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Abstract. Let A, B be subgroups of a group G and ∅ 6= X ⊆
G. A subgroup A is said to be X-permutable with B if for some
x ∈ X we have ABx = BxA [1]. We obtain some new criterions
for supersolubility of a finite group G = AB, where A and B are
supersoluble groups. In particular, we prove that a finite group
G = AB is supersoluble provided A, B are supersolube subgroups
of G such that every primary cyclic subgroup of A X-permutes with
every Sylow subgroup of B and if in return every primary cyclic
subgroup of B X-permutes with every Sylow subgroup of A where
X = F (G) is the Fitting subgroup of G.

Introduction

Throughout this paper, all groups are finite. By well-known Fitting’s
theorem [2, III, 4.1] the produkt of any two normal nilpotent subgroups
is nilpotent as well. It is known however, that supersoluble groups do
not have such a property [3], [4]. It was observed by R.Baer [5] that
the product G = AB of two normal supersoluble subgroups A and B is
supersoluble if G′ is nilpotent. Another important results were obtained
by M.Asaad and A. Shaalan in [4], where it was proved that a product
G = AB of supersoluble groups A and B is supersoluble if every subgroup
of A is permutable with every subgroup of B. Later on the observations
from [4] were extended in various papers (see for example [6], [7], [8], [9],
[10], [11]). In this paper we prove some new results in this direction.
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Recall that a subgroup A of a group G is permutable with a subgroup
B if AB = BA. In many cases we meet the situation when AB 6= BA
but ABx = BxA for some x ∈ G. For example, when G is soluble and
H and T are Sylow subgroups of G, then HT x = T xH, for some x ∈ G
([2, VI, 3.1]). Another example is that if G = HT and Hp, Tp are Sylow
p-subgroups in H and T respectively, then HpTp 6= TpHp in general but
there exists an element x ∈ G such that HpT

x
p = T x

p Hp. In the analizing
of the situations of this kind it is convenient to use the following natural
concepts which were introduced in [1].

Definition. Let A, B be subgroups of a group G and ∅ 6= X ⊆ G.
Then:

(1) A is X-permutable with B if there exists some x ∈ X such that
ABx = BxA;

(2) A is X-permutable in G if A is X-permutable with all subgroups
of G;

(3) A is hereditarily X-permutable with B if ABx = BxA, for some
x ∈ X∩ < A, B >.

1. Preliminaries

We first cite here some properties of factorizations of groups. The follow-
ing two lemmas are well known.

Lemma 1.1. Let A, B be proper subgroups of a group G with G = AB.
Then G = ABx and G 6= AAx for all x ∈ G.

Lemma 1.2. If G = AB and p be a prime, then there exist some Sylow p-
subgroups Ap, Bp and Gp in A, B and G respectively such that Gp = ApBp.

We shall often use the following fact which at first was proved in [15].

Lemma 1.3. Let G = AB be the product of its subgroups A, B. If L is
a normal subgroup of A and L ≤ B, then L ≤ BG.

Lemma 1.4. [14, 1.7.11]. If H/K is a chief factor of a group G and if
p is a prime divisor of |H/K|, then Op(G/CG(H/K)) = 1.

We shall also need the following well known facts about supersoluble
and soluble groups.

Lemma 1.5. Let G be a group. Then the following statements hold:
(i) if G is supersoluble, then G′ ⊆ F (G) and G is p-closed for the

largest prime divisor p of |G|;
(ii) if L E G and G/Φ(L) is supersoluble, then G is supersoluble;
(iii) G is supersoluble if and only if |G : M | is a prime for every

maximal subgroup M of G.
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Lemma 1.6. [14, 2.4.3]. Let M1, M2 be maximal subgroups of a soluble
group G such that (M1)G = (M2)G. Then M1 and M2 are conjugate.

Lemma 1.7. [15]. Let A, B be subgroups of a group G. Assume that A
permutes with Bx for every x ∈ G. If AB 6= G, then G is not simple.

Now we cite some properties of X-permutable subgroups.

Lemma 1.8. [1]. Let A, B, X be subgroups of G and K E G. Then the
following statements hold:

(1) If A is (hereditarily) X-permutable with B, then B is (hereditarily)
X-permutable with A.

(2) If A is (hereditarily) X-permutable with B, then Ax is (hereditar-
ily) Xx-permutable with Bx for all x ∈ G.

