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Abstract. We introduce n-acyclic cofibrations and n-acyclic
fibrations in a stratified model category and show that they have
the key properties of (acyclic) cofibrations and (acyclic) fibrations
in a model category. We analyse their action on sets of homotopy
classes and give an application to homotopy colimits and limits.

Introduction

The notion of a model category was introduced by Quillen in [4] and [5]
as a way to axiomatize homotopy theory. A model category is an ordi-
nary category with three distinguished classes of maps called weak equiv-
alences, fibrations and cofibrations satisfying certain five axioms which
are patterned on the properties of maps with these names in the catogory
of topological spaces. It turns out that many algebraic and combinato-
rial categories also have this structure. Moreover, each model category
has a homotopy category, and model category methods can sometimes be
used to show that certain geometric categories have homotopy categories
equivalent to homotopy categories of algebraic or combinatorial objects.

A stratified model category [6] is a special type of model category.
This notion starts with the observation that in many model categories
the weak equivalences are stratified, in the sense that a map is a weak
equivalence if and only if it is an n-equivalence for each nonnegative inte-
ger n. This allows one to show that liftings in the fundamental homotopy
lifting-extension problem
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A −−−−→ X




y





y

B −−−−→ Y

exist (for a stratified model category) in inifinitely many situations other
than those specified by the model category axioms.

This paper is a continuation of paper [6]. In Section 2 we introduce
the notions of n-acyclic cofibrations and n-acyclic fibrations (Definition
5), which are motivated by Theorems 4.6 and 4.8 in [6]. We show that
the main results characterizing (acyclic) cofibrations and (acyclic) fibra-
tions in [4] also hold for n-acyclic cofibrations and n-acyclic fibrations
(Theorems 3 and 4 below). This requires (Section 1) adding one further
condition in the notion of stratified weak equivalence (namely that n-
epimorphisms and n-monomorphisms are closed under retracts) and we
show that in all the cases considered this requirement is satisfied. In
Section 3 we study the effect of n-acyclic cofibrations and n-acyclic fi-
brations on sets of homotopy classes. Finally, in Section 4 we give an
application of our results to homotopy pushouts and pullbacks. More
specifically, we show that certain results about topological spaces which
are not hard to show using the cellular approximation theorem in fact
hold for an arbitrary stratified model category.

1. Stratified weak equivalences

First, we add one further condition in the notion of a stratified weak
equivalence. Then we show that in all the cases considered and most
probably in those that may come in the future this requirement is satis-
fied.

Recall the original definitions.

Definition 1. A class of morphisms W in C is called a class of weak

equivalences if it has the following properties:

W1 W contains all isomorphisms and is closed under sequential colimits
and retracts.

W2 If f, g are morphisms in C such that gf is defined, and it two of
f, g, gf are in W, then so is the third.

Definition 2. A class of weak equivalences W is called stratified if for
each nonnegative integer n there exist a class Wn of weak equivalences
(the n-equivalences), and classes of morhisms En (the n-epimorphisms)
and Mn (the n-monomorphisms) such that
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SW1 f ∈ W if and only if f ∈ Wn for every nonnegative integer n.

SW2 f ∈ Wn if and only if f ∈ En and f ∈Mn.

SW3 If h = gf then h ∈Mn implies f ∈Mn and h ∈ En implies g ∈ En.

SW4 The classes En and Mn are closed under composition, sequential
colimits and arbitrary sums.

From now on, we also assume that En and Mn are closed under re-
tracts, i.e. we replace SW4 by

SW4’ The classes En and Mn are closed under composition, retracts,
sequential colimits and arbitrary sums.

