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ABSTRACT. We consider the second power moment of the Ep-
stein zeta-function and construct the asymptotic formula in special
case, when ¢g(u,v) = u? + Av?, A > 0, A = 1,2(mod4) and
©o(u, v) belongs to the one-class kind Gy of the quadratic forms of
discriminant —4A.

1. Introduction and statement of result

Let ((s) be the Riemann zeta-function. In 1926 Ingham [7] proved the
relation

T
T T ,
/0 (5 + it)[* dt = P log! T4 O(T1og® T')

In series this result was improved. In 1979 Heath-Brown [6] proved that

T 4 A
/ (5 + it)|*dt =T ajlog! T + Ex(T),
0

J=0

where Ey(T) = O(T7/8%¢).
A Ivi¢ |9] calculated the coefficients a;, j = 1,2, 3,4. Heath-Brown’s
bound for E(T) was improved to

Ey(T) = O(T*310g°T), (¢ > 0)
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in [10] Ivi¢ and Motohashi.

In this paper we shall consider the second power moment of the Ep-
stein zeta-function.

The function of divisor d(n) and the function ry,(n) (number of repre-
sentations of n by the positive quadratic form ¢(u,v)) are close. There-
fore we can expect that their Dirichlet series have like the mean value.

Let ¢(u,v) denotes positive definite quadratic form

o(u,v) = au® + 2buv + cv?, a,b,c € Z,(a,b,c) = 1,D = ac — b*> > 0.

For real numbers «, 3, v, § and a complex variable s, define the Epstein
zeta-function for Res > 1

? i)=Y elau+ Bu)(p(u+r,v+3)) 7"

(u,v)€Z2
(u,v)#(=v,—9)

Zy

o
v
It is known that this function possesses an analytic continuation to the
whole complex plane, with the possible exception of a simple pole with

residue —& at s = 1 which occurs if and only if (o, B) € Z* (see Epstein

[5]). Moreover, one has a functional equation

a [

ZLP(’Y(S

15) =

:e(—av—ﬂ5)<w>1+2sr(1_s)2¢(‘ o _55 1-s). ()

VD I(s)
Let 7,(\) be the number of the representations A in the form A\ =

w(u+%v+5), and let T¢()\;a,ﬂ) = Z e(au+ﬁy).
o(uty,0+8)=X

We denote 9 (u,v) = cu® — 2buv + av?, A= B = Q7

an = Z e(au + pv), b, = e(—ay — [9) Z e(—yu — ov),

u,vEZ u,vEZL
p(uty,v+8)=An p(utoa,v+6)=pn
D<M <X<...,0<yy<p<...

By (1) we have A°T(s)®(s) = B!*T(1 — 5)¥(1 — s), where

o) =Y 5= 2o & ] i,
n=1""T
0 b, - 5
‘I’(S)ZZ;S:e(—av—ﬁcS)Z@( o g |
n=1""

We are now prepared to formulae our results.
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Theorem 1. Let 0 < Res = o < 1, |[Ims| = [t| > 10, 1 < x,y, 2y =
2
(LT/FE) . Then the approximate functional equation

! b
ZZ(BEAIOED SR e Z T Ryl )
v An<z n n<y Hn
holds, with
1-2
() @ I'(1-s)
LA '(s) ’
W\F x
Ry (s, ) < |t|Y?277 min(1, —) log |¢| log( + +
o il VD

t|v D
—I—xlf"(]ﬂ\/ﬁ)*l(l + | |;F) min(z€ + log |t], y° + log |t]).

Theorem 2. Let ry(n) denotes the number of the representations of n
by form p(u,v). Then for any positive €

T 2
0 0 _1 N Tcp(n) 27 2
/0 Zo(| o o ',2+zt)| dt =27 — - = > rZ(n)+

VD
ro(m)ry(n) rmyit /. my —1
1o Yo T (I (zlogz) +O((TVD)V/>+).

nST\/ﬁ nST\/ﬁ
s U
n

Theorem 3. Letl,q €N, (I,q) =1. Then

0
158
q

1+€
;S) —Z o(u,v) 5P dt < (Tq\/lﬁ_z

(u,v)eB

?