(3) If K ≤ A, then A/K is (hereditarily) XK/K-permutable with
BK/K in G/K if and only if A is (hereditarily) X-permutable with B in
G.

(4) If A, B ≤ M ≤ G and A is hereditarily X-permutable with B,
then A is hereditarily (X ∩ M)-permutable with B.

Lemma 1.9. Let p be a prime, G = ZpB where |Zp| = p ∤ |B|, B is a
soluble group and Zp X-permutes with every Sylow subgroup of B where
X = F (G) is the Fitting subgroup of G. Then G is a soluble group.

Proof. Assume that this lemma is false and let G be a counterexample
with minimal order. Then:

(1) G is not simple.

Assume that G is a simple group. Then X = 1. Let Bq be a Sylow
q-subgroup of B. Then by hypotheses, ZpBq = BqZp. Besides, because
for every x ∈ G = ZpB we have

ZpB
x
q = ZpB

ba
q = Zp(B

b
q)

a = ZpB
b
q = Bx

q Zp

where b ∈ B and a ∈ Zp. Then by Lemma 1.7, G is not simple.

(2) G/N is soluble for every normal subgroup N of G.

Indeed, let N be a normal subgroup of G. If Zp ⊆ N , then G/N =
NB/N ≃ B/N ∩ B is a soluble group.

Let Zp 6⊆ N . Then G/N = (ZpN/N)(BN/N) is the product of the
subgroup ZpN/N with order p and the soluble subgroup BN/B. Let
D/N be a Sylow q-subgroup of BN/N . Then D = BqN for some Sylow
q-subgroup Bq of B, and so by hypotheses,

(ZpN/N)(D/N)xN = (D/N)xN (ZpN/N)
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for some xN ∈ XN/N ≤ F (G/N). Thus the hypotheses are true for
G/N . Since |G/N | < |G| and by the choice of G, the subgroup G/N is a
soluble group.

(3) Final contradiction.

If X 6= 1 then in view of (2), G/X is soluble and so G is a soluble
group, a contradiction. Hence X = 1. Let N be a minimal normal
subgroup of G. Then in view of (1), N 6= G. First assume that p ∤ |N |.
Then evidently N ⊆ B. Since by hypotheses, B is a soluble group, N
is soluble and so in view of (2), G is a soluble group, a contradiction.
Hence p | |N |. Since B is a Hall p′-subgroup of G, so B ∩ N is a Hall p′-
subgroup of N . It is clear that Zp ⊆ N , and so by Dedekind Law, we have
N = N ∩ZpB = Zp(N ∩B). Let Q be a Sylow q-subgroup of N ∩B, Bq

be a Sylow q-subgroup of B such that Bq ∩N = Q. Then by hypotheses,
BqZp = ZpBq, and hence N ∩ BqZp = Zp(N ∩ Bq) = ZpQ = QZp. Thus
the hypotheses are true for N and N is a soluble group. It follows that
G is soluble, contrary to the choice of G.

2. Main results

N.M. Kurnosenko has proved in [9] that the product G = AB of two
supersoluble subgroups A and B having coprime orders is supersoluble if
A and every cyclic subgroup of A permutes with every Sylow subgroup
of B and if in return B and every cyclic subgroup of B permutes with
every Sylow subgroup of A.

The following theorem is a local analog of this result in the case when
G is soluble.

Theorem 2.1. Let G be a soluble group and G = AB be a product of
p-supersoluble subgroups A, B having coprime orders. Assume that p
divides |A| and

(1) if p > 2 then A and every its subgroup with prime order p permutes
with every Sylow subgroup of B;

(2) if p = 2 then A and every its subgroup with order 2 or 4 permutes
with every Sylow subgroup of B.

Then G is a p-supersoluble group.

Proof. Assume that the result is false and let G be a counterexample
with minimal order. Let F be the class of all p-supersoluble group.