Example 1. We now show that the stratified weak equivalences of the
category of topological spaces satisfy the extra requirement in SW4’.
We check that a retract of an n-monomorphism is an n-monomorphism,
where n is a fixed nonnegative integer. The proof for the n-epimorphisms
is similar. Suppose a morphims f : X → Y is a retract of a morphism
g : Z →W in Top. Hence we have a commutative diagram

X
k

−−−−→ Z
l

−−−−→ X

f





y

g





y

f





y

Y
u

−−−−→ W
v

−−−−→ Y

in which the composites of the horizonal rows are identity maps. Sup-
pose that g is an n-monomorphism. We need to show that f is an n-
monomorphism. Choose a basepoint x0 ∈ X and let y0 = f(x0). Let
z0 = k(x0) and w0 = u(y0). We apply the n-th homotopy group (set if
n = 0) functor to obtain the diagram

πn(X, x0)
k∗−−−−→ πn(Z, z0)

l∗−−−−→ πn(X, x0)

f∗





y

g∗





y

f∗





y

πn(Y, y0)
u∗−−−−→ πn(W, w0)

v∗−−−−→ πn(Y, y0)

The diagram obtained shows that f∗ is a retract of g∗ in the category
of groups (sets if n = 0). Since the composite g∗k∗ is a monomorphism,
it follows that f∗ is also a monomorphism (by the commutativity of the
first square). So f is an n-monomorphism.

Of course, a practically identical argument works for the category S

of simplicial sets.
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The next result shows that the general theorem (5.5 in [6]) about
putting a stratified model category structure on a category D related to
the category S by a family of adjoint functors also leads to stratified
weak equivalences satisfying SW4’ above. The proof is very similar to
the reasoning in the example above and therefore omitted.

Proposition 1. Let D be a category, Λ an arbitrary index set, and

Ψλ : S ⇆ D : Φλ, λ ∈ Λ

a family of adjoint functors. Call a map g : X → Y in D an n-equivalence
(resp. n-epimorphism, n-monomorphism) if and only if for all λ ∈ Λ the
map Φλ(g) : ΦλX → ΦλY is an n-equivalence (resp. n-epimorphism, n-
monomorpism) in S. This defines a family of stratified weak equivalences
in D which satisfies SW4’.

2. The n-acyclic cofibrations and n-acyclic fibrations

Following [2], we recall D.M. Kan’s notion of a cofibrantly generated
model category.

Definition 3. A cofibrantly generated model category is a model category
C with arbitrary colimits such that

• There exists a set I of generating cofibrations that permits the
small object argument with respect to I and such that a map is an
acyclic fibration if and only if it has the right lifting property with
respect to every generating cofibration,

• There exists a set J of generating acyclic cofibrations that per-
mits the small object argument with respect to J and such that a
map is a fibration if and only if it has the right lifting property with
respect to every generating acyclic cofibration.

We now recall from [6] the definition of a stratified model category.

Definition 4. A stratified model category C is a cofibrantly gener-
ated model category with the following extra structure:

• A class W of stratified weak equivalences.

• A set I = ∪∞n=0In of generating cofibrations such that each f ∈ In

is an m-equivalence for m < n− 1 and an (n− 1)-epimorphism.
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• A set J of generating acyclic cofibrations. (Hence, in particular,
every element in the closure of J is a weak equivalence).

These are required to satisfy the following axioms:

CC1 If p is a fibration and n ≥ 0, then p has the RLP with respect to In

if and only if p ∈ En and p ∈Mn−1.

CC2 For all n ≥ −1, every map in the closure of J ∪ ∪∞m=n+1Im is an
m-equivalence for m < n and an n-epimorphism.

CC3 The set I ∪ J permits the small object argument.

The fact that simplicial sets have this structure is contained in [3].

From now on, C denotes an arbitrary stratified model category.

Next, recall that N is the ordered set defined as follows:

N = {n ∈ Z | n ≥ −1} ∪ {∞},

where −1 ≤ 0 ≤ 1 ≤ · · · ≤ ∞.

Now we state the main definition.