/\QSZZ

l1,l3(mod q)
Reé tp(l1 lg)=l(mod q)

QU O

where B denotes the set of points (u,v) for which ¢(u,v) = l(mod q) and
0 < ¢(u,v) < 2q.

Theorem 4. Let po(u,v) = u? + Av?, A > 0, A = 1,2(mod4) and
let wo(u,v) belongs to the one-class kind Gg of the quadratic forms of
discriminant —4A. Then for any € > 0

T
1
/ \Z@O(i —l—it)|2 dt = E0T10g2T+E1TlogT+E2T+O(T7/8+€)’
0

where By > 0, E1 are the computable constants which depends on A.
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We shall use the following notation. The Vinogradov symbol X < Y
means X = O(Y). We use € for a positive exponent which may be taken
arbitrary close to zero; the constant implied by < (or O) may be depend
on €. exp(z) = €%, e(x) = 2™, ¢,(x) = e(3) for z € R; (=) is symbol
Jacoby; I'(z) is Gamma function.

2. Proof of theorem 1 and theorem 2

Assume first that ¢ > 1. We shall evaluate the integral

1 c+ioco
ST
I=— | =7
2mi w(s —w) o
c—100

a
v 0

‘;w)dw, (I1<c<o)

in two ways.

o0

In the above integral we replace Zeo(‘ @ g w) by the series Zl K—% We
n—=

then integrate termwise and move the line of integration to Rew = —o0

if A, <z, and to Rew = +oo if \,, > x. By the theorem of residues we
obtain

c+100
D S VLT DL
An<z c—ico An <z
ct+ioco
Wes a,
—d = —. 2
Z 2mi / (s —w A5 @
An>T c—ico An>T
Hence,
_ a o _
T=a Vet =2 0 f - X R Yan
An<z An>T n v An<z n An<z

(3)
In the second evaluation of the integral I we appeal to the analytic con-
g :S).
We move the line of integration to Rew = —b (0 < b < %), set z =1—w,
and use the functional equation (1):

tinuability and the functional equation of the function Z,(

14-b4-i0c0
1 le—z—s

I=54 /(1—z)(3—1+z)Z“’(
1+b—ico

o f
v 0

i1 —2)dz+ R(z) =
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1+btioco
_ e(-a ﬁ&) gpl=7—s I'(2) T _(_HZ’Z)X
T J =) (-1+2)T(1-2)\VD
1+b—ic0
«Zol(| 77 0 | 2)de + R(2)
P o /8 y2)az Z),
where
sxWT*s a [
R(z) = resw=01 (w(s—w) o v 8 w)>

The series Zw(‘ _07 3 ) is absolutely convergent on the line Re z =
1+ 0. Integration termwise we obtain
- 1+b+ioo T( (L ) —2
1 2) N T
T vD dz+ R(z). (4)

I=s2""°) b, —
o Zl omi ) VDD —2)(1—2)(s—1+2)
n= 1+b—ico
Land 22~ 2F(F;7i)) (here Ji(z) is Bessel

We have the Mellin pair J;(z)x

function). Whence for v > 0

1 22 2| (l )
1 2 —z
= - dz =
Ji(v)v 5 o %Z)v z

—1400
22w—11’*(w) U—dew‘

+1
_ 1 /
- 2mi I'(1—w)(1—w)
—1300
and integrating over the interval [27,/#35%, 00)

/ Jl 728d7) =
an
47r2,un:1:) -

F(w>< D

Multiplying this by v
we arrive at the formula

dw. (5)

2—2s
L omy [ Hnt 1
! D 2mi JT(1—w)(1—w)(s— 1+ w)
The path of integration we can move to Rew = 1+ b. Now from (4)-(5)
we infer
4 2 . s—1 %
e :”> / (w2 dv + R(z).  (6)

1—s > &
by, ——
>0 75 (5
n=1 o “gﬁz
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Hence, by (2),(6) we obtain
a [

an s
Z«p( 5 5 5 ) Z )\75 +x Z Ay =
A<z~ An <z
4\ S b
=4s —_ Ji(v)v~%dv + R(z
( D ) — /Dlhlls/ 1< ) ( )
- 2m\ /BB
Further,
szW? a B —s_—2mi(ay+55)
w=0 | ——Z : = — gl ’
reSw—0 (w(s —) o v 8 w)> x %e
sx? 8 a f sxl=
w= Z ; = e(a, —,
res 1< v 8 w)> e(a ﬁ)s—l\@
¢

