On sequences of Mealy automata and their limits

Illya I. Reznykov

Communicated by V. I. Sushchansky

Abstract

We introduce the notions of n-state Mealy automaton sequence and limit of this sequence. These notions are illustrated by the 2 -state Mealy automaton sequences that have the set of finite limit automata.

Introduction

One of the main problem that appears in investigations of the set of discrete objects - how the properties of certain objects are interrelated or how to get the properties of an object through the research of close objects. This problem have been solved by such methods as using operations under these objects that keep the desired properties, selection of special subsets of objects with similar properties, or analysis of object sequences and their limits.

The investigators of Mealy automaton growth deal with countable infinite set of discrete objects. The paper is devoted to consideration the ideas of Mealy automaton sequences and limit automata of these sequences. The limit automaton is constructed over the infinite alphabet, but there can be found automata over finite alphabets with the same properties as the limit automaton. Therefore the using of Mealy automaton sequences have two benefits: it allows to join the automata with similar properties, and to interlink automata-members of a sequence and automata that have the same properties as the limit automaton.

The paper has the following structure. The notions of Mealy automaton sequence and limit are introduced in Section 1. As special case,

[^0]the expanding automaton sequences are considered, and the limits of the growth functions and the semigroups are directly constructed. Section 2 describes two sets of automata of exponential growth. We construct the semigroup, defined by these automata, and calculate their growth functions. These automata are used in Subsection 3.1 for illustrating the properties of introduced in Section 1 notions. Some remarks that concern limit of Mealy automaton sequences are listed in Subsection 3.2.

1. Mealy automaton sequences and limits

1.1. Sequences of Mealy automata

We will use the definitions from [1]. Let us denote a m-symbol alphabet by the symbol $X_{m}, X_{m}=\{0,1, \ldots, m-1\}$, and the infinite alphabet $\{0,1, \ldots\}$ by X. We denote the set of all infinite to right words over X_{m} by the symbol X_{m}^{ω}. We write a transformation ψ over X_{m} as

$$
(\psi(0), \psi(1), \ldots, \psi(m-1))
$$

Definition 1. Let us fix the positive integers $n \geq 2$ and $k \geq 2$. We call the sequence $\left\{A_{m}, m \geq k\right\}$ of Mealy automata such that the automaton A_{m} is n-state Mealy automaton over the alphabet X_{m} by the n-state Mealy automaton sequence.

Let us introduce the special type of Mealy automaton sequences, where the next automaton extends the previous one.

Definition 2 ([2]). Let $A=\left(X_{m}, Q, \pi, \lambda\right)$ be an arbitrary n-state automaton over a m-symbol alphabet. The n-state automaton $A^{(X)}=$ $\left(X_{m+1}, Q, \pi_{1}, \lambda_{1}\right)$ over the $(m+1)$-symbol alphabet such that the following equalities:

$$
\pi_{1}(\mathrm{x}, \mathrm{q})=\pi(\mathrm{x}, \mathrm{q}) \quad \text { and } \quad \lambda_{1}(\mathrm{x}, \mathrm{q})=\lambda(\mathrm{x}, \mathrm{q})
$$

hold for all $\mathrm{x} \in X_{m}, \mathrm{q} \in Q$, is called the extension of A.
The relation of Mealy automaton extension induces the partial order on the set of all n-state Mealy automata, where $A_{1}<A_{2}$ if and only if A_{2} is an extension of A_{1}.

Definition 3. The n-state Mealy automaton sequence is expanding if the automaton A_{m+1} is an extension of the automaton A_{m} for all $m \geq k$.

Let us note that for all $\mathrm{q} \in Q$ and $u \in X_{m}^{\omega}$ the equality holds

$$
f_{\mathbf{q}, A^{(X)}}(u)=f_{\mathbf{q}, A}(u)
$$

Therefore the following proposition holds.

Proposition 1. Let A be an arbitrary Mealy automaton, and $A^{(X)}$ be an extension of A. Let us denote the semigroups and the growth functions, defined by A and $A^{(X)}$, by the symbols S_{A}, γ_{A} and $S_{A^{(X)}}, \gamma_{A^{(X)}}$ respectively.