Definition 5. Let n ∈ N. A map f : X → Y in C is an n-acyclic

cofibration if and only if f is a cofibration, an m-equivalence for m < n

and an n-epimorphism. A map f : X → Y is and n-acyclic fibration

if and only if f is a fibration, an m-equivalence for m > n and an n-
monomorphism.

Hence a (-1)-acyclic cofibration is just an ordinary cofibration and an
∞-cofibration is an acyclic cofibration in the usual (i.e. Quillen) sense.
Similarly, a (-1)-acyclic fibration is an acyclic fibration and an∞-fibration
is an ordinary fibration.

Using these notions we can rewrite Theorems 4.6 and 4.8 in [6] in the
following simpler form. One cannot miss the resemblence to the last two
axioms of a model category.

Theorem 1. For every n ∈ N, every map f : X → Y can be factored in
a canonical way as

X
i
→ Z

p
→ Y

where i is an n-acyclic cofibration and p is an n-acyclic fibration.
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Theorem 2. Let n ∈ N. If i is an n-acyclic cofibration and p is an
n-acyclic fibration, then a lift exists in every commutative diagram of the
form

A
f

−−−−→ X




y
i





y

p

B
g

−−−−→ Y.

Clearly, if a map is an n-acyclic cofibration, then it is a k-acyclic
cofibration for every k ≤ n. Similarly, if a map is an n-acyclic fibration,
then it is a k-acyclic fibration for every k ≥ n. This observation leads to
the following corollary.

Corollary 1. A lift exists in every commutative diagram of the form

A
f

−−−−→ X




y
i





y

p

B
g

−−−−→ Y

where i is an n1-acyclic cofibration, p an n2-acyclic fibration and n2 ≤ n1.

Proof. The corollary follows from the fact that under the above assump-
tions i is an n-acyclic cofibration and p is an n-acyclic fibration for every
n such that n2 ≤ n ≤ n1.

Theorem 3. Let n ∈ N.

• The n-acyclic cofibrations are the maps which have the LLP (left
lifting property) with respect to the n-acyclic fibrations.

• The n-acyclic fibrations in C are the maps which have the RLP with
respect to the n-acyclic cofibrations.

Proof. We prove the first statement, the proof of the second one is dual.
Theorem 2 above states that the n-acyclic cofibrations have the stated
property. Conversely, suppose that a map f : K → L has the LLP with
respect to all n-acyclic fibrations. Using Theorem 1 above factor f as a
composite

K
i
→ L′

p
→ L

where i is an n-acyclic cofibration and p is an n-acyclic fibration.

We now have a comutitative diagram
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K
i

−−−−→ L′

f





y

p





y

L −−−−→
id

L

By Theorem 2 a lifting g : L → L′ exists in the diagram above. The
following diagram shows that f is a retract of i:

K
id

−−−−→ K
id

−−−−→ K

f





y
i





y





y

f

L −−−−→
g

L′ −−−−→
p

L

Since in any model category a retract of a cofibration is a cofibration, by
SW4’ we conclude that f is an n-acyclic cofibration.

Taking n equal -1 and∞ in the first statement we obtain Proposition
3.13(1) and 3.13(2), respectively, in [1]. Similarly the second statement
corresponds to Proposition 3.13(3) and 3.13(4). These results for n = −1
and n =∞ were first established by Quillen in [4].

Corollary 2. Suppose that C and D are stratified model categories and

F : C ⇆ D : G

is a pair of adjoint functors.

• If F preserves n-acyclic cofibrations then G preserves n-acyclic fi-
brations.

• If G preserves n-acyclic fibrations then F preserves n-acyclic cofi-
brations.