0 if (o, ) 72,
where €(@, 8) =\ 1 ¢ (a.8) € 22,
Thus from (7) we obtain

N/ngy n
sD (72\° T 9 1=s 7
+> ) Ji(v)v™ " dv + €(a, B) 175
Bn>Y o /7%
where -
D (7?\*

Up = Xo(1 — 8);<WD> /Jl(v)UQde -1

2w %

From (8) we have

Zy(

;s) = Z ? Ry,(s,x).

v 0 An<z n

In order to calculate the integral
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we can apply lemma 1 [11] or lemma I11.1.2 [12]|. Then after the calcula-
tion of I,,(s) (by Jutila’s method [11]) we have

x [t|v D x
— ) log|t| lo + +
\t\) g [t|log(— m ﬁD)

R,(s,x) < |t]*/2277 min(1,

tivD, |
w7 (D) 1+ YD) o 4 10g ], 4+ g ).

Forthemore, from (8) we have for z = y = @ =7,0<0<1,

Xo(l = 8)Ry(s,7) = —V2r 3 A,(r) + O(t71 D¥), ©)

where

Ay(z) = Z e(au + fv) — e(a,ﬁ)%x.

p(uty,v+6)<z

Remark 1. The estimate of A, (z) can be obtained by Perron’s formula

for Z,( : ? ;). The same reasoning as in the circle problem we easy

obtain

Ay(z) = (Dx)iz T cos(2 mC+7T)+O(E+($)§+EN5)
olx) = - 3 CoS(2my [ + x fo) :

M<N Ap

Trivially we have
1 1
Ay(z) < 237°D3.

Thus from (9) we obtain the estimate for R,(s,z) in case x = y = @

R,(s,z) < et

However, the error term in the asymptotic formula in the approximate
functional equation, which we obtain, is large for the construction of

T
an asymptotic formula for [ [Z,( @ g :8)[2dt. Thus we build a
Re S:%
formula for ]Z¢(‘ « ? : 8)|? in which the error term is sufficiently small.

We shall use by the idea of D.R. Heath-Brown [6].
Let o = 3 =7v=49=0. We define

—2w
f(w) =: {(@) F(w+it)F(w—it)Z¢(w+it)Z¢(w—it)} :
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Since
0 0 1
740 i) = Z) = 30 -Y
7 0 O ? u,vGZgO(u’v) quZfl/}
(u,v)#(0,0) (u,v)#(0,0)

we have f(1 —w) = f(w), f(3 —w) = f(3 + w). Moreover f(w) is
meromorphic on the complex plane, the only pole being at w = +4t and
w = 1+ it. We consider the integral

1+zoo
~ omi
1—ic0
If we move the path of integration to Rez = —1 and set w = —z , then

we obtain
1 22 T]. ]. Z2 T].
J=—J+res,— (f(2+z)e / z) +res, i1y (f(2+z)e / z)

We can show that for %T <t<5T

1
TeS,=+1tit <f(2 + 2)e* T2 ) < T2 T ”t,

Hence,
1 0 _t2_ 4
f(§) =2J+0(T?e" T ™). (10)

Now we have
Theorem 2. Let ¢(u,v) = au® + 2buv + cv?, (a,b,c) = 1 and ry(n)
denote the number of the representations of n by form ¢(u,v). Then

2
/yz S +it)Pdt=2T ) Tl —\/—% > r2n)+

<T‘F ng@
+2 Z T“”mn A (Y (10 ™)+ o(@vVD) . ()

Proof. We have ¢(u,v) = ¢(—v,—u). Hence, ry(n) = ry(n), Zy(s) =

Zy(s).
Now from (10) we obtain uniformly for 7' < t < 2T

1 1 14400
BN S
IT(5 +it)[>" "2 2mi ) |D(5 4 1it)]?

1—io0

1
126 (5

2+z)\
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1 . 1 . 1 . 1 . 22 dz )
XF(§+z+zt)F(§+z—zt)Z<p(§+Z+Zt)Z¢(§+Z—lt)eT - o) =
ro(m myT -2
_2m;_ m’n, 1/2 (n) I(mnvt)+O(T )a (12)
where )
+i00
1 mm\ 2 dz
=55 [ (J5) o0t S
1—i00
) F( +z—|—zt)I‘( + z —it)
z,t) =:
|F( + it)|?