1. The semigroup S_{A} is a factor-semigroup of the semigroup $S_{A^{(X)}}$.
2. There are two possible cases: either

$$
\gamma_{A}(n)=\gamma_{A^{(X)}}(n), \quad n \geq 1
$$

or there exists $N \in \mathbb{N}$ such that

$$
\begin{array}{lr}
\gamma_{A}(n)=\gamma_{A^{(X)}}(n), & 1 \leq n<N \\
\gamma_{A}(n)<\gamma_{A^{(X)}}(n), & n \geq N
\end{array}
$$

Proof. Let some nontrivial relation holds in the semigroup $S_{A^{(X)}}$:

$$
\begin{equation*}
f_{q_{i_{1}}} f_{q_{i_{2}}} \ldots f_{q_{i_{k}}}=f_{q_{j_{1}}} f_{q_{j_{2}}} \ldots f_{q_{j_{l}}} \tag{1.1}
\end{equation*}
$$

where $k, l \geq 1, i_{p}, j_{t} \in\{0,1, \ldots, n-1\}, 1 \leq p \leq k, 1 \leq t \leq l$. It means that the following equality holds

$$
\begin{equation*}
f_{q_{i_{1}}} f_{q_{i_{2}}} \ldots f_{q_{i_{k}}}(u)=f_{q_{j_{1}}} f_{q_{j_{2}}} \ldots f_{q_{j_{l}}}(u) \tag{1.2}
\end{equation*}
$$

for any word $u \in X_{m+1}^{\omega}$. As the equality (1.2) is true for all words $u \in X_{m}^{\omega}$, then the relation (1.1) holds in S_{A}. Therefore the set of relations of S_{A} includes all defining relations of $S_{A^{(X)}}$, and the semigroup S_{A} is a factorsemigroup of the semigroup $S_{A^{(X)}}$.

It follows from the previous item that there exist the defining relation sets R_{A} and $R_{A^{(X)}}$ of S_{A} and $S_{A^{(X)}}$ respectively such that $R_{A} \supseteq R_{A^{(X)}}$. Here and in the sequel text, the inequality $R_{1} \supset R_{2}$ denotes that each relation of R_{2} follows from the relations of R_{1}. If the equality $R_{A}=R_{A^{(X)}}$ holds, then S_{A} and $S_{A^{(X)}}$ are isomorphic semigroups, and the growth functions γ_{A} and $\gamma_{A^{(X)}}$ coincide for all $n \geq 1$.

Otherwise, let $r: \mathrm{s}_{1}=\mathrm{s}_{2}$ be the relation from $R_{A} \backslash R_{A^{(X)}}$ with the minimal length of left-side word. Assign $N=\ell\left(s_{1}\right)$. Then the growth functions γ_{A} and $\gamma_{A^{(X)}}$ coincide for all $1 \leq n<N$ because the sets R_{A} and $R_{A^{(X)}}$ include the same subset of relations that can be applied to semigroup words of length less than N. Clearly the inequality $\gamma_{A}(N)<$ $\gamma_{A^{(X)}}(N)$ holds. Due to this, the inequality $\gamma_{A}(n)<\gamma_{A^{(X)}}(n)$ holds for all $n>N$.

The Proposition is completely proved.

1.2. Limit of Mealy automaton sequences

Let us introduce the notion of limit of Mealy automaton sequence. The transition and output functions of A_{m} are discrete functions, that can be defined by two sets of $(n m)$ values. Therefore the pointwise limits (in discrete Hausdorff metrics) of these functions' values for fixed arguments as m tends to infinity can be considered. Namely

Definition 4. Let $\mathfrak{A}=\left\{A_{m}=\left(X_{m}, Q, \pi_{m}, \lambda_{m}\right), m \geq k\right\}, k \geq 2$, be an arbitrary n-state Mealy automaton sequence. The automaton $A_{\infty}=$ (X, Q, π, λ) is called the limit automaton of the sequence \mathfrak{A}, if for any state $q \in Q$ and any symbol $x \in X$ there exists the number $M \geq k$ such that the equalities

$$
\pi_{m}(q, x)=\pi(q, x) \quad \text { and } \quad \lambda_{m}(q, x)=\lambda(q, x)
$$

hold for all $m \geq M$.
It follows from Definition 4 that limit automaton is a unique if it exists. The limit automaton of Mealy automaton sequence have common "limit properties". For example, the pointwise limit of product or sum of automata equals product or sum of the limit automata of these sequences respectively. But the pointwise limit does not preserve some "automaton properties" such as equivalence of states. Let us consider the 2-state automaton sequence $\left\{A_{m}, m \geq 2\right\}$ such that A_{m} have the following automaton transformations:

$$
\begin{aligned}
& f_{0}=\left(f_{0}, f_{0}, \ldots, f_{0}\right)(0,1, \ldots, m-2, m-1) \\
& f_{1}=\left(f_{1}, f_{1}, \ldots, f_{1}\right)(0,1, \ldots, m-2,0)
\end{aligned}
$$

