
01 + 0. It follows from Proposition 4.8 that for some coefficients 3;; € K
O (YXY)=¢'YXY +, Bi; XY, where the sum Y, is taken over all
i, 7 such that j > 2, 2 | i. From Propositions 2.1 and 4.11 we get for some
coefficients 7;; € K

Do (YXY)=0y (V)XY +Y X0, (Y)
=(p+¢Y)XY +YX (¢ +¢Y)
= XY +YpX = XY 4+ XY + (¢X) Y?
= (X)' Y2 =3 7 XYY

Finally, we obtain for some coefficients a;; € K
OYXY)=0;(YXY)+0(YXY)=9/'YXY + >, a;; X'Y7.
O

Proposition 4.14. If charK = 2, 0 € K[X], 0 € DerAs (K), 0(X) =
V+YT, 0)=p+ W +¢ )Y +YXYS, where ¢, € K[X], T =
P+QY? P=P (XQ), P,Q,S € Z (A2 (K)), then for some coefficients
Yij EKO(0) =0 + Y PO +Y XY (0') 2 T+ 7i; X'Y7, where the sum
is taken over all i,j such that j >2, 2 |i.

Proof. Put z = (X#)'. From Proposition 4.11 we get z € Z (A3 (K)). It
is clear that & = X6 + z. From Proposition 4.12 we obtain for some
coefficients a;; € K

0(2) = 25 TY? + 2L, (SY2+ ¢ ) Y2 =20, TY? = 3, a;; XYY,

where the sum ) ; is taken over all ¢,j such that j > 2, 2 | 7. Since
XY?2=YXY 4+ Y3, we can conclude that for some coefficients Bij € K

!/

X2T

O(X0)=0(X)0+X0(0)=(+Y (P+QY?)¢ +XY*(¢)
=08 + Y PO +YXY (0) o T+ (Q0 + (9)ya T) YV
=0 +YPO +YXY (0) o T+ 3, Biy XY

Finally, we obtain for some coefficients v;; € K

9(0) =0 +YPY +YXY (0) 2 T+ > 75 XY
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Proposition 4.15. If charK = 2, 9; € DerAs (K), i = 1,2, 0;(X) =
T; = P+ Q;Y?, P, =P, (X?), P,,Qi,Si € Z (A2 (K)), then

[61762] (X) :1/1+YT+adw(X),

[01,0) (Y) =4+ (' +¢ )Y +YXYS +adw (Y),

where 1 = (Y11p2)’ + @1P2 + 2 P1, © = (Y102 + P21 + @192)",
T =1 To+ ¢oTi + (To)y @1 + (T1)y2 05) Y2 + ($1T, + S2T1) Y2
+ (T2)'x2 Ty + (Th)'y2 T?) V2?4 ((T2)y2 S1 4 (T1)y=2 S2) v,
S = (902))(2 T + (90 );(2 15 + 8025’1 + 90152
+ ((S2)y2 @1 + (S1)y2 95) Y2 + ((S2) 2 Th + (S1)x2 T2) V2
+ ((S2)y2 S1 4 (S1)y2 S2) Y
Proof. Apply Proposition 4.1, 4.4, 4.12, 4.13, 4.14. O
Combining Propositions 4.2 and 4.15 we obtain

Theorem 4.16. If charK = 2, then each derivation 0 of Ao (K) can be
represented in the form

O(X) =9 (X)+T (X*Y?)Y +adw(X),

OY)=¢X)+ (¢ (X)+ ¢ (X)) Y +5(X® Y YXY +adw (Y),

where o, € K[X], T = P+ QY? P =P (X%, P,Q,S € Z(A;(K)),
w € A (K), and the Lie algebra of outer derivations of Ao (K) is isomor-
phic to the algebra K [X] & K[X] @ K [X?] & K [X?,V?] & K [X?,V?]
with respect to the operation [-,-] such that