Therefore, by Stirling’s series for log I'(2),

14200

1 VD)~ . T g2 (L2

I(n,t) =5~ <t7rn> Td+0<T—ée flog? (17 n)>. (13)
1—1i00

Further, we have for ‘log %‘ > T3 log T

5
1+ 0(e 525 (50)), it n < /D
I(n,t) = _710 (tf) (14)
O(e & ), if n > @.
For logw—f
I(n,t) <<logT. (15)

(In detail, see ([6], lemma 1)).
Now, by (12)-(15) we infer for any T4, Tb with T' < Ty < Tp < 2T

/|Z (=+at)|?dt =2 Z /H (n®,t)dt+2 ) Wx

TL2<CT2D T mn<;T2D
1>
T
< [ tmnt) ()" de+ o((TVD) ), (16)

where
1, if n< &P
H(n,t) = ’ T’ 17
(n. 1) {O, ifn>—“ﬂD. (a7
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Therefore, from (17)

7 2(TQ — T1>, if m< %,
/H(T”Q’t)dt =9 2Tz —mm), if T <m< 2
Ty 0, if m > %

and for m # n

Ts
mNiT (it oa ™ -1 .
T[H(mn,t)(ﬂ) dt-(n ><1gn) H(mn,t)

+O((T\/5)1/2+6)

Ts

4
T

Now we can obtain the following correlation by taking T = Tgy, 1o =

2Ty, Ty = % and summing for 2 < 2" < T

T
L2 7'?0(”) 2m 2
0 nS@ nST\P

2 % "zo((;l?)l;zo(n) (%T (“Og %)‘1_‘_06((7\/5)1/2%)'

1/2
2
mn<T2D
us

m#n

O]

Remark 2. Since r,(n) << d(n), we can obtain instead the third sum
such estimate

TV Dlog*(TD).

To this end it suffices to use lemma 4 [3]. Bellow we will obtain more
precise result.

3. Proof of theorem 3

In order to prove theorem 3 we shall need several auxiliary assertions.

Lemma 1. Let the Dirichlet series

[e.e]

B(s) :ii“ U(s) :Zb%, s =0 +it,
n=1

n

I®»

n=1
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be absolutely convergent for Res > 1, and assumed that ®(s), U(s) can
be continued analytically over whole s- plane ( except at the finite number
singular points ), moreover the functional equation

AT(ms +v)®(s) = B T(m(1 — s) + v)¥(1 — s),

(A, B are constants) holds.
Then, for every T € C, argt = (g - %) signt, and for any fized strip
a < o < b uniformly for |t| > to, A, B, T, the approzimate functional

equation
P (mz +0)2(2)
{< )R

B'=*T(m(1 — 5) +v) 1 ,unT_m M M
T T (ms ) > buus ' F(1 5 )+ 0™ 4y

Zan AP F (s

un<ylogy
holds, where M > 0 is any fized constant,

XS
/ F'(m(w + 2z) + v)—dz,
z

(&)

1 1

FuwX)=—/————-—
(w, X) T'(mw + v) 2mi

A is such that in region Res > A there are no singularities of the inte-
grating.
Moreover, we have uniformly for all parameters:

Fw,X) =1+

|X|% <|X|>Rew+72Rev
+0 | exp | — —
( ( i) U

where

—i—m\/m—

X
Vil

0, else,

z =m™|7[ LA™, y = m™|7|BJt|"™.
This lemma is a special case of Lavrik’s theorem ([13]).