Obviously, these transformations are different and A_{m} has two inequivalent states. The automaton transformations of the limit automaton A_{∞} are defined by the equalities

$$
\begin{aligned}
& f_{0}=\left(f_{0}, f_{0}, \ldots, f_{0}, \ldots\right)(0,1, \ldots, m-1, \ldots) \\
& f_{1}=\left(f_{1}, f_{1}, \ldots, f_{1}, \ldots\right)(0,1, \ldots, m-1, \ldots)
\end{aligned}
$$

whence $f_{0}=f_{1}$ and A_{∞} contains one state.
Let \mathfrak{A} be an arbitrary automaton sequence. Each automaton A_{m} unambiguously defines the automaton transformation semigroup $S_{A_{m}}$ and the growth function $\gamma_{A_{m}}$. Therefore the automaton sequence \mathfrak{A} defines the sequence of the semigroups $\mathfrak{S}=\left\{S_{A_{m}}, m \geq k\right\}$ (where the natural set of generators is fixed in each $S_{A_{m}}$) and the sequence of the growth functions $\mathfrak{O}=\left\{\gamma_{A_{m}}, m \geq k\right\}$. Let us define the limit $\gamma_{\mathfrak{A}}$ of the growth
function sequence as the pointwise limit of $\gamma_{A_{m}}$ as $m \rightarrow \infty$, if it exists. Otherwise, we say that the limit of \mathfrak{O} doesn't exist.

Let us define the limit of the semigroup sequence \mathfrak{S}, if semigroups compose increasing ($S_{A_{m}}$ is a factor-semigroup of $S_{A_{m+1}}$) or decreasing ($S_{A_{m+1}}$ is a factor-semigroup of $S_{A_{m}}$) sequence. Let R_{i} be the set of relations of the semigroup $S_{A_{i}}, i \geq k$. Then the following relations

$$
R_{k} \supset R_{k+1} \supset \ldots \supset R_{m} \supset \ldots
$$

or

$$
R_{k} \subset R_{k+1} \subset \ldots \subset R_{m} \subset \ldots
$$

hold, and the semigroup $S_{\mathfrak{A}}$ is defined as the semigroup with the set of defining relations equals the join or the intersection of semigroups from \mathfrak{S} respectively.

It follows from Definition 4 that the limit automaton is considered over the infinite alphabet. The investigations of automata over the infinite alphabet are more complicated against automata over finite alphabets. Therefore, let us introduce the notion of the finite limit automaton.

Definition 5. Let $\mathfrak{A}=\left\{A_{m}, m \geq k\right\}, k \geq 2$, be an arbitrary n-state Mealy automaton sequence. We say that the n-state automaton B over the finite alphabet is the finite limit automaton of the sequence \mathfrak{A}, if the equalities $\gamma_{B}=\gamma_{\mathfrak{A}}$ and $S_{B} \cong S_{\mathfrak{A}}$ hold.

Let us note that the finite automaton for certain automaton sequence is not a unique if it exists. There are many unclear aspects, and some remarks are listed in Section 3.

Let's consider the case of expanding automaton sequence. Then there exist the limits of sequences of semigroups and growth functions. Let

$$
\mathfrak{A}=\left\{A_{m}=\left(X_{m}, Q, \pi_{m}, \lambda_{m}\right), m \geq k\right\}
$$

where $k \geq 2$, be an arbitrary expanding Mealy automaton sequence. There are two possible cases. Let us assume that there exists the number M such that all growth functions $\left\{\gamma_{A_{m}}, m \geq M\right\}$ coincide for $n \geq 1$. Then the limit $\gamma_{\mathfrak{A}}$ is the function $\gamma_{A_{M}}$, and each automaton $A_{m}, m \geq M$, can be considered as the finite limit of \mathfrak{A}. Obviously, all semigroups from the set $\left\{S_{A_{m}}, m \geq M\right\}$ are the same.

Otherwise, it follows from Proposition 1 that there exists a unique infinite sequence

$$
k=m_{1}<m_{2}<m_{3}<\ldots
$$

such that the automata $A_{m_{i}}$ and $A_{m_{i+1}}$ have different growth functions, and all automata A_{m} for $m_{i} \leq m<m_{i+1}$, have the same growth function,
$i \geq 1$. For each $i \geq 1$ there exists the number $N_{m_{i}} \in \mathbb{N}$ such that the relations

$$
\begin{array}{lr}
\gamma_{A_{m_{i}}}(n)=\gamma_{A_{m_{i+1}}}(n), & 1 \leq n<N_{m_{i}} \\
\gamma_{A_{m_{i}}}(n)<\gamma_{A_{m_{i+1}}}(n), & n \geq N_{m_{i}}
\end{array}
$$