[(¢17¢1apla Qla Sl) ; (¢17@17P1aQ1? Sl)] = (¢7(10’ Pa Q?S) 5
where ¢ = (P112) + 1 Pa + pa Py,
¢ = (Prp2 +1hop1 + p192) . P =\ P+ Py,
Q = ¢1Q2 + V5Q1+ (T2)y2 @1 + (T1)y2 ) + S1Ts + S2Th
+(To)x2 Th 4 (T)'x2 To + ((T2)y2 S1 + (Th)y2 S2) Y7,
S = (05) o Tt + (1) 2 T2 + €551 + £S5
+ ((S2)52 @1 + (S1)y2 ) Y2
+ ((S2)'y2 Th + (S1)'x2 T2) Y2 + ((S2)y2 St 4 (S1)y2 S2) Y,
where T; = P; + Q;Y?, i =1,2.
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The Lie algebra of derivations of Ag (K) in characteristic p > 0 is a
p—algebra. We shall consider this structure. Let - : k[X] — K[X]
be the operator of formal differentiation, i.e. % (¥ (X)) = ¢ (X) and
my : K[X] — K[X] be the operator of multiplication by 8(X) € K[X],
ie. my (¥ (X)) = 0(X) 9 (X).

Proposition 4.17. If 0 € DerAy (K), 0 (X) =, 0(Y) = 'Y, where
¢ € K[X], then for all n € N 9"(X) = (myo-L)"1(y), 0(Y) =
(i omy)" (1Y

The proof is a direct calculation.

Suppose that charK = p > 0. Let % 1 Z (A (K)) — Z (A2 (K))
be the operator of formal differentiation by XP, i.e. a%f(p (2) = zx»,
% : Z (A2 (K)) — Z (A2 (K)) be the operator of formal differentiation
by YP, ie. % (2) = zy» and my, * Z (A2 (K)) — Z (A3 (K)) be the
operator of multiplication by w € Z (A (K)), i.e. my (2) = wz. Put
d:mTo(%ﬁ,—i-mSomypo% : Z (A2 (K)) — Z (Ag (K)).

Proposition 4.18. If charK = p > 2, 9 € DerAy(K), 0(X) = YT,
O(Y)=YXP~YYS, where T, S € Z (A (K)), then for some w € Ay (K)

P (X) =Y (domys)’ " (T)+ adw (X),
P (Y)=YXPYY (mg+d) o (domys)’ (1) +adw (V).

The proof is a direct calculation based on Propositions 4.2, 4.7.
As in [5] it is easy to prove

Proposition 4.19. If A is a K-algebra, chark = p > 0, 0; € DerA,
i=1,2, [01,0:] = adw for some w € A, then (01 + 02)F = 0V + 0% +adu
for some u € A.

Theorem 4.20. If charK =p > 2, 0 € DerAs (K), 0(X) = ¢+ YT,
oY) =Y +YXP-IY' S, where v € K[X], T, S € Z (A (K)), then

P(X)=¢p+YT+adw(X),0” (V) =¢'Y +YXPIYS +adw (Y),

where w € Ag (K), ¢ = (my 0 %)p_l (), T = (domy»)P " (T), S =
(ms + d) o (d omy»)P 1 (1).

Proof. Consider derivations 0; € DerAs (K), ¢ = 1,2, where 0; (X) = 9,
H(Y)=9'Y, 0,(X)=YT,0(Y)=YXP1YS. Then § = 91 + 9. It
follows from Proposition 4.9 that [01,0:] = adw for some w € Ay(K).
Now the statement of Proposition 4.20 follows from Propositions 4.17,
4.18 and 4.19. O
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Proposition 4.21. If charK =2, 0 € DerAs (K), 0(X)=YT,0(Y) =
YXYS, where T,S € Z (A2 (K)), then for some w € Ag (K)
O*(X) =Y (domy2) (T) +adw (X),
?(Y)=YXY (mg+d)o(domy2) (1) +adw (V).
Proof. Since 0% € DerAs (K), it follows from Proposition 4.2 that
FP(X)=9p+YT+adw (X),
P(¥)=¢+ (P +@) Y +YXYE+adw (),

here w € Ay (K), ¥, ¢ € K[X], T,5 € Z(Ay(K)). As in the proof
of Proposition 4.18 it is easily shown that ¢ = 0. Since 82 (Y) =
I((YXS)Y)=(0(YXS)+YXSYXS)Y, we get ¢ =0. The following
argumentation is the same as in the proof of Proposition 4.18. O

Proposition 4.22. If charK = 2, 9 € DerAy(K), 0 (X ) =0,0(%) =
(

(Y
©+ @'Y, where o € K[X], then 8% (X) =0, 02 (Y) = p¢ + (¢)*Y.
Proof. We have 8% (X) = 0, 0*(Y) = 0(p+¢'Y) = Q0(Y) = o¢' +
()Y, O
Theorem 4.23. IfcharK =2, 0 € DerAy (K), 0(X) =¢v+YT,0(Y) =
o+ + @) Y+YXY'S, where o, € K[X], T = P+QY?, P = P (X?),
P,Q,S € Z (A2 (K)), then