Proof. We only prove the first statement since the other is dual. Let
p : X → Y be an n-acyclic fibration. We want to show that G(p) is also
an n-acyclic fibration. By Theorem 3 it is enough to check that G(p)
has the RLP with respect to all n-acyclic cofibrations. Hence we need to
show that a lifting exist in the following diagram

A
f

−−−−→ G(X)




y
i





y

G(p)

B
g

−−−−→ G(Y )
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where i : A → B is an arbitrary n-acyclic cofibration. By adjointness of
F and G, the above diagrams are in bicorrespondence with the diagrams

F (A)
f♭

−−−−→ X




y

F (i)





y

p

F (B)
g♭

−−−−→ Y

Since we assume that the functor F preserves n-acyclic cofibrations, by
Theorem 2 a lifting exists in the diagram above. By the properties of
adjoints a lift exists in the original diagram, and hence we conclude that
G(p) is an n-acyclic fibration.

In any model category the (acyclic) cofibrations are stable under
cobase change, and the (acyclic) fibrations are stable under base change
(see for example Proposition 3.14 in [1]). It tourns out that these results
also hold for n-acyclic cofibrations and n-acyclic fibrations.

Theorem 4. Let n ∈ N.

• The class of n-acyclic cofibrations is stable under cobase change.

• The class of n-acyclic fibrations is stable under base change.

Proof. For the same reasons as before, we only prove the first statement.
Assume that i : K → L is an n-acyclic cofibration. Suppose that j is
obtained from i by cobase change, i.e. we have the following pushout
diagram

K
f

−−−−→ K ′

i





y

j





y

L
g

−−−−→ L′

By the earlier theorem, to show that j is an n-acyclic cofibration it
is enough to verify that it has the LLP with respect to the n-acyclic
fibrations. So let p : X → Y be an n-acyclic fibration. We need to verify
that a lifting exists in the diagram

K ′
f ′

−−−−→ X

j





y

p





y

L′
g′

−−−−→ Y

We can combine the above diagram with the earlier one to obtain
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K
f

−−−−→ K ′
f ′

−−−−→ X

i





y

j





y

p





y

L
g

−−−−→ L′
g′

−−−−→ Y

Since i is an n-acyclic cofibration and p is an n-acyclic fibration, by
Theorem 2 there is a lifting h : L → X in the large rectangle. By
the universal property of pushouts the maps h and f ′ induce a map
k : L′ → X. This is the desired lifting. We have kj = f ′ by construction.
The maps g′ and pk are equal by the universal property of L′ (since
g′g = pkg and g′j = pkj).

3. Maps induced on sets of homotopy classes by n-acyclic

cofibrations and n-acyclic fibrations

First, we briefly recall the notion of left homotopy from [1].
A cylinder object for A is an object A ∧ I of C together with a

diagram (the symbol ∼ means that the second map is a weak equivalence)

A
∐

A
i
→ A ∧ I

∼

→ A

which factors the folding map idA + idA : A
∐

A→ A. It is called a good

cylinder object if the first map is a cofibration. We let

i0 = i · in0 : A→ A ∧ I and i1 = i · in1 : A→ A ∧ I.

Two maps f, g : A → X are said to be left homotopic if there exists
a cylinder object A ∧ I for A and a map H : A ∧ I → X (called a left

homotopy) such that H(i0 + i1) = f + g.

Proposition 2. Let φ be an initial object in C and n ∈ N. If φ → A

is an n-acyclic cofibration and p : Y → X is an n-acyclic fibration, then
composition with p induces a bijection

p∗ : πl(A, Y )→ πl(A, X), [f ] 7→ [pf ].

Proof. First, we check that p∗ is well definied. Suppose f, g : A → Y

and f
l
∼ g. Hence, we have a cylinder object A ∧ I for A and a map

H : A ∧ I → Y such that H(i0 + i1) = f + g : A
∐

A → Y . It is easy
to check that pH is a left homotopy from pf to pg (it is useful to draw a
diagram).

Next, we check that p∗ is onto. Choose an f ∈ πl(A, X). Consider
the commutative diagram
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φ −−−−→ Y




y

p





y

A −−−−→
f

X

Since the left vertical arrow is an n-acyclic cofibration and the right verti-
cal arrow is an n-acyclic fibration, by Theorem 2 we have a lift g : A→ Y ,
i.e. a map such that pg = f . Hence we have p∗([g]) = [f ], and we con-
clude that p∗ is onto.