Let M be a F-abnormal maximal in G subgroup. Then |G : M | = pα

for some α ∈ N/{1} or |G : M | = qβ for some β ∈ N and q ∈ P, q 6= p.
First assume that |G : M | = pα. Since p divides |A| and since by Hall’s
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theorem [13, 1, 3.3], G has an element x such that B ⊆ Mx, then without
loss of generality we may assume that B ⊆ M . Now we shall show that
for M the hyposeses are true. Indeed, by using the Dedekind Law, we
have M = M ∩AB = (M ∩A)B where M ∩A and B are p-supersoluble
subgroups of M having coprime orders. If M ∩ A is a p′-group then M
is a p′-group and so M is a p-supersoluble group. Now suppose that
p | M ∩ A. Let T be a subgroup of M ∩ A with prime order p (or 4
in the case when p = 2). And let Bq be a Sylow q-subgroup of B. By
hypotheses BqT = TBq. Since ABq = BqA, so ABq ∩M = (M ∩A)Bq =
Bq(M ∩ A). So the hypotheses are true for M and its subgroups M ∩ A
and B. Hence by the choice of G, the subgroup M is p-supersoluble.
Now let |G : M | = qβ where q 6= p. Same as above, we can see that M
is p-supersoluble. Thus every F-abnormal maximal subgroup of G is a
p-supersoluble group.

Since G is soluble, so by [12, VI, 24.2] G has a normal p-subgroup P
satisfying the following conditions:

(i) G/P is p-supersoluble and P is the smallest normal subgroup of
G with p-supersoluble quotient;

(ii) if p > 2, then the exponent of P is p; if p = 2, then the exponent
of P is 2 or 4;

(iii) P/Φ(P ) is a chief factor of G.

It is clear that P ⊆ A. Let Φ = Φ(P ) and let q be a prime such
that q ∤ |A|, Gq be a Sylow q-subgroup of G. Denote by Gq′ some Hall
q′-subgroup of G such that A ≤ Gq′ . Then P ⊆ Gq′ . Using the same
argument as above, we see that Gq′ is p-supersoluble. Hence we see
that Gq′/Φ has a normal subgroup H/Φ such that |H/Φ| = p and so
H =< a > Φ where < a >⊆ P . It is clear that | < a > | = p or
| < a > | = 4. For some x ∈ G, we have Gx

q ≤ B. Then by hypotheses,
< a > Gx

q = Gx
q < a >. Since < a > is subnormal in G and (| < a >

|, q) = 1, so Gx
q ⊆ NG(< a >), and therefore H/Φ E G/Φ. Then we have

P/Φ = H/Φ is a cyclic group. It is clear that G/P ≃ (G/Φ)/(P/Φ) is
p-supersoluble and so G/Φ is a p-supersoluble group, a contradiction.

By extending the results [9] we prove the following two theorems.

Theorem 2.2. Let G = AB be a product of supersoluble subgroups A, B
having coprime orders and X = F (G) the Fitting subgroup of G. Assume
that A and every its subgroup with prime order or with order dividing 4 is
hereditarily X-permutable with every subgroup of B and in return B and
every its subgroup with prime order or with order dividing 4 is hereditarily
X-permutable with every subgroup of A. Then G is a supersoluble group.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.H. V. Legchekova 51

Proof. Assume that this theorem is false and let G be a counterexample
with minimal order. Then:

(1) Some maximal subgroup of G is not supersoluble.

Assume that every maximal subgroup of G is supersoluble. Then G
is soluble [15] and by [13, 7, 6.18] it has a normal Sylow p-subgroup P
satisfying the following conditions:

(i) G/P is supersoluble and P is the smallest normal subgroup of G
with supersoluble quotient;

(ii) if p > 2, then the exponent of P is p; if p = 2, then the exponent
of P is 2 or 4;

(iii) P/Φ(P ) is a chief factor of G.

Using the same arguments in the proof of Theorem 2.1, we can prove
(1).

(2) G is not soluble.

Assume that G is soluble and let M be a maximal in G subgroup.
Then |G : M | = pα for some prime p. Without loss of generality one can
suppose that p | |B|. By Hall’s theorem [13, 1, 3.3], G has an element x
such that A ⊆ M1 = Mx. Now we shall prove that M1 is supersoluble.
Indeed, by using the Dedekind Law, we have M1 = M1∩AB = A(M1∩B)
where A and M1 ∩ B are supersoluble subgroups of M1 having coprime
orders. Let T be a subgroup of A with prime order or with order dividing
4. And let B1 be a subgroup of M1∩B. Then by hypotheses TBx

1
= Bx

1
T

for some x ∈ X∩ < T, B1 >≤ M1. Since X ∩ M1 ≤ F (M1), so x ∈
M1∩ < T, B1 >. So the hypotheses are true for M1 and its subgroups
A ∩ M1 and B. Since |M1| < |G| and by the choice of G, the subgroup
M1 is supersoluble, and so M is supersoluble too. Thus every maximal
subgroup of G is supersoluble, contrary (1). Thus we have conclude that
(2) is true.

