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complete Bell polynomials
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ABSTRACT. Using the (universal) Theorem for the integer
partitions and the g-binomial Theorem, we give arithmetical and
combinatorial identities for the complete Bell polynomials as gene-
rating functions for the number of partitions of a given integer into
k parts and the number of partitions of n into a given number of
parts.

Introduction

The (exponential) partial Bell polynomials B, i, (1, z2, . . .) are defined
by their generating function as follows

o) mn 1 o) $m k
ZBmk(azl,azg,...)n!:k!<21‘mm!> , (1)

n==k m=1

and the (exponential) complete Bell polynomials A,, (z1, z9,...) are defi-
ned by their generating function

= t" =
1+ ZlAn(:vl,aﬁg, .. )ﬁ = exp(zlxmm!> with Ag (21, z9,...) = 1.
n= m=

Comtet [13] gave an important impulsion for the development of Bell
polynomials. The first author uses polynomials of binomial type, in [16,17],
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to give applications related to congruences and to determine inverse
relations, see [15,18]. For the exponential bipartitional polynomials and
polynomial sequences of trinomial type we refer to [6,19], and for The
exponential multipartitional polynomials and polynomial sequences of
multinomial type, we refer to [7,20]. Belbachir et al. give connection of
Bell polynomials with ordinary multinomials in [5], see also [4]. Collins
[12] gives some applications in integration, Germano and Martinelli [14]
in generalized Blissard problem and some others.

In this paper, using the (universal) Theorem for the integer partitions
(see [1,2]), g-binomial Theorem, we give properties and identities for the
complete Bell polynomials as generating functions for the number of
partitions of a given integer into k£ parts and for the number of partitions
of n into a fixed given number of parts.

1. Complete Bell polynomials, integer partitions
and g-binomial Theorem

1.1. Complete Bell polynomials and integer partitions. Let
A = (a;5), i = 1,2,..., j = 0,1,2,... be an infinite matrix with
elements a;; € {0,1} and Y; = {j : a;j; = 1} for i = 1,2,..., we denote
by p (n, k; A) the number of partitions of n into k parts whose number y;
of parts that are equal to ¢z belongs to the set Y;.

A first use of partition’s (universal) Theorem is given by the following.

Theorem 1. Let
m .
)= ba(i)g™, gl <1,
i=1

with by (i) = Sp_; (=1)" 7 (k= D)!Bpy (Naix, 2ain, ..., jlaij,...).
Then, for ajp =1 (i > 1), we have

An (p1(G A), - pnlg A)) = 0D p(om; A gy gl <1 (2)
Jj=n

Proof. From [11, Thm. 10.3] (see also [2] and [13, Thm. B, p. 98]) we
have

G(q,u; A) ZZp n, k; A) uFq" H(iai,jujqij). (3)

n=0k=0 i=1 \j=0
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For a; 0 =1 (i > 1), the last identity becomes

G(q, u; A) = H(l + Zai,jujqij), lgl <1, Jugl<1/2.  (4)
i=1 j=1

Then from [11, Thm. 11.7] (see also [13]), we have
ln<1 + kz_:lgkk,) = Z_:lcnaa (5)

with ¢, = 3 (=) ! (k — By k (91,92, ..). We have

k=1
i=1 =1
— eXP(Z ln(]. + Z ] az,]q )) = exp (qulﬂbk )
=1 =1 i—1k=1
o) uk 00 Ny u
= exp ZEZbk(z)q = exp ZPk(CJ; A)y
k=1""i=1 =1
. k
U
=1+ I;Ak (p1(g: A), pa(a: A), - pr(a A) 7
which implies (2). .
Corollary 1. We have
o ! (n—1)! n!
A’n, ( ) PECECICIEY ) _= T — q < 1’
L-g'1-¢ L=q Il (1 —¢") ’ (6)
o _ 1 (n=D)1\  nl(=1)" gn(n-1/2
An - s T PR f— — A 7’q‘>1

