© Journal "Algebra and Discrete Mathematics"

Color-detectors of hypergraphs

I. V. Protasov, O. I. Protasova

Communicated by V. M. Usenko

Dedicated to Yu.A. Drozd on the occasion of his 60th birthday

ABSTRACT. Let X be a set of cardinality k, \mathcal{F} be a family of subsets of X. We say that a cardinal $\lambda, \lambda < k$, is a color-detector of the hypergraph $H = (X, \mathcal{F})$ if $\operatorname{card} \chi(X) \leq \lambda$ for every coloring $\chi: X \to k$ such that $\operatorname{card} \chi(F) \leq \lambda$ for every $F \in \mathcal{F}$. We show that the color-detectors of H are tightly connected with the covering number $\operatorname{cov}(H) = \sup\{\alpha: \operatorname{any} \alpha \operatorname{points} \operatorname{of} X \operatorname{are} \operatorname{contained} \operatorname{in} \operatorname{some} F \in \mathcal{F}\}$. In some cases we determine all of the color-detectors of H and their asymptotic counterparts. We put also some open questions.

Let X be a set, \mathcal{F} be a family of subsets of X. The pair $H = (X, \mathcal{F})$ is called a *hypergraph* with the set of vertices X and the set of edges \mathcal{F} . We suppose that $\bigcup \mathcal{F} = X$.

Let λ be a cardinal such that $0 < \lambda < k = card\ X$. A coloring $\chi: X \to k$ is called λ -admissible if $card\ \chi(F) \le \lambda$ for every $F \in \mathcal{F}$. We put

 $\mathfrak{L}(H,\lambda) = \sup\{\operatorname{card} \chi(X) : \chi \text{ is a } \lambda - \operatorname{admissible coloring of } X\}.$

Clearly, $\mathfrak{w}(H,\lambda) \geq \lambda$. If $\mathfrak{w}(H,\lambda) = \lambda$, we say that λ is a detector of H. If λ is a detector of H, then there exists $F \in \mathcal{F}$ such that $\operatorname{card} F > \lambda$ (because, otherwise, a bijective coloring $\chi: X \to k$ is λ -admissible and $\chi(X) = k > \lambda$).

Proposition 1. A cardinal λ is a detector of H if and only if, for every surjective coloring $\chi: X \to \lambda^+$, were λ^+ is the cardinal-successor of λ , there exists $F \in \mathcal{F}$ such that card $\chi(F) = \lambda^+$.

2000 Mathematics Subject Classification: 05C15.

Key words and phrases: hypergraph, color-detector, covering number.

Proof. Let $\mathfrak{L}(H,\lambda) = \lambda$ and let $\chi: X \to \lambda^+$ be a surjective coloring. Then χ is not λ -admissible, so there exists $F \in \mathcal{F}$ such that $\operatorname{card} F = \lambda^+$.

Assume that $\alpha(H, \lambda) > \lambda$ and choose a λ -admissible coloring $\chi: X \to k$ such that card $\chi(X) > \lambda$. Identifying some colors, we get a surjective λ -admissible coloring $\chi': X \to \lambda^+$, so $\operatorname{card} \chi'(F) \leq \lambda$ for every $F \in \mathcal{F}$.

We define the covering number of H as

 $cov(H) = sup\{\gamma : for \ every \ Y \subseteq X \ with \ card \ Y \le \gamma$ there exists $F \in \mathcal{F}$ such that $Y \subseteq F\}$.

Proposition 2. If $cov(H) \ge \lambda^+$, then λ is a detector of H.

Proof. Let $\chi: X \to \lambda^+$ be a surjective coloring. Choose $Y \subseteq X$ such that $card\ Y = card\ \chi(Y) = \lambda^+$. Since $cov(H) \ge \lambda^+$, we can choose $F \in \mathcal{F}$ such that $Y \subseteq F$. Then $card\ \chi(F) = \lambda^+$. By Proposition 1, λ is a detector of H.

Proposition 3. If a natural number m is a detector of H, then $cov(H) \ge m$.