hold. It follows from the choice of m_{i} that the following inequalities

$$
1 \leq N_{m_{1}}<N_{m_{2}}<N_{m_{3}}<\ldots
$$

hold, whence the pointwise limit of the growth functions $\left\{\gamma_{A_{m}}, m \geq k\right\}$ is defined by the equality

$$
\gamma_{\mathfrak{A}}(n)= \begin{cases}\gamma_{A_{m_{1}}}(n), & \text { if } 1 \leq n<N_{m_{1}} \\ \gamma_{A_{m_{2}}}(n), & \text { if } N_{m_{1}} \leq n<N_{m_{2}} \\ \gamma_{A_{m_{3}}}(n), & \text { if } N_{m_{2}} \leq n<N_{m_{3}} \\ \ldots, & \ldots\end{cases}
$$

In addition, it follows from Proposition 1 that the defining relations in each semigroup $S_{A_{m_{i}}}$ can be choose such that

$$
R_{1} \supset R_{2} \supset R_{3} \supset \ldots,
$$

where R_{i} is the set of defining relations of the semigroup $S_{A_{m_{i}}}, i \geq 1$. Then the defining relation set of the semigroup $S_{\mathfrak{A}}$ is defined by the equality

$$
R_{S_{\mathfrak{A}}}=\bigcap_{i \geq 1} R_{i} .
$$

Let us note, that the growth order [$\gamma_{\mathfrak{A}}$] can be not equal to pointwise limit of growth orders $\left[\gamma_{A_{m}}\right]$ as m tends to ∞. For example, the 2 -state Mealy automaton sequence $\left\{A_{m}, m \geq 3\right\}$ is considered in [1] such that $\left[A_{m}\right]=\left[n^{m-1}\right]$, but the equality $\left[\gamma_{\mathfrak{A}}\right]=\left[2^{n}\right]$ holds.

2. Sets of Mealy automata A_{m} and B

2.1. Definitions

Let $m \geq 3$ and $g_{i}, h_{i}, y_{i} \in\{0,1\}, i=2,3, \ldots, m-1$, be arbitrary numbers. Consider the following transformations of X_{m} :

$$
\begin{array}{lr}
\alpha=(0, \ldots, 0,0), & \alpha_{p}=(0, \ldots, 0,1,2, \ldots, m-1-p), p \geq 1 \\
\beta=(0, \ldots, 0, m-1), & \beta_{p}=(0, \ldots, 0,1,2, \ldots, m-2-p, m-1), p \geq 1
\end{array}
$$

Clearly the equalities

$$
\alpha_{1}^{p}=\left\{\begin{array}{ll}
\alpha_{p}, & \text { if } 1 \leq p \leq m-2, \\
\alpha, & \text { if } p \geq m-1 ;
\end{array} \quad \beta_{1}^{p}= \begin{cases}\beta_{p}, & \text { if } 1 \leq p \leq m-3 \\
\beta, & \text { if } p \geq m-2\end{cases}\right.
$$

hold.
Let A_{m} be an arbitrary 2-state Mealy automaton over X_{m} such that its automaton transformations f_{0} and f_{1} are defined by the following equalities:

$$
\begin{align*}
& f_{0}=\left(f_{0}, f_{1}, f_{g_{2}}, f_{g_{3}}, \ldots, f_{g_{m-1}}\right)(0,0,1,2, \ldots, m-3, m-2) \tag{2.3}\\
& f_{1}=\left(f_{0}, f_{1}, f_{h_{2}}, f_{h_{3}}, \ldots, f_{h_{m-1}}\right)\left(1,0, y_{2}, y_{3}, \ldots, y_{m-2}, y_{m-1}\right)
\end{align*}
$$

Let us define the set of all automata A_{m} where g_{i}, h_{i}, y_{i} vary over $\{0,1\}$ by the symbol $\mathbf{A}_{\mathbf{m}}$.

Similarly, let B_{m} be an arbitrary 2-state Mealy automaton over X_{m} such that its automaton transformations f_{0} and f_{1} allow the following decompositions

$$
\begin{align*}
& f_{0}=\left(f_{0}, f_{1}, f_{g_{2}}, f_{g_{3}}, \ldots, f_{g_{m-1}}\right)(0,0,1,2, \ldots, m-3, m-1) \tag{2.4}\\
& f_{1}=\left(f_{0}, f_{1}, f_{h_{2}}, f_{h_{3}}, \ldots, f_{h_{m-1}}\right)\left(1,0, y_{2}, y_{3}, \ldots, y_{m-2}, 0\right)
\end{align*}
$$

Let us define the set of all automata B_{m} where g_{i}, h_{i}, y_{i} vary over $\{0,1\}$ and m varies over $3,4, \ldots$ by the symbol \mathbf{B}.