Proof. Let a;; = 1 for every i = 1,2,... and j = 0,1,... in Theorem 1.
We have p (n; A) = 31" p (n, k; A) represents the number of all partitions
of n, and so p(n, k; A) = p(n, k) the number of all partitions of n into k
parts. Then, using the well known identity,

By (1L2L,31,..) = EZ:;: (Z) (7)

n

we get by(i) = (n —1)! and p,(q; A) = (n — 1)!1gqn'
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Then, using (2) and from the well-known identity (see [11, Thm. 10.2])

i ) n N -1
Srimd =¢"[[(1-4) (8)
j:n =1
we get
0lg 1lg? (n—1)lg" L N —1
— ol i
An(l—q’l—QQ"“’ g n.qil—[l(l q) . el <1,

and from the property of complete Bell polynomials
A, (aazl, a’xy, ... ,a”xn> =a"A, (x1,29,...,2p) (9)

we obtain the first identity of (6).
Now, for |g| > 1 the first identity (6) becomes

0! 1! (n—1)! n \ -1
= 'Il — gt
An<1_q_171_ _2?"'71_q_n> n.l:1<1 q ) Y |Q|>]‘7

q
and this gives, in virtue of (9), the second identity of (6). O

Corollary 2. We have

A ( 0! 1! (n—l)!) ol (=1)"gnD/2 ol <1
n 1_q7 1_q27~--7 1_qn - ;7/:1 (1 _ qz) b q ) (10)
A < 0! 1! (n—l)!) n! gl > 1
1 01 9ttt = ~o 14 .
"\1-¢'1-¢ 1—qgn im1 (1—¢Y)

Proof. Fori=1,2,...,leta;; =1forj=0,1anda;; =0forj=2,3,...
in Theorem 1. We have, p (n; A) = >"}'_ q(n, k) represents the number of
partitions of n into unequal parts, and so, ¢(n, k) represents the number
of partitions of n into k£ unequal parts. Then, using the identity

By (11,0,0,...) =1 and By, (1,0,0,...)=0 if k#n,  (11)

we get by (i) = (~1)" " (n— 1! and pa(g; A) = (—1)"" (n — 1)1,
The first identity of (10) results from (2) and from the well-known

identity (see [11, Exp. 10.2]),

SaGmd =PI (1- ) (12)
j=n

i=1
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Now, for |g| > 1 the first identity of (10) becomes

4 (_ o 1 (n— 1)!) ol (=1)" gD/
i=1
and this gives, in virtue of (9), the second identity of (10). O

Remark 1. From Corollaries 1 and 2, we deduce the following

e—lel

0! 1 — 1) 1g(5")n
An<51 €7 2,...,5(7; 3): i gl £ 1, e = +1.
q q q H(l_qsz)

=1

Corollary 3. Let p, s(n, k) be the number of partitions of n into k parts
in form (s mod r), 1 <s < r—1. Then, for |q| <1, we have

s q2s TLS .
A <0'1—qr71'1—QQw-“v(”_1)1—an>_nlzp’“s sn)¢. (13)

Proof. a;o =1, for i =1,2,... let ajr4s; =1 and a;r1¢ ; =0, s’ # s, for
j=1,2,3,... in Theorem 1, we get p (n, k; A) = prs(n, k). Then, using
the identity (7) and the identity B, (0,0,...0) = 0, we get b, (ir +3s) =
(n=1 by (ir+s)=0,(s"#s), and pn(q; 4) = (n — 1) L=

Then (13) follows from identity (2). O

1.2. Complete Bell polynomials and g-binomial Theorem. We
give the link between the ¢-binomial Theorem and the complete Bell
polynomials.