Proof. We fix an arbitrary m-subset $Y = \{y_0, ..., y_{m-1}\}$ of X and put $\chi(y_i) = i$ and $\chi(x) = m$ for every $x \in X \setminus Y$. Since m is a detector, by Proposition 1, there exists $F \in \mathcal{F}$ such that $card \chi(F) = m + 1$. It follows that $Y \subseteq F$, so $cov(H) \ge m$.

Proposition 4. If a natural number m is a detector of H and m' < m, then m' is a detector of H.

Proof. Assume, otherwise, and fix a surjective coloring $\chi: X \to m'+1$ such that $\operatorname{card} \chi(F) \leq m'$ for every $F \in \mathcal{F}$ (see Proposition 1). Since m'+1 < k, there exist two elements $a,b \in X$ such that $\chi(a) = \chi(b)$. We define the new coloring $\chi': X \to m'+2$ such that $\chi'(x) = \chi(x)$ for every $x \in X \setminus \{a\}$, and $\chi'(a) = m'+1$. Then $\operatorname{card} \chi'(F) \leq m'+1$ for every $F \in \mathcal{F}$, but $\operatorname{card} \chi'(X) = m'+2$, so m'+1 is not a detector of H. Repeating the arguments, we conclude that m is not a detector of H, whence a contradiction.

The following example shows that the finiteness assumption for m can not be omitted in Propositions 3 and 4.

Example 1. Let Y, Z be disjoint infinite sets, card Y = k, card $Z = \lambda$ and $\lambda < k$. We put $X = Y \cup Z$ and $F_z = Y \cup \{z\}$ for every $z \in Z$. Then we consider the hypergraph $H = (X, \mathcal{F})$, where $\mathcal{F} = \{F_z : z \in Z\}$.

Clearly, cov(H) = 1, λ is a detector of H, but every cardinal λ' such that $1 < \lambda' < \lambda$ is not a detector of H.

For every hypergraph $H=(X,\mathcal{F})$, we consider the graph $\Gamma(H)$ of intersections of H with the set of vertices X and the set of edges defined by the rule: $(x_1,x_2) \in X \times X$ is an edge if and only if $x_1 \neq x_2$ and there exist $F_1, F_2 \in \mathcal{F}$ such that $x_1 \in F_1, x_2 \in F_2$ and $F_1 \cap F_2 \neq \emptyset$.

Proposition 5. For every hypergraph $H = (X, \mathcal{F})$, 1 is a detector of H if and only if the graph $\Gamma(H)$ is connected.

Proof. Assume that $\Gamma(H)$ is connected and take an arbitrary coloring $\chi: X \to k$ such that $\operatorname{card} \chi(F) = 1$ for every $F \in \mathcal{F}$. Given any $x, y \in X$, we choose a path $x_1, x_2, ..., x_n$ in $\Gamma(H)$ such that $x = x_1, y = x_n$. Then $\chi(x_1) = \chi(x_2) = ... = \chi(x_n)$, so $\chi(x) = \chi(y)$.

If $\Gamma(H)$ is not connected, we take a connected component Y of $\Gamma(H)$ and, for every $x \in X$, we put

$$\chi(x) = \begin{cases} 0, & if \ x \in Y; \\ 1, & if \ x \in X \setminus Y; \end{cases}$$

Then the coloring χ is 1-admissible, but $card \chi(X) > 1$.

Proposition 6. If $H = (X, \mathcal{F})$ is a graph and card X > 1, then the only possible detector of H is 1, and 1 is a detector of H if and only if H is connected.

Proof. We fix a bijection $\chi: X \to k$. Since $card \chi(F) = 2$ for every $F \in \mathcal{F}, \chi$ is λ -admissible for every $\lambda \geq 2$. It follows that if $1 < \lambda < k$, then λ is not a detector of H. On the other hand, by Proposition 5, 1 is a detector of H if and only if $\Gamma(H)$ is connected. It is easy to see that $\Gamma(H)$ is connected if and only if H is connected.