Let Φ_{n} denote the Fibonacci numbers, defined by $\Phi_{n}=\Phi_{n-1}+\Phi_{n-2}$, $\Phi_{1}=\Phi_{2}=1$. The element Φ_{n} is defined by the equality [3]:

$$
\Phi_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right), n \geq 1
$$

For any $n \geq m \geq 0$ the following equality holds

$$
\sum_{i=m}^{n} \Phi_{i}=\Phi_{n+2}-\Phi_{m+1}
$$

Let us note that $\Phi_{n}, n \geq 2$, equals the count of words of length $(n-2)$ over $\{a, b\}$ which don't include subwords $b b$.

2.2. Properties of A_{m} and B

Let us consider the semigroup relations

$$
r_{p}: f_{1}^{2} f_{0}^{p} f_{1}=f_{0} f_{1} f_{0}^{p} f_{1}
$$

where $p \geq 1$. The properties of automata from $\mathbf{A}_{\mathbf{m}}$ and \mathbf{B} are described by the following theorems.

Theorem 1. Let A_{m} be an arbitrary automaton from $\mathbf{A}_{\mathbf{m}}$.

1. A_{m} defines the automatic transformation semigroup

$$
S_{m}=\left\langle f_{0}, f_{1} \mid r_{p}, 1 \leq p \leq m-2 ; f_{1}^{2} f_{0}^{m-1}=f_{0} f_{1} f_{0}^{m-1}\right\rangle
$$

2. The growth function γ_{m} of A_{m} is defined by the following equality

$$
\gamma_{m}(n)=\Phi_{n+4}- \begin{cases}(n+2), & \text { if } 1 \leq n \leq m \\ \Phi_{n+4-m}+(m-1), & \text { if } n>m\end{cases}
$$

3. The growth function $\gamma_{S_{m}}$ of S_{m} is defined by the following equality

$$
\gamma_{S_{m}}(n)=\Phi_{n+6}- \begin{cases}\frac{n^{2}+5 n+16}{2}, & \text { if } 1 \leq n \leq m \\ \Phi_{n+6-m}+\frac{2 n(m-1)+7 m-m^{2}}{2}, & \text { if } n>m\end{cases}
$$

Theorem 2. Let B be an arbitrary automaton from \mathbf{B}.

1. The automaton B defines the semigroup

$$
S=\left\langle f_{0}, f_{1} \mid r_{p}, p \geq 1\right\rangle
$$

2. The growth function γ of B is defined by the following equality

$$
\gamma(n)=\Phi_{n+4}-(n+2), n \geq 1
$$

3. The growth function γ_{S} of S is defined by the following equality

$$
\gamma_{S}(n)=\Phi_{n+6}-\frac{n^{2}+5 n+16}{2}, n \geq 1
$$

It follows from Theorems 1 and 2 that the sequences of functions γ_{m} and $\gamma_{S_{m}}$ have the pointwise limits. Namely,

Corollary 1. The functions γ and γ_{S} are the pointwise limits of the functions γ_{m} and $\gamma_{S_{m}}$ as m tends to infinity respectively. That is for each $n \geq 1$ the equalities hold:

$$
\gamma_{m}(n) \underset{m \rightarrow \infty}{\longrightarrow} \gamma(n), \quad \quad \gamma_{S_{m}}(n) \underset{m \rightarrow \infty}{\longrightarrow} \gamma_{S}(n)
$$

2.3. Properties of automaton transformations

Let us fix the numbers $m \geq 3$ and $g_{i}, h_{i}, y_{i} \in\{0,1\}, i=2,3, \ldots, m-1$. Let A_{m} and B_{m} be the automata from $\mathbf{A}_{\mathbf{m}}$ and \mathbf{B} respectively, defined by the numbers g_{i}, h_{i}, f_{i}.

Let $[r]$ denotes integral part of rational number r, and $\llbracket p \rrbracket$ denotes the parity of nonnegative integer $p, p \geq 0, \llbracket p \rrbracket \in\{0,1\}$.