Theorem 2. We have

1- 1—a" :
An<0!1 (-1 a):n'(a” lql < 1,

—q 1—qn (q,Q) 14
1—a 1—a" a—q¢ !
A, -0 e —(n—1)! = ]—— 1
(O~ - ) ngl a1

where (a;q),, = n]r[ (1—ag?) forn>1 and (a;q),=1.
j:
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Proof. From the g-binomial Theorem (]9, Ch. 16]),

s Q| <1, ‘l’| <1,
n=0 (q; q)n (1; q)oo

> (@ 9)n n _ (a27q)

where (a;q) , = [132 (1 — a¢’) , we have

(0!1_a,...,(n—1)!1_an> o
1—q*) n!

Then we obtain the first identity of (14) when |¢| < 1.
Now, for |g| > 1, the first identity of (14) becomes

l—a 1—a? 1—a" 1—ag 7V
! ! —1)!
An<0.1_q1,1.1_q2,...,(n 1)! > H =

and using (9), this identity can be written as the second identity of (14).
O

1.3. Complete Bell polynomials and multivariate Lagrange po-
lynomials. The multivariate Lagrange polynomials are introduced and
investigated systematically by Chan et al. [10]. In [3], Altin et al. suggest
a multivariate ¢-Lagrange polynomials as follows

r

Mt = Sk o)t (15)

where [t < min {|za[ 7", T 0 < gl < 1, (M), = e

with (A;1q)s = TR0 (1 - Aq’“)
This yields the following explicit representation

Ing 7 (15 T) = Z H @i

ki+-+kr=ni=1 q’ q)ki




164 INTEGER PARTITIONS AND BELL POLYNOMIALS

(a

The next theorem gives an another expression for gm}"”’%') (X1, @)
in terms of complete Bell polynomials.

Theorem 3. Link with multivariate q-Lagrange polynomials. We have

(a1,

nlg,s RECTIS

0! <« o n—l‘T 7o
(e G2 12t
16

1=qiH 1=q" 1:1
(16)

Proof. For y,(i) := (n — 1)!2 f;l:z 2 i =1,2,...,r, the identity (16)

follows from (15) and from the expansion of

i=1 j=1
oo r r tn

-3 4, <Zy1(i),. ,Zyn(z)> = O
n=0 i=1 i=1 .

2. Complete Bell polynomials and integer partitions

As a second use of partition’s (universal) Theorem, we obtain

Theorem 4. Let

n(u; A) —n'Zbk( )

k|n

Then for ajp =1 (1 > 1), we have
A (01(u; A), 09(u; A), . .., on(u; A)) n'Zp n,j; A)ul. (17)
Proof. From [11, Thm. 11.17] (see also [13]), we have

ln(l—l—ngk') Z Cn ,,

n

with ¢, = kzl (=) (k= 1)!Bo (91,92, - - ) -
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Then, by (3) and (4) we obtain for |t| < 1 and |ut| < 1/2

G (t,u; A) H (1 + iai7jujtij>

Jj=1

i=1k=1

= exp (Zln (1 -1-2 jla; ;) Utz) )) = exp (Zzbk’

n=1

n\ u > t"
=ex E "Eb — ] =] =ex gan u, A) —
p(nlt kn k<k> k!) p< | )n'>

=1+ ZA” (o1(u; A), 02(u; A), ..., on(u; A)) ]

n=1
which implies (17).

Corollary 4. Let

u) = Zdu”/d, opi=o0n(l), onk:= Z d.
dn

Then

Ay, (0loy (uw),0log (u),...,(n—1)loy (u) = n!Zp(n, k)uk.

In particular, for u =1, we have
Ay, (0loy, Nlog, ..., (n—1)loy,) =nlp(n).
We also have

A, (O!Ul,ka 1!0’27]“ e (n — 1)!0’,,,7]{;) =nlp (7’L + k, k’) .