Finally, we check that p∗ is one-to-one. Suppose that f, g : A → Y ,

and pf
l
∼ pg : A → X. By Lemma 3.6 in [1] we can choose a good left

homotopy H from pf to pg. Hence we have a commutative diagram

A
∐

A
f+g
−−−−→ Y

i





y

p





y

A ∧ I −−−−→
H

X

A lift, call it K, in the above diagram would be the desired left
homotopy from f to g. To apply Theorem 2 we need to check that
i : A

∐

A→ A ∧ I is an n-acyclic cofibration.

First, we check that in0 : A → A
∐

A is an n-acyclic cofibration.
Because in0 is defined by the pushout diagram

φ −−−−→ A




y

in0





y

A −−−−→
in1

A
∐

A

the fact that in0 is an n-acyclic cofibration follows from Theorem 4.

Now consider the following compostion of maps, which is equal to the
identity map on A

A
in0→ A

∐

A
i
→ A ∧ I

∼

→ A

Since the last map is a weak equivalence, and the composite of the
three maps (being the identity map on A) is a weak equivalence, it follows
that the composite of the first two maps is a weak equivalence. By the two
out of three property for m-equivalences (where m < n), we conclude that
the map i and an m-equivalence for m < n. Moreover, since the composite
of the first two maps is a weak equivalence, by SW1 and SW2 it is an
n-epimorphism. Hence, by SW3, the map i is an n-epimorphism. We
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conclude that the map i is an n-acyclic cofibration. Hence the desired lift
K giving a left homotopy from f to g exists. This finishes the proof.

By duality between n-acyclic fibrations and n-acyclic cofibrations the
above result implies the following.

Proposition 3. Let ∗ be a terminal object in C and n ∈ N. If X → ∗
is an n-acyclic fibration and i : A → B is an n-acyclic cofibration, then
composition with i induces a bijection

i∗ : πr(B, X)→ πr(A, X), [f ] 7→ [fi].

4. An application to homotopy pushouts and pullbacks

Homotopy colimits and limits are now a basic tool in algebraic topol-
ogy. We give information on some spacial, but very common, examples,
namely homotopy pushouts and pullbacks.

It is well known that pushouts and pullbacks do not exist in the
homotopy category. To give a simple example, consider the diagram

D2 id
←−−−− S1 id

−−−−→ D2





y





y
id





y

∗ ←−−−− S1 −−−−→ ∗

where D2 is the 2-dimensional disk and S1 is the circle. The pushout of
the top row is S2, while the pushout of the bottom row is ∗, the one point
space. Although the vertical arrows are weak homotopy equivalences,
the map induced on the pushouts is not a weak homotopy equivalence.
Experience shows that the pushout of the top row is “the correct one".
Section 10 of [1] gives a jutstification for this. We briefly recall the main
constructions of that section and then show how the results of Section 2
can be applied to establish some homotopy relations between the input
data for a homotopy pushout and the result of the construction. We then
state the corresponding results for homotopy pullbacks. These results
are well known for the category of topological spaces and the category of
simplicial sets by the use of the cellular approximation theorem. Here,
we show that they also hold for an arbitrary stratified model category.

Let D denote the category with three objects and two nonidentity
arrows D = {a ← b → c}. Consider the category C

D whose objects are
functors X : D → C. A morphism f : X → Y in C

D is a diagram of
morphisms in C
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X(a) ←−−−− X(b) −−−−→ X(c)

fa





y

fb





y

fc





y

Y (a) ←−−−− Y (b) −−−−→ Y (c)

To define a model category structure on C
D, we first need to define

the object (δa(f), δb(f), δc(f)) of C
D determinded by f : X → Y . We let

δb(f) = X(b)

δa(f) = Pushout
(

Y (b)
fb← X(b)→ X(a)