(3) G has a normal Sylow subgroup.

Let p be the largest prime divisor of |G|. Without loss of generality
we may assume that p | |A|. Let Ap be a Sylow p-subgroup of A. Since
by hypotheses A is supersoluble, by Lemma 1.5 we have Ap E A . Now
let Bq be a Sylow q-subgroup of B where q 6= p. By hypothesis, D =
ABx

q = Bx
q A for some x ∈ X∩ < A, Bq >. Assume that D = G. By

Lemma 1.1 G = ABq and so Bq = B. Then by hypotheses Ax
pBq = BqA

x
p

for some x ∈ X∩ < Ap, Bq >. If Ax
pBq = G, then by Burnside’s paqb-

theorem G is soluble, contrary (2). Hence Ax
pBq 6= G. It is evident that

the hypotheses are true for the group Ax
pBq, and so by the choice of G,

Ax
pBq is supersoluble. That implies Ax

p E Ax
pBq. Thus Ap E G.

(4) Final contradiction.

Let Q be a normal Sylow subgroups of G. Then |G : Q| = qα for
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some α ∈ N. Without loss of generality we may assume that q | |A|.
Now we shall show that for G/Q = (A/Q)(BQ/Q) the hypotheses are
true. Indeed, A/Q and BQ/Q are supersoluble subgroups of G/Q having
coprime orders. Assume that p | |A/Q|. Let H/Q be a subgroup of A/Q
with prime order (or with order dividing 4 in the case when p = 2). Then
by Schur-Zassenhaus’s theorem [14, 1.7.9] G has a subgroup T such that
H = TQ and |T | = |H/Q|. Let B1/Q be a subgroup of BQ/Q. Then
by using the Dedekind Law, we have B1 = Q(B1 ∩ B). By hypotheses
T (B1 ∩ B)x = (B1 ∩ B)xT for some x ∈ X and so (H/Q)(B1/Q)xQ =
(TQ/Q)((B1 ∩ B)xQ/Q) = T (B1 ∩ B)xQ/Q = (B1 ∩ B)xT/Q = ((B1 ∩
B)xQ/Q)(TQ/Q) = (B1/Q)xQ(H/Q). Since Q ≤ X, so xQ ∈ X/Q ≤
F (G/Q). Hence the hypotheses are true for G/Q, and so G/Q is soluble.
Now we obtain that G is a soluble group. This contradiction completes
the proof.

Theorem 2.3. Let G = AB be a product of supersoluble subgroups A,
B and X = F (G) the Fitting subgroup of G. If every primary cyclic
subgroup of A X-permutes with every Sylow subgroup of B and if in return
every primary cyclic subgroup of B X-permutes with every Sylow subgroup
of A, then G is a supersoluble group.

Proof. Assume that this theorem is false and let G be a counterexample
with minimal order. Then:

(1) G/N is supersoluble for every non-identity normal subgroup N of

G.

Let N be a non-identity normal subgroup of G. First of all we note
that G/N = (AN/N)(BN/N) is the product of the supersoluble sub-
groups AN/N ≃ A/N ∩ A and BN/N ≃ B/N ∩ B. Now let T/N be
a cyclyc primary subgroup of AN/N . It is clear that for some cyclic
primary subgroup < b > of T we have T =< b > N . Since T ≤ AN ,
b = an for some element a ∈ A having primary order and for some
n ∈ N , and so < a > N =< b > N . Let D/N be a Sylow q-
subgroup of BN/N . Hence D/N = BqN/N for some Sylow q-subgroup
Bq of B. Since by hypotheses, < a > Bx

q = Bx
q < a > for some

x ∈ X and so we have (D/N)xN (T/N) = (DxN/N)(< a > N/N) =
(Bx

q N/N)(< a > N/N) = Bx
q < a > N/N =< a > Bx

q N/N = (< a >

N/N)(Bx
q N/N) = (< a > N/N)(DxN/N) = (T/N)(D/N)xN . It is clear

that xN ∈ XN/N ≤ F (G/N). Thus the hypotheses are true for G/N .
But |G/N | < |G|, and so by the choice of G we have (1).

(2) G is a soluble group.

Assume that G is not soluble.
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If X 6= 1 then by (1), G/X is supersoluble and so G is a soluble group,
a contradiction.