2 (X) =19+ YT +adw(X),
PY)=p+ W +@)W+YXYS+adw(Y),
where T = (d o my=2) (T) + ¢ (T + 1Y), S = (mg+d)o(domy2)(1)+
(V2 T+ @S + @Sy, = (myo £)* (X) + 9P, w € As (K),
¢ =y
Proof. Consider derivations 0; € DerAs(K), i = 1,2,3, where 0; (X) =
v, 01 (Y) = 'Y, 09 (X) =YT, o0(Y) = YprlYS, d3(X) = 0,
BY) =@+ ¢Y. Then 0 = 0 + &2 + d3. From Proposition 4.15
we get [01,02] = adwia for some wio € Ay (K), [01,03] = 013 + ad wys,
where 813 (X) = 0, 813 (Y) = (1/)g0), and w13 € Ag (K), [82,83] = 823 +
ad wog, where Jo3 (X) = @P + ¢’ (T + T)’,Q) Y, 03 (Y) = (¢P)Y +
YXY (¢)2 T+ ¢S+ ¢Sy, Y?), wag € Ay (K). We have
0? = (O + 02 + 83)2
=07 405 + 03 + 0102 + 0201 + 0105 + 9301 + 0203 + 0302
= 07 + 05 4 03 + 013 + Oog + ad (w1 + w13 + wa3).

It remains to use Propositions 4.17, 4.21 and 4.22. [
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5. Classification Theorems

Let A = @ A, be an associative graded algebra over field A9 = K
=0

generated by elements X,Y € A;. Suppose that dim As = 3. Then
monomials X2, Y2, XY and Y X are linear dependent over K, so there
exists a unique to proportionality set of coefficients (a, 3,7, ) € K*\{0}
such that

aX? 4+ BY? +4XY +0YX = 0. (5.0.4)

Note that similar algebras over field of zero characteristic are considered
in [8].

Proposition 5.1. If A is an algebra without zero divisors, then af—~§ #
0.

Proof. Assume that af —~v§ = 0. If 6 = 0 then either « = 0 or g = 0.
Consider the case a = 0. Since (, 3,7,5) € K*\{0}, we see that either
B # 0 or v # 0. Since dim Ay = 3, we can conclude that X and Y are
linear independent over K. Thus, 8Y +vX # 0 and 0 = BY? + vXY =
(Y +~X)Y, which is impossible since A has no zero divisors. Similarly,
if 3 =0, then aX +7Y # 0 and 0 = aX? + vXY = X (aX +7Y), a
contradiction. Therefore & # 0. Then aX +0Y # 0, 6.X 4+ BY # 0 and

(aX 4 6Y)(6X + BY) = 6(aX? + fY? + vXY + 6Y X) = 0.
This contradiction proves the 5.1. O

Proposition 5.2. Suppose that K has no quadratic extensions and a5 —
~d # 0. Then there exist generators X1 and Y1 such that either Y1 X1 =
AX1Y; for some A € K* or Y1.X1 = X171 + Y12.

Proof. We shall consider two cases. Let first a # 0, 8 = 0. Put X = Y7,
Y = X;. Suppose secondly that o # 0, G # 0. We shall find X; and Y
such that X = X7, Y = &X1 + Y7, where £ € K. We shall latter specify
the value of parameter £. If we replace X by X1 and Y by £€X; + Y7 in
(5.0.4), then we get

aX2 4 BEXT + Y1) +9X1 (EX1 4+ Y1) + 0 (EX1 + V1) Xy =

AX2 4+ BYE+A4X1Y1 40V X1 =0,

where & = o + BE2 + 7€ + 6€. Since B # 0, it follows that there exists
an element ¢ € K such that & = 0. We claim that &3 — 56 # 0. Indeed,
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the coefficients of quadratic form aX? + Y2 +~7XY +§Y X are changed
under the substitution X = X, Y = £X; + Y) according to the rule

(53)-(33)-(e9) (5 3) ()