Let $\Gamma = (V, E)$ be a connected graph with the set of vertices V and the set of edges E. For any $u, v \in V$, we denote by d(u, v) the length of a shortest path between u and v. Given any $u \in V$, $r \in \mathbb{N}$, we put $B_d(u, r) = \{v \in V : d(u, v) \leq r\}$. Let \mathcal{B} be the family of all unit balls in Γ . Call the hypergraph $H = (V, \mathcal{B})$ to be the ball hypergraph of Γ . By Proposition 5, 1 is a detector of H.

Problem 1. Given a natural number n > 1, characterize the class τ_n of connected graphs such that $\Gamma \in \tau_n$ if and only if n is a detector of the ball hypergraph of Γ .

For every natural number n > 1, we denote by C_n the class of all connected graphs such that $\Gamma \in C_n$ if and only if $V(\Gamma) \ge n+1$ and any $\le n$ vertices of Γ are contained in some unit ball in Γ . Note that C_2 is the class of graphs of diameter ≤ 2 , where $diam \Gamma = \sup\{d(u,v) : u,v \in V\}$. By Propositions 2 and 3, we have

$$C_2 \supseteq \tau_2 \supseteq C_3 \supseteq \tau_3 \supseteq \dots$$

The next two examples show that $C_2 \supset \tau_2$ and $C_{2n-1} \supset \tau_{2n-1}$ for every $n \geq 2$.

Example 2. We consider a pentagone Γ with the set of vertices $\{a_1, a_2, a_3, a_4, a_5\}$ and the set of edges $\{(a_1, a_2), (a_2, a_3), (a_3, a_4), (a_4, a_5), (a_5, a_1)\}$. Since diam $\Gamma = 2$, we have $\Gamma \in \mathcal{C}_2$. On the other hand, a coloring χ , defined by the rule

$$\chi(a_1) = 1, \chi(a_2) = 2, \chi(a_3) = 2, \chi(a_4) = 3, \chi(a_5) = 2,$$

is 2-admissible, so $\Gamma \notin \tau_2$.

Example 3. Let n be a natural number > 1, $A = \{a_1, ..., a_n\}$, $B = \{b_1, ..., b_n\}$ be disjoint sets. We consider the graph Γ with the set of vertices $V = A \bigcup B$ and the set of edges

$$E = (A \times B) \setminus \{(a_i, b_i) : i \in \{1, ..., n\}\}.$$

Let V' be a subset of V such that card $V' \leq 2n - 1$. Then there exists $i \in \{1, ..., n\}$ such that either $a_i \notin V'$ or $b_i \notin V'$. If $a_i \notin V'$, then $V' \subseteq B(b_i, 1)$. If $b_i \notin V'$, then $V' \subseteq B(a_i, 1)$. Hence, $\Gamma \in \mathcal{C}_{2n-1}$. On the other hand, a coloring χ , defined by the rule

$$\chi(a_1) = 1, ..., \chi(a_n) = n, \chi(b_1) = n + 1, ..., \chi(b_n) = 2n,$$

is (2n-1)-admissible, so $\Gamma \notin \tau_{2n-1}$.

Question 1. Is $C_{2n} \supset \tau_{2n}$ for every $n \geq 2$?

Question 2. Is $\tau_n \supset C_{n+1}$ for every $n \geq 2$?

Proposition 7. Let G be a group with the unit $e, Y \subseteq G$, $e \in Y$. Then 1 is a detector of the hypergraph $G_Y = (G, \{gY : g \in G\})$ if and only if $G = \langle Y \rangle$, where $\langle Y \rangle$ is the smallest subgroup of G containing Y.

Proof. Let Γ be the intersection graph of G_Y . In view of Proposition 5, it suffices to show that Γ is connected if and only if $G = \langle Y \rangle$.