(19)

(20)

Proof. For a;; = 1 for ¢ = 1,2,... and j = 0,1, ... in Theorem 4, we
get p(n,k; A) = p(n,k), and from the well known identity (7) we get
bn(i) = (n—1)! and op(u; A) = (n — 1!y, du™®. Then (18) follows
from (17). The identity (20) results from [11, Thm. 10.2] and gives

k _ o n
Zp n+k k)t H (1 — ti) ' = exp (Zanvkn> .
n=0 i=1 i=1
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Corollary 5. Let q(n, k) be the number of partitions of n into k unequal
(different) parts and
u) = Zdu”/d.
dn

Then

Ay, (=0loy (—u), —log (—u), ..., —(n— 1)loy, (—u)) = n!Zq(n, k)uk.
(21)
Proof. Fori=1,2,...seta;j =1for j=0,1and a;; =0 for j =2,3,...
in Theorem 4, we then get p (n,k; A) = q(n, k). Using (11), we obtain
bo(i) = (=1)" " (n = 1)! and o (u; A) = —(n — D> d (~u)™/".
dn

Then (21) follows from the identity (17). O

Corollary 6. Forr,s nonnegative integers, withr > 1 and 0 < s <r—1,
let prs(n, k) be the number of partitions of n into k parts in form (s
mod r) and

o (u) == (n—1)! Z du™.
de{j: jln, rl(G—s)}

Then .
Ap (077 (u) 057 () ..., 00" (v) = n!zpr,s(n,j)uj- (22)

Proof. For i =1,2,...set a;0 =1, jpys; =1 and ajpyy j =0 for s’ # s

and 0 < ¢/ < r—1 (if s # 0 resp. s # 0 we consider the case i = 0

too) j = 1,2,3,... in Theorem 4, we get p(n, k; A) = p, s(n, k). Using

(7) and the fact that B, (0,0,...,0) =0, we get b, (ir +s) = (n — 1)!,

by (ir+ ') =0, (s #s), and op(u;A) = (n—1)! > du™/?,
de{j: jln, r|(j—s)}

Then (22) follows from (17). O

Corollary 7. Let R,(n,k) be the number of partitions of n into k parts
with no part greater than r; and

o, (u) :=(n—1)! Z du™?.
d|n, d<r

Then
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Proof. Let a;0 = 1 fori = 1,2,..., a;; = 1 for ¢ = 1

a;j =0 fori=r+1,r+2,..., we have p(n,k,A) = R,(n,k). Then
from (7) we get b,(i) = (n— 1!, by(i +7r) =0, ¢ = 1,...,7, and
on(u;A) = (n—1)! Y du™?, and (23) follows from (17). O

dln, d<r

Corollary 8. Let qo(n, k) be the number of partitions of n into k even
unequal parts, q1(n, k) be the number of partitions of n into k odd unequal
parts and

ono (u) == —(n —1)! Z (_1)n/d du™',

dln, d even

On (w) = —(n -1 Y (=) dun/d,
dn, d odd

Then
An (JI,O(U; A): JQ,O(U; A): cee 7Un,0(u§ A)) — n'ZqO(na.])u]7
7=0

Ap(o11(u; A),o01(us A), ... on1(us A)) = n!qu(n,j)uj.
j=0

(24)

Proof. For p(n,k,A) = qo(n, k) and qo(n) = > qo(n, k), we have from
(3), a;; = 1 if, and only if (i is even and j = 0 or 1) or (i is odd and
j = 0). Using (11), we get b, (2i) = (=1)"1(n —1)!, b,(2i — 1) = 0 and
on(u;A) = —(n — 1! gpn.d even (—1)™4du™/?. The first identity of (24)
follows from (17). For p(n,k, A) = q1(n, k) and ¢1(n) = >, ¢1(n, k), we
have from (3), a;; = 1 if, and only if (i is odd and j =0 or 1) or (i is
even and j = 0). We get b,(2i — 1) = (=1)""1(n — 1)!, b,(2i) = 0 and
on(u; A) ===y a odd(=1)™4du™/?. The second identity of (24)
follows from (17). O
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