Then
L= % - a
aﬁy&zy&zdet( 55 ) = (aff —v0) #0.
Thus, without loss of generality, we can assume that o = 0. Then v§ # 0
and
YX =45 1XY - 57 Y2 =y Y X + B1Y2, (5.2.5)

where 71 # 0. If we replace X by X; + (Y7 for some ( € K and Y
by Y7 in (5.2.5), then we get Vi (X1 + (Y1) = 71 (X1 + Y1) Y1 + B Y2
Therefore, Y1 X7 = v1 X1Y1+(81 + 711¢ — ¢) Y. Ifeither v; # 1 or 31 = 0,
then there exists an element ¢ € K such that 51 +n¢{ — ¢ = 0. Thus
we have Y1 X7 = 11 X1Y1. In the converse case 74 = 1 and (1 # 0, i.e.
YX = XY+,81Y2 Let X = 51 X1,Y =Y;7. ThenY1 X7 = X1Y1—|-Y?. ]

So, without loss of generality, we can assume that generators X and
Y satisfy either the equality Y X = AXY; A € K*, or the equality Y X =
XY +Y2

The following theorems shows that if some additional conditions hold
true, then there exist only two classes of these algebras, namely quantum
polynomials in two variables and Jordanian plane.

Theorem 5.3. If K has no quadratic extensions, A is a central algebra
and a3 — 9§ # 0, then either A = Ay (K, \) and A € K* is not a root of
unity, or A = As (K) and charK = 0. In particular, A is a domain and
dimA,=n+1,neN.

Proof. From Proposition 5.2 it follows that A = B/I, where either B =
A1 (K, A) or B = Ay (K) and T is a homogeneous prime ideal of the algebra
B, I # B. We are going to prove that I = 0. Assume the converse and
consider two cases.

Case 1: let B = A1 (K, \), where A € K*. If A™ =1 for some m € N,
then from Theorem 2.2 we can conclude that X™, Y™ are central in
A1 (K, A). Consider the canonical homomorphism

7 Ay (K, A) — M (K, A)/I-

Since 7 is surjective we have 7 (X?), 7 (Y?) € Z (Al (K, )‘)/I). But the
algebra M (K, /\)/I is central and so 7 (X™) =a € Kand 7 (Y™) = €
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K. Therefore, X" —«a, Y™ — 3 € I. Since the ideal I is homogeneous, we
get a = =0,ie. X™ Y™ € I. But the ideal [ is prime, so X,Y € [
and I = (X,Y). But dim Ay = 3. This contradiction shows that A is not
a root of unity. Then by Theorem 2.5 it follows that I is one of ideals
(X), (Y) or (X,Y). In each case dim Ay < 3. Thus, if B = A (K, ),
then I = 0.

Case 22 B = Ay (K). If charK = p > 0, then from Theorem
2.2 we get YP is central in Ag (K). Consider the canonical homomor-
phism 7 : Ag (K) — Ag (K)/I Since 7 is surjective we have 7 (YP) €
Z (Al (K, A)/j). Then we can apply the same arguments as in the pre-
ceding case. O

Theorem 5.4. IfK has no quadratic extensions, dim A, =n+1, n € N,
and aff—~8 # 0, then either A = Ay (K, X) or A = Ay (K). In particular,

A is a domain.

Proof. Without loss of generality, we can assume that generators X and
Y satisfy either the equality Y X = AXY, A € K*, or the equality Y X =
XY + Y2 Consider the case YX = XY + Y2 Put

Az (K) =K <X’ ?>/()~/)~( —- XY — 172> = ;‘;9)0‘4"7

where Ay = K, A,, n € N, is a linear span of monomials of degree n
in X, Y. From Proposition 1.2 we get dim A, = n+ 1. There exists a
graded algebra homomorphism ¢ : Ay (K) — A, X +— X,Y — Y. Then
kero = 0, i.e. A = Ay (K). In the case YX = AXY, X\ € K*, using the
same arguments we get A = Ay (K, \). O

Corollary 5.5. If dmA, =n+1,neN, af —~5 £ 0, then A is a
domain.

Proof. Put A = K ®g A. Then A is generated over K by elements X =
1®X andY =1QY and A = %3 A, where A,,, n € N, is the linear span
n=0

of all monomials of degree n in X and Y. In particular, dim 4,, = n + 1.
It is evident that aX? + Y2 + XY 4 Y X = 0. Then from Theorem
5.4 it follows that A is a domain. O
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