Assume that Γ is connected and let g be an arbitrary element of G. Then there exist the elements $x_1,...,x_n$ of G such that $x_1=e,x_n=g$ and $x_iY \cap x_{i+1}Y \neq \emptyset$ for every $i \in \{1,...,n-1\}$. It follows that $x_1 \in YY^{-1}, x_2 \in YY^{-1}YY^{-1},...,x_n \in (YY^{-1})^n$, so $g \in Y > 0$.

Assume that G=< Y> and let g be an arbitrary element of G. It suffices to show that the vertices e and g of Γ are connected. Let $g=y_1^{i_1}y_2^{i_2}...y_n^{i_n}$, where $i_1,...,i_n\in\{\pm 1\}$. We put $x_0=e,x_1=y_1^{i_1},x_{k+1}=x_ky_{k+1}^{i_{k+1}},k\in\{1,...,n-1\}$. Since either $x_{k+1}\in x_kY$ or $x_k\in x_{k+1}Y$, then x_k,x_{k+1} are incident in Γ .

Problem 2. Let G be a group, $Y \subseteq G, e \in Y$ and let n be a natural number. Find necessary and sufficient conditions on Y under which n is a detector of G_Y ?

Proposition 8. Let V be a vector space over some field F, γ be a cardinal such that $1 \leq \gamma < \dim V$, $A(V, \gamma)$ be the family of all γ -dimensional affine subspaces of V. Let $H(V, \gamma)$ be the hypergraph $(V, A(V, \gamma))$ and let λ be a cardinal such that $\lambda \leq \dim V$ if $\dim V$ is finite and $\lambda < \dim V$ if V is infinite. If γ is finite, then λ is a detector of $H(V, \gamma)$ if and only if $\lambda \leq \gamma$. If γ is infinite, then λ is a detector of $H(V, \gamma)$ if and only if $\lambda < \gamma$.

Proof. If γ is finite, then $cov(H(V,\gamma)) = \gamma + 1$. If $\lambda \leq \gamma$, by Proposition 2, λ is a detector of $H(V,\gamma)$. If γ is infinite, then $cov(H(V,\gamma)) = \gamma$. If $\lambda < \gamma$, by Proposition 2, λ is a detector of $H(V,\gamma)$.

Let $\dim V = \delta$. We fix some basis $\{v_{\alpha} : \alpha < \delta\}$ of V and put $\chi(v_{\alpha}) = \alpha$ and $\chi(v) = \delta$ for every $v \in V \setminus \{v_{\alpha} : \alpha < \delta\}$. If γ is finite, then $|card \chi(S)| \leq \gamma + 1$ for every $S \in A(V, \gamma)$. Hence, if $\lambda > \gamma$, then λ is not a detector of $H(V, \gamma)$. If γ is infinite, then $|card \chi(S)| \leq \gamma$ for every $S \in A(V, \gamma)$. Hence, if $\lambda \geq \gamma$, then λ is not a detector of $H(V, \gamma)$. \square

Problem 3. Detect $\alpha(H(V,\gamma),\lambda)$ for every vector space V and any cardinals γ,λ .

For example, if n, m are natural numbers, then

$$\mathfrak{B}(H(\mathbb{R}^n, 1), m) = \begin{cases} 1, & \text{if } m = 1; \\ n + 1, & \text{if } m = 2; \\ 2^{\aleph_0}, & \text{if } m \ge 3. \end{cases}$$

A ball structure is a triple $\mathcal{B} = (X, P, B)$, where X, P are non-empty sets and, for all $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$, $\alpha \in P$. The set X is called the support of \mathcal{B}, P is called the set of radiuses.

Given any $x \in X$, $A \subseteq X$, $\alpha \in P$, we put

$$B^*(x,\alpha) = \{ y \in X : x \in B(y,\alpha) \}, \quad B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

A ball structure \mathcal{B} is called a ballean if

• for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

$$B(x, \alpha) \subseteq B^*(x, \alpha'), \quad B^*(x, \beta) \subseteq B(x, \beta');$$

• for any $\alpha, \beta \in P$ there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma).$$

• for any $x, y \in X$ there exists $\alpha \in P$ such that $y \in B(x, \alpha)$.