Proposition 2. The relations $r_{p}, p \geq 1$, hold in the semigroups S_{m} and S. In addition, in S_{m} the relation holds

$$
\begin{equation*}
f_{1}^{2} f_{0}^{m-1}=f_{0} f_{1} f_{0}^{m-1} \tag{2.5}
\end{equation*}
$$

Let us note, that the relations $r_{p}, p \geq m-1$, follow from the relation (2.5):

$$
f_{1}^{2} f_{0}^{p} f_{1}=f_{1}^{2} f_{0}^{m-1} \cdot f_{0}^{p-m+1} f_{1}=f_{0} f_{1} f_{0}^{m-1} \cdot f_{0}^{p-m+1} f_{1}=f_{0} f_{1} f_{0}^{p} f_{1}
$$

Proof. Let us consider the automaton A_{m}. It follows from (2.3) that the following equalities hold:

$$
\begin{align*}
& f_{0}^{p}=\left(f_{0}^{p}, f_{0}^{p-1} f_{1}, f_{0}^{p-2} f_{1} f_{g_{2}}, \ldots, f_{0} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p-1}}\right. \\
& \left.f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p}}, f_{g_{2}} f_{g_{3}} \ldots f_{g_{p+1}}, \ldots, f_{g_{m-p}} f_{g_{m-p+1}} \ldots f_{g_{m-1}}\right) \alpha_{p} \tag{2.6a}
\end{align*}
$$

where $0 \leq p \leq m-2$, and

$$
\begin{align*}
f_{1}^{2} & =\left(f_{1} f_{0}, f_{0} f_{1}, f_{y_{2}} f_{h_{2}}, \ldots, f_{y_{m-1}} f_{h_{m-1}}\right)\left(0,1,1-y_{2}, \ldots, 1-y_{m-1}\right) \\
f_{0}^{p} f_{1} & =\left(f_{0}^{p-1} f_{1} f_{0}, f_{0}^{p} f_{1}, f_{0}^{p-1} f_{y_{2}} f_{h_{2}}, f_{0}^{p-1} f_{y_{3}} f_{h_{3}}, \ldots, f_{0}^{p-1} f_{y_{m-1}} f_{h_{m-1}}\right) \alpha . \tag{2.6~b}
\end{align*}
$$

Let us write the unrolled forms of left and right part of $r_{p}, p \geq 1$:

$$
\begin{aligned}
f_{1}^{2} f_{0}^{p} f_{1}=\left(f_{1} f_{0}^{p} f_{1} f_{0}, f_{0}^{p+1} f_{1}, f_{1} f_{0}^{p} f_{y_{2}} f_{h_{2}}\right. \\
\left.f_{1} f_{0}^{p} f_{y_{3}} f_{h_{3}}, \ldots, f_{1} f_{0}^{p} f_{y_{m-1}} f_{h_{m-1}}\right) \alpha \\
f_{0} f_{1} f_{0}^{p} f_{1}=\left(f_{1} f_{0}^{p} f_{1} f_{0}, f_{0}^{p+1} f_{1}, f_{1} f_{0}^{p} f_{y_{2}} f_{h_{2}}\right. \\
\left.f_{1} f_{0}^{p} f_{y_{3}} f_{h_{3}}, \ldots, f_{1} f_{0}^{p} f_{y_{m-1}} h_{m-1}\right) \alpha
\end{aligned}
$$

whence the relations r_{p} hold in S_{m}. Let us check the relations (2.5). It follows from (2.6) that

$$
\begin{aligned}
& f_{1}^{2} f_{0}^{m-1}=\left(f_{1} f_{0}^{m}, f_{1} f_{0}^{m-1} f_{1}, f_{1} f_{0}^{m-2} f_{1} f_{g_{2}}, \ldots\right. \\
&\left.f_{1} f_{0}^{2} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{m-2}}, f_{1} f_{0} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{m-1}}\right) \alpha \\
& f_{0} f_{1} f_{0}^{m-1}=\left(f_{1} f_{0}^{m}, f_{1} f_{0}^{m-1} f_{1}, f_{1} f_{0}^{m-2} f_{1} f_{g_{2}}, \ldots\right. \\
&\left.f_{1} f_{0}^{2} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{m-2}}, f_{1} f_{0} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{m-1}}\right) \alpha
\end{aligned}
$$

and therefore (2.5) hold in S_{m}.
Let us consider B_{m}. Similarly, it follows from (2.4) that the following equalities hold:

$$
\begin{aligned}
& f_{0}^{p}=\left(f_{0}^{p}, f_{0}^{p-1} f_{1}, f_{0}^{p-2} f_{1} f_{g_{2}}, f_{0}^{p-3} f_{1} f_{g_{2}} f_{g_{3}}, \ldots, f_{0} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p-1}}\right. \\
& \left.\quad f_{1} f_{g_{2}} \ldots f_{g_{p}}, f_{g_{2}} f_{g_{3}} \ldots f_{g_{p+1}}, \ldots, f_{g_{m-p-1}} f_{g_{m-p}} \ldots f_{g_{m-2}}, f_{g_{m-1}}^{p}\right) \beta_{p}
\end{aligned}
$$