Hence X = 1. Let p be the largest prime divisor of |G|. Without
loss of generality we may assume that p | |A|. Let Ap be a Sylow p-
subgroup of A. Then since by hypotheses A is supersoluble, from Lemma
1.5 we have Ap E A. Thus A has a minimal normal subgroup, say H,
such that |H| = p. If H ≤ B, then by Lemma 1.3, HG ≤ B and so
a minimal normal subgroup of G contained in HG is abelian since by
hypotheses B is supersoluble as well as the subgroup A. From (1) it
follows that G is soluble, a contradiction. Let H 6⊆ B and let B =
B1 . . . Bt where B1, . . . , Bt are Sylow subgroups of B. Then since by
hypotheses H permutes with all B1, . . . , Bt, D = HB = BH. Assume
D 6= G. Since the hypotheses are true for D and |D| < |G|, so we obtain
that D is supersoluble. But G = AD, and so by Lemma 1.3 and in view
of (1), we again have a contradiction. Now suppose that D = G. In view
of Lemma 1.9 we may assume that p| |B|. Let Bp be a Sylow p-subgroup
of B. Then HBp = BpH, and G = HB = (HBp)B. Hence because
Bp E B, BG

p ⊆ HBp, and so by (1), G is a soluble group, a contradiction.
That implies (2).

(3) G has the only minimal normal subgroup, say N , and G = [N ]M
where N = CG(N) = Op(G) for some prime p, M is a supersoluble

maximal subgroup of G and Op(M) = 1.

Since the class of all supersoluble groups is closed under subdirect
products, then in view of (2), G has the only minimal normal subgroup,
say N . In view of (1) and by Lemma 1.5, we also have L * Φ(G). Let M
be a maximal subgroup of G not containing N and C = CG(N). Then by
the Dedekind Law, we have C = C∩NM = N(C∩M). Since N is abelian,
C ∩ M E G and so C ∩ M = 1. This shows that N = Op(G) = CG(N)
and M ≃ G/N is a supersoluble group with Op(M) = 1 by Lemma 1.4.

(4) p is the largest prime divisor of |G|.
Let T1 and T2 be maximal subgroups of G such that A ≤ T1, B ≤ T2.

Since G = AB = T1T2, then by Lemma 1.1, T1 6= T x
2

for all x ∈ G. Hence
by Lemma 1.6, (T1)G 6= (T2)G, and so we have either N ⊆ T1 or N ⊆ T2.
Let N ⊆ T1. Let q be the largest prime divisor of |T1|. Then a Sylow
q-subgroup of T1 is normal in T1, and hence it contained in CG(N) = N .
Thus p is the largest prime divisor of |T1|. If T1 is not a Hall subgroup
of G, we have (4). Let T1 be a Hall subgroup of G and assume that
p 6= q, where q is the largest prime divisor of |G|. Then |G : T1| = qα

for some α ∈ N. Since N ⊆ T1, so by (1), |G : T1| = q is the order
of a Sylow q-subgroup of G. It is clear that q| |B|. Let Bq be a Sylow
q-subgroup of B. By hypotheses, ABx

q = Bx
q A for some x ∈ X and by

Lemma 1.5, Bx
q E Bx. Hence by Lemma 1.3, N ≤ ABx

q . So N ⊆ Ap,
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and therefore A has a normal subgroup Z with order p such that Z ≤ N
and ZBy = ByZ for some y ∈ X. By Lemma 1.3, N ≤ ZBy, and so by
(2), By

q ≤ CG(N) = N . This contradiction completes the proof of (4).

(5) N is a Sylow p-subgroup of G.

Assume that the assertion is not true. Then, we have p | |G : N |.
This means that p | |M |, and so by (4) and by Lemma 1.5, we see that
Op(M) 6= 1. This contradicts (3). Hence, N is a Sylow p-subgroup of G.

(6) Final contradiction.

Since G = AB and N is a Sylow p-subgroup of G, we have either
N ∩A 6= 1 or N ∩B 6= 1. Let N ∩A = Ap 6= 1, Zp be a minimal normal
in A subgroup contained in N ∩ A.

By hypotheses, D = ZpB
x
q = Bx

q Zp for some x ∈ X where q is a
prime, q 6= p and Bq is a Hall q-subgroup of B. Then Zp = N ∩ ZpB

x
q E

Zp(N ∩D) E D. Hence Zp E NABx
q and so Zp E G. Therefore Zp = N ,

and so G is a supersoluble group, contrary to the choice of G.
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conjugués, Comptes Rendus Acad. Sci. Paris, 191, 1930, pp.397-399.
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