We note that the balleans arouse independently in asymptotic topology [2] and in combinatorics [3].

Let $\mathcal{B} = (X, P, B)$ be a ballean. A subset $A \subseteq X$ is called bounded if there exist $x \in X$, $\alpha \in P$ such that $A \subseteq B(x, \alpha)$.

Let Y be an arbitrary set, $f: X \to Y$. We define the asymptotic cardinality of f(X) as

ascard
$$f(X) = min\{card\ f(X \setminus V) : V\ is\ a\ bounded\ subset\ of\ X\}.$$

If Y = X and f is the indentity mapping, we write ascard X instead of ascard $id\ X$.

Let $H = (X, \mathcal{F})$ be a hypergraph such that every subset $F \in \mathcal{F}$ is bounded in \mathcal{B} , λ be a cardinal, $\lambda < ascard X$. A coloring $\chi : X \to ascard X$ is called asymptotically λ -admissible, if $ascard \chi(F) \leq \lambda$ for every $F \in \mathcal{F}$. We put

and say that λ is an asymptotic detector of H if $\alpha_{as}(H,\lambda) = \lambda$.

We define a graph $A\Gamma(H)$ of asymptotic intersections of hypergraph $H=(X,\mathcal{F})$ as a graph with the set of vertices \mathcal{F} and the set of edges $\{(F,F'):F,F'\in\mathcal{F},F\neq F' \ and \ F\bigcap F' \ is \ unbounded\}.$

Proposition 9. Let $\mathcal{B} = (X, P, B)$ be a ballean such that X is a union of some family $\{B_n : n \in \omega\}$ of bounded subsets. Let $\mathcal{F} = \{F_n : n \in \omega\}$ be a family of unbounded subset of X. Then 1 is an asymptotic detector of $H = (X, \mathcal{F})$ if and only if there exists a finite subset $\mathcal{F}' \subset \mathcal{F}$ such that $G \setminus \bigcup \mathcal{F}'$ is bounded and $A\Gamma(H)$ is connected.

Proof. Assume that 1 is an asymptotic detector of H, but $X \setminus \bigcup \mathcal{F}'$ is unbounded for every finite subset $\mathcal{F}' \subset \mathcal{F}$. Then we can choose an injective sequence $(x_n)_{n \in \omega}$ in X such that

$$x_n \in F_n \setminus (B_0 \bigcup ... \bigcup B_n \bigcup F_0 \bigcup ... \bigcup F_{n-1}).$$

We put $\chi(x_n) = 1$ for every $n \in \omega$, and $\chi(x) = 0$ if $x \neq \{x_n : n \in \omega\}$. Clearly, the coloring χ is asymptotically 1-admissible, but $\operatorname{ascard} \chi(X) = 2$. Hence, $X = F_0 \bigcup ... \bigcup F_n \bigcup V$ for some $n \in \omega$ and some bounded subset V. Assume that $A\Gamma(H)$ is not connected and let C be a connected component of $A\Gamma(H)$. Put $X_0 = V \bigcup \{F_i : F_i \in C\}, X_1 = X \setminus X_0$, and let χ be the coloring of X, defined by the partition $X = X_0 \bigcup X_1$. If $F \in \mathcal{F}$, then either $F \cap X_0$ is bounded or $F \cap X_1$ is bounded, so χ is 1-asymptotically admissible, but $\operatorname{ascard} \chi(X) = 2$.

Assume that $X \setminus \{F_0, ..., F_n\}$ is bounded for some $n \in \omega$ and $A\Gamma(H)$ is connected, but 1 is not an asymptotical detector of H. Then there exist an asymptotically 1-admissible coloring $\chi: X \to \{0, 1\}$ and $i, j \in \{0, ..., n\}, i \neq j$ such that $\chi|_{F_i \setminus V} \equiv 0, \chi|_{F_j \setminus V} \equiv 1$ for some bounded subset V of G. Then F_i, F_j are not distinct connected components of $A\Gamma(H)$, so $A\Gamma(H)$ is not connected.