Corollary 1. Let ®(s) = > apn=®, W(s)= > byn—°, where
n=1

ro(n), if n=I(mod
ap = { Oso( ) ejzse ( a), b, = — Z Z eo(liu+ Lv).
’ ’ (u v)ez2, l1,lg (mod q),
P(u,v)=n ¢(l1,l2)=l(modq)

(18)
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Then for s = %4— it, |t| > to, m=1, v=0, A= B = @q, r = Altr71,
y = Bltr|, argT = args, |7| =1, we have

it 1 .
_ re(n) (7*\" (g —it) bn
‘13(8) - Z 1t + <D) I‘(% Ny Z %7it+

e lslg?vD 7 e lstv T
n_El(mT)dq) -7
+0(g~ " log(Mqlt])) + O((VDlt)) "), (19)

(O- constants can depends on only M, to ).
The proof of this statement carry out in lemma 5 [15].
Lemma 2. Letl,q € N, 1 <1 <gq. Then for (I,q) =1
1 1
Z eq(llu + ZQU) < q§ (U, v, q)id(Q)a
Uyl (modgq),
#(ly,l2)=l(mod q)

( here d(q) is the number of divisors of n ).

This statement is the well-known Weil’s estimate [16] of a trigono-
metric sum along a curve over a finite field.

Lemma 3. Let B denotes the set of points (u,v) for which p(u,v) =
l(modq) and 0 < @(u,v) < 2q. Then for 0 < e < 1/2, T > 1, in a
rectangle

—e<Res<l+4+e¢ 1<|Ims|<T,

= S 7

q l1,lp(mod q)
»(ly,l2)=l(mod q)

2(14€)(14e—0) %7%07%
1+42¢ _ 2 2 2
=0 <|t|\/D) e 2q T ,

( The O- constant does not depend on t, o, €, T).

0 0
I}
7 q

18) Y plu0)| =

(u,v)EB

This statement is a corollary of lemma 2 and Phragmen-Lindel6f’s
theorem.

Now we come to the proof of the theorem 3.
If we put Ty = max (tg, ¢°) with ¢y from corollary 1 of lemma 1, then

T

)Y plw )t =

(u,v)eB

= 3z

0 11,lp(mod q)
Res=1 w(ly,l2)=l(mod q)

5
q

QST O
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To T

:/+/:Il+12a

0 T

say.
By lemma 3 it is easily to see that

Il << q71+26672' (20)
In order calculate Iy we applay the corollary 1 from lemma 1, and then

obtain

T T
I <</\ > w(n)néitlzdt—k/! > bun 22 di4
T 2

q<n<U Ty n<V

+VDTq  log?(MTq) + (VDTp) M+, (21)

(here U =V = 1|s|V/D.)

The integrals on the right-hand side of (21) can be estimated by the
general scheme of the estimation of the mean values of the Dirichlet series
( see, for example, [14], Chapt. 6 and 7). Hence we get

a

s |8

b2
L<(T+No) Y 2+(T+W) > =
2qg<n<Uy n<Vp "

where Ny = . 1< TVD; Uy < TVD,Vy < ¢TV/D.

2q<n<cqTV D
an#0

Since ry(n) < d(n) we get ( using the notations (18)):

L < T\q/ﬁ((TDq)% +1log?(TMgq) + (VDTp) M+, (22)

The assertion of the theorem follows from (20) and (22) if we put
M=-1+1

4. Proof of Theorem 4

Consider a quadratic form ¢g(u, v) = u?+ Av?, A € N. Well-known ( see,
for example, [4]) that there is finite number of the negative discriminants
of the quadratic form for which a kind consists out of one class. Let A is
such number.
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Lemma 4. Let a kind of the quadratic form po(u,v) = u® 4+ Av?, A >0,
A =1,2(mod4), consists out of one class and let

Tsoo(n): Z L.

w,vEL,
o (uw)=n

Then irey(n) is a multiplicative function if A > 1, and iryi(n) is a
multiplicative function if A=1.

Proof. Let for some n € N we have n = u + AvZ, and let ¢;(u,v)
be a primitive quadratic form of discriminant —4A also represent of
n,pj(ui,v1) = n. We shall show that ¢; is equivalent to o (¢; ~ ¥o).
Indeed , we take into account the connection between the classes of divi-
sors of field Q(v/—A) and the classes of quadratic forms of a discriminant
—4A (in a case A =1,2(mod4)). Let a quadratic form ¢;(u, v) represent
of n(i.e. m = ¢;(u1,v1)), then in a appropriate class of divisors has a
divisor R; for which N(®;) = n ( norma of ;). The quadratic form
o belongs to main kind Gy. Hence the divisor Ry belongs to main kind
G of divisors, and then by theorem 6 (Ch. III§ 8) the divisor R; also
belongs to Gy. But the kind Gy consists only one class. Therefore Ry
and R belongs the same class and hence g ~ ¢;. Further, if A =1
we have ry,(n) = Y (—1)%, and hence 17y, (n) is a multiplicative

din,
dis odd

function.