if $1 \leq p \leq m-3$, and

$$
\begin{aligned}
& f_{0}^{p}=\left(f_{0}^{p}, f_{0}^{p-1} f_{1}, f_{0}^{p-2} f_{1} f_{g_{2}}, f_{0}^{p-3} f_{1} f_{g_{2}} f_{g_{3}}, \ldots,\right. \\
&\left.f_{0}^{p-m+2} f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{m-2}}, f_{g_{m-1}}^{p}\right) \beta
\end{aligned}
$$

otherwise. Hence for any $p \geq 1$ one has

$$
\begin{aligned}
& f_{1}^{2}=\left(f_{1} f_{0}, f_{0} f_{1}, f_{y_{2}} f_{h_{2}}, f_{y_{3}} f_{h_{3}}, \ldots\right. \\
& \left.\quad f_{y_{m-2}} f_{h_{m-2}}, f_{0} f_{h_{m-1}}\right)\left(0,1,1-y_{2}, 1-y_{3}, \ldots, 1-y_{m-2}, 1\right) \\
& f_{0}^{p} f_{1}=\left(f_{0}^{p-1} f_{1} f_{0}, f_{0}^{p} f_{1}, f_{0}^{p-1} f_{y_{2}} f_{h_{2}}, \ldots, f_{0}^{p-1} f_{y_{m-2}} f_{h_{m-2}}, f_{0}^{p} f_{h_{m-1}}\right) \alpha
\end{aligned}
$$

and it yields the following unrolled forms

$$
\begin{gathered}
f_{1}^{2} f_{0}^{p} f_{1}=\left(f_{1} f_{0}^{p} f_{1} f_{0}, f_{0}^{p+1} f_{1}, f_{1} f_{0}^{p} f_{y_{2}} f_{h_{2}}, \ldots\right. \\
\left.f_{1} f_{0}^{p} f_{y_{m-2}} f_{h_{m-2}}, f_{1} f_{0}^{p+1} f_{h_{m-1}}\right) \alpha \\
f_{0} f_{1} f_{0}^{p} f_{1}=\left(f_{1} f_{0}^{p} f_{1} f_{0}, f_{0}^{p+1} f_{1}, f_{1} f_{0}^{p} f_{y_{2}} f_{h_{2}}, \ldots\right. \\
\left.f_{1} f_{0}^{p} f_{y_{m-2}} f_{h_{m-2}}, f_{1} f_{0}^{p+1} f_{h_{m-1}}\right) \alpha .
\end{gathered}
$$

Thus the relations r_{p} hold in S. Proposition is completely proved.
Proposition 3. The following equality holds for both A_{m} and B_{m} :
$f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1} f_{0}^{p_{k}}\left(0^{*}\right)=0^{p_{1}} 10^{p_{2}} 1 \ldots 0^{p_{k-2}} 10^{p_{k-1}} 10^{p_{k}} \cdot 0^{*}$, where $k \geq 1, p_{1}, p_{k+1} \geq 0, p_{i}>0,1<i<k$.
Proof. As the restriction of the automata A_{m} and B_{m} on a 2-symbol alphabet coincide, then it's enough to consider the case of A_{m}. It follows from (2.6b) that for any $k \geq 2$ and arbitrary $p_{i}>0,1 \leq i \leq k-1$, the following equalities hold:

$$
\begin{array}{r}
f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}=\left(f_{0}^{p_{1}-1} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1} f_{0}\right. \\
\left.f_{0}^{p_{1}-1} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}+1} f_{1}, \ldots\right)(0,0, \ldots, 0) \\
f_{1} f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}=\left(f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1} f_{0}\right. \\
\left.f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}+1} f_{1}, \ldots\right)(1,1, \ldots, 1)
\end{array}
$$

Using the equality $f_{0}^{p}\left(0^{*}\right)=0^{*}, p>0$, one has

$$
\begin{aligned}
& f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1} f_{0}^{p_{k}}\left(0^{*}\right)= \\
& \quad=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}\left(0^{*}\right)=0^{p_{1}} 10^{p_{2}} 1 \ldots 0^{p_{k-2}} 10^{p_{k-1}} 10^{*}
\end{aligned}
$$

that was required to prove.
Proposition 4. Let $s \in S$ be an arbitrary element. It admits a unique presentation as the word

$$
\begin{equation*}
\mathrm{s}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{p_{k}} f_{0}^{p_{k+1}} \tag{2.7}
\end{equation*}
$$

where $k=0, p_{1}>0$, or $k \geq 2, p_{1}, p_{k+1} \geq 0, p_{i}>0,2 \leq i \leq k$.
Proof. Let s is written as the word

$$
\begin{equation*}
\mathrm{s}=f_{0}^{r_{1}} f_{1}^{r_{2}} f_{0}^{r_{3}} f_{1}^{r_{4}} \ldots f_{0}^{r_{2 l-1}} f_{1}^{r_{2 l}} f_{0}^{r_{2 l+1}} \tag{2.8}
\end{equation*}
$$

where $l \geq 0, r_{1}, r_{2 l+1} \geq 0, r_{i}>0,2 \leq i \leq 2 l$, and $\ell(s)=\sum_{i=1}^{2 l+1} r_{i}>0$. If s is written in the form (2.7), then Proposition 4 is true.