Let $\mathcal{B}=(X,P,B)$ be a ballean, $f:X\to\mathbb{R},Y\subseteq X$. We say that $r\in\mathbb{R}$ is a limit of f(Y) with respect to \mathcal{B} if r is the limit of the filter with the base $\{f(Y\setminus V):V \text{ is bounded subset of }X\}$. The next definition is inspired by [2]. A hypergraph $H=(X,\mathcal{F})$ is called *limit-detecting* if, given $f:X\to\mathbb{R}, f(X)$ has a limit provided that every $f(F), F\in\mathcal{F}$ has a limit.

Proposition 10. Let $\mathcal{B} = (X, P, B)$ be a ballean, \mathcal{F} be a family of unbounded subsets of X. If $H = (X, \mathcal{F})$ is limit-detecting, then 1 is an asymptotic detector of H.

Proof. Assume that H is limit detecting, but 1 is not an asymptotic detector of H. Then there exist an asymptotically 1-admissible coloring $\chi: X \to ascard\ X$, the ordinals $\alpha, \beta, \alpha < \beta < ascard\ X$ and $F, F' \in \mathcal{F}$ such that

$$\chi|_{F\backslash V} = \alpha, \chi|_{F'\backslash V} = \beta$$

for some bounded subset V of X. We consider a mapping $f: X \to \{0, 1\}$, defined by the rule f(x) = 0 if $x \in \chi^{-1}(\alpha)$, f(x) = 1 if $x \notin \chi^{-1}(\alpha)$. Then f(Y) has a limit for every $Y \in \mathcal{F}$, but f(X) has not a limit.

Proposition 11. Let $\mathcal{B} = (X, P, B)$ be a ballean, \mathcal{F} be a family of unbounded subsets of X such that $X \setminus \bigcup \mathcal{F}'$ is bounded for some finite subset $\mathcal{F}' \subseteq \mathcal{F}$. If 1 is an asymptotic detector of H, then H is limit-detecting.

Proof. Let $\mathcal{F}' = \{F_0, ..., F_n\}$. Assume that 1 is a detector of H, but H is not limit-detecting. Then there exists a mapping $f: X \to \mathbb{R}$ such that every subset $f(F_i)$ has some limit r_i with respect to \mathcal{B} , but f(X) has no limit. We may suppose that $r_0, ..., r_m$ are all distinct numbers from $\{r_0, ..., r_n\}$. Clearly, m > 1. Choose $\varepsilon > 0$ such that

$$(r_0 - \varepsilon, r_1 + \varepsilon) \bigcap (r_i - \varepsilon, r_i + \varepsilon) = \emptyset$$

for every $i \in \{1,...,n\}$. Put $\chi(x) = 0$ if $f(x) \in (r_0 - \varepsilon, r_0 + \varepsilon)$, and $\chi(x) = 1$ otherwise. Clearly, χ is an asymptotically 1-admissible, but ascard $\chi(X) = m > 1$, a contradiction.

Question 3. Let $\mathcal{B} = (X, P, B)$ be a ballean, \mathcal{F} be a family of unbounded subsets of X, $H = (X, \mathcal{F})$. Let 1 is an asymptotic detector of H. Is H limit detecting?

References

- [1] T.Banakh, S.Pidkuyko. A game characterization of limit-detecting sequences in locally compact G spaces, Matem. Stud. (to appear)
- [2] A.Dranishnikov. Asymptotic topology, Russian Math. Survey, 55 (2000), 71-116
- [3] I.Protasov, T.Banakh, Ball Structures and Colorings of Groups and Graphs, Mat. Stud. Monogr. Ser., V.11, 2003.

CONTACT INFORMATION

I. V. Protasov,O. I. Protasova

Department of Cybernetics, Kyiv University, Volodimirska 64, Kyiv GSP, Ukraine *E-Mail:* protasov@unicyb.kiev.ua

Received by the editors: 18.10.2004 and in final form 24.03.2005.