Let A > 1. Then the field Q(v/—A) contains only two the roots of
1. We assume that the form ¢ represent each of numbers n; and ns,
(n1,m2) = 1. Let Ry,..., Ry, and Iq...Fyp, are all different divisors
each of which has a norma n; or ns respectively. Then the divisors ®;,
35 belongs to the kind Go. But the product ning also can be repre-
sented by ¢g. Hence R;3; € Go, i = 1,...,h1, j = 1,...,hy (here
hy = l%r% (n1), ha = £ 74(n2)). Since R;S; are all different divis.ors we
have 7 1y, (n1n2) > 574 (1n1)5 74 (n2). On the other hand, any integer
divisor C, N(C) = ning, can be represented in the form of a product of
coprime divisors ¥;, ;. Hence

1 1 1

3 Tgo(n1m2) < 3 Two(n1)§ Tgo(N2)-

Therefore
1 1
9 T'oo (ning) = B Tvo (nl)i T'po (n2).
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Remark 3. Let ¢o(u,v) = u? + Av? belongs to the one-class kind Gy,
and let p be prime number. For any k € N

2k+1), if (=2)=1;

p
oo (") =3 14 (“1)k, it “A) 1
2, if plA.

Lemma 5. Let @o(u,v) = u? + Av? belongs to the one-class kind Gy.
Then

Z rio (n) = cozlogz + 1z + O(x/?+)

n<x

with constants, which can depend from A.

Proof. For Res > 1 we have

1A 2, (n) 4 1 1 1
xX\p)=

xgo(s) = T 1+ =TI+ 2)an(s) = () [T+ =) g (),
x(p)=1 T sip P

where go(s), g1(s), g2(s) are the regular functions for Re s > 5. Now by
the Perron’s formula we easily get our assertion. O

Lemma 6. Letl,q € N, (I,q) = 1. Then in the conditions of Lemma we
have for any € > 0

T x%“
D rpp(n) = \/512&,(1,@ o) ( ) ,

1
n=l(modq), q g+
n<x
where Jy(I,A) = > 1.
l1,l2(modq),

l1+Alg=l(mod q)
Proof. For Res > 1

o0

T@O (n) _ i Z ( O 0 .
ns 2s e\ b b | 8) :
n=1, l1,la(mod q) q q
n=l(modq) 124+ AlZ=1(mod q)

Hence, for ¢ > 1, T > 1

Z T'po (n) =

n=l(modq),
n<z
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c+iT

1 1
= 2 ( Z ﬁZ%(

l1,la(mod q)
+AlZ=l(mod q)

+O<ﬂ£iu)+Mf)

After shifting the contour of integration to the line Re s = —e, applying
0

b b
q q

Zg@o (u,v)?° —d8+
(u,v)eB

QST O

il
. q
c—iT 12

;) and lemma 3 we obtain

the functional equation for Z,,(

1 1
Dre=pE Lt Y o

nzlirgz;d ), zlileé("??ﬂzz q)(u W)EZ2\(0,0)
—e+iT _
o SRy T TER Y
2mi I(s) VD s
l1,la(modq), T
l1+Alg=l(mod q)
+0 (=) £ 0@ + 0(T°g3 ) (23)
Tq(c—1) ‘
Now trivially estimating the integral and applying lemma 2 we get the

assertion of lemma if set T' = O

i<}
0o N \

Remark 4. A non-trivial estimate the integral in (23) give an estimate
of the error term as
1
<< .,L,§+€

Corollary 2. Uniformly for 1 < h < 267 there exist constant co(h)
such that .
> Tao () o (n+ ) = co(h)x + O(267),

n<x

where € is an arbitrarily small, positive constant. Besides, co(h) < d(h).

This statement can be proved similarly the proof of the analogies
assertion in [1], [8].

The proof of theorem 4 follows by Heath-Brown’s method [2]| from
theorem 2 with using lemma 5 and corollary from lemma 6.
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