)

δc(f) = Pushout
(

Y (b)
fb← X(b)→ X(c)

)

This object fits into the following commutative diagram

X(a) ←−−−− X(b) −−−−→ X(c)




y
id





y





y

δa(f) ←−−−− δb(f) −−−−→ δc(f)

ia(f)





y

ib(f)





y

ic(f)





y

Y (a) ←−−−− Y (b) −−−−→ Y (c)

There is a model category structure on C
D in which a map f : X → Y

in C
D is

• a weak equivalence if fa, fb and fc are weak equivalences in C,

• a fibration if fa, fb and fc are fibrations in C,

• a cofibration if the maps ia(f), ib(f) and ic(f) defined above are
cofibrations in C.

We start with a lemma.

Lemma 1. Suppose that we have a diagram

B
g

−−−−→ C




y

f





y
l

A
k

−−−−→ P

in which the object P is the pushout of the the diagram consisting of the
left vertical arrow and the top horizontal arrow. Suppose f is an n1-
acyclic cofibration and g is an n2-acyclic cofibration, where n1, n2 ∈ N.
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Then the map kf is an min{n1, n2}-acyclic cofibration, where min stands
for the minimum of two integers.

Proof. It follows from Theorem 4 that k (as the cobase change of g along
f) is an n2-acyclic cofibration. The composition kf of two cofibrations is
again a cofibration. It follows from SW4’ that it is min{n1, n2}-acyclic.

Theorem 5. Let n1, n2 ∈ N and n = min{n1, n2}. Suppose that we have
the diagram

A
f
← B

g
→ C

in which f is an m-equivalence for m < n1 and an n1-epimorphism and
g is an m-equivalence for m < n2 and an n2-epimorphism and B is

cofibrant. Then the canonical map B → hocolim
(

A
f
← B

g
→ C

)

is an

n-acyclic cofibration.

Proof. According to Section 10 of [1], in order to find the homotopy
pushout we need first to find a cofibrant representative of

A
f
← B

g
→ C

in the model category structure on C
D.

First, we apply Theorem 1 with n1 to the map f : B → A to obtain a
factorization f = f ′′f ′ where f ′ : B → A′ is an n1-acyclic cofibration and
f ′′ : A′ → A is an n1-acyclic fibration. Since, by the assumptions the map
f is an m-equivalence for m < n1, by the two out of three property for n-
equivalences (i.e. W2), we conclude that the map f ′′ is an m-equivalence
for m < n1. Moreover, by SW3, since f is an n1-epimorphism, so is f ′′.
We conclude that f ′′ is an m-equivalence for all m, i.e. that it is a weak
equivalence.

Next, we apply Theorem 1 with n2 to the map g : B → C to obtain a
factorization g = g′′g′ where g′ : B → C ′ is an n2-acyclic cofibration and
g′′ : C ′ → C is an n2-acyclic fibration. By a reasoning similar to the one
earlier we conclude that the map g′′ is a weak equivalence.

The above maps fit into the following commutative diagram:

A′
f ′

←−−−− B
g′

−−−−→ B′





y
f ′′





y
id





y
g′′

A
f

←−−−− B
g

−−−−→ C

Hence the top row is a cofibrant representative of A
f
← B

g
→ C. It

follows from p. 117 of [1] that the desired homotopy direct limit is an
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ordinary pushout of A′ ← B → C ′. The result now follows from the
previous lemma.

We now state the dual result (the proof is dual to the one above and
hence omitted).

Theorem 6. Let n1, n2 ∈ N and n = max{n1, n2}. Suppose that we have
the diagram

A
f
→ B

g
← C

in which f is an m-equivalence for m > n1 and an n1-monomorphism
and g is an m-equivalence for m > n2 and an n2-monomorphism and

B is fibrant. Then the canonical map holim
(

A
f
← B

g
→ C

)

→ B is an

n-acyclic fibration.
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