Otherwise, it follows from r_{p} that for any $p_{1}, p_{2} \geq 0$ the equalities

$$
f_{1}^{p_{1}} f_{0}^{p_{2}} f_{1}=f_{1}^{p_{1}-2} f_{0} f_{1} f_{0}^{p_{2}} f_{1}=\ldots=f_{1}^{\llbracket p_{1} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{p_{1}}{2}\right]} f_{0}^{p_{2}} f_{1}
$$

hold. Applying the equality at the line above to the word (2.8) from right to left, s can be written as the following word

$$
\begin{aligned}
\mathrm{s}=f_{0}^{r_{1}} f_{1}^{\llbracket r_{2} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{r_{2}}{2}\right]} & f_{0}^{r_{3}} f_{1}^{\llbracket r_{4} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{r_{4}}{2}\right]} \ldots \\
& f_{0}^{r_{2 l-3}} f_{1}^{\llbracket r_{2 l-2} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{r_{2 l-2}}{2}\right]} f_{0}^{r_{2 l-1}} f_{1} \cdot f_{1}^{r_{2 l}-1} f_{0}^{r_{2 l+1}},
\end{aligned}
$$

and it doesn't include subwords f_{1}^{2}, may be excepting the last occurrence - the subword $f_{1}^{r_{2 l}}$. The right-side word has the form (2.7), and the proof is completed.

Proposition 5. An arbitrary element $\mathrm{s} \in S_{m}$ admits a unique presentation as the word

$$
\begin{equation*}
\mathbf{s}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{p_{k}} f_{0}^{p_{k+1}} \tag{2.9}
\end{equation*}
$$

where $k=0, p_{1}>0$, or $k \geq 2, p_{1}, p_{k+1} \geq 0, p_{i}>0,2 \leq i \leq k$, and $p_{k}=1$ if $p_{k+1} \geq m-1$.

Proof. It follows from Propositions 2 and 4 that each element $s \in S_{m}$ can be written in the form (2.7). In the case $p_{2 k+1} \geq m-1$ the relation (2.5) can be applied to s, and the end $f_{1}^{r_{2 l}} f_{0}^{r_{2 l+1}}$ may be replaced by $f_{1}^{\llbracket r_{2 l} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{r_{2 l}}{2}\right]} f_{0}^{r_{2 l+1}}$. After it, the word s has the form (2.9).

Proposition 6. The count of words of length $n, n \geq 1$, written in the form (2.7), equals

$$
w(n)=\Phi_{n+4}-(n+2), n \geq 1
$$

Proof. Let us separate the words written in the form (2.7) to two types: the words such that $k=0$ or $p_{k}=1$, and the words such that $k \geq 2$ and $p_{k}>1$. The count of words of length n of first type is equal to Φ_{n+2}. An arbitrary word s of second type can be written as

$$
\begin{equation*}
\mathbf{s}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1} \cdot f_{1}^{p_{k}-1} f_{0}^{p_{k+1}} \tag{2.10}
\end{equation*}
$$

Each word (2.10) unambiguously corresponds to the word of length $(n+1)$:

$$
\mathrm{s}^{\prime}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1} \cdot f_{0}^{p_{k}-1} f_{1} f_{0}^{p_{k+1}}
$$

Hence, the count of the words (2.10) of length n equals the count of words of length $(n+1)$ over $\left\{f_{0}, f_{1}\right\}$ such that they don't include subwords f_{1}^{2} and contain at least two symbols f_{1}. This count is equal to

$$
\Phi_{n+3}-\binom{n+1}{0}-\binom{n+1}{1}=\Phi_{n+3}-(n+2) .
$$

Finally,

$$
w(n)=\Phi_{n+2}+\Phi_{n+3}-(n+2)=\Phi_{n+4}-(n+2)
$$

for all $n \geq 1$.
Proposition 7. The count of words of length $n, n \geq 1$, written in the form (2.9) equals

$$
w_{m}(n)=\Phi_{n+4}- \begin{cases}(n+2), & \text { if } 1 \leq n \leq m \\ \Phi_{n+4-m}+(m-1), & \text { if } n>m\end{cases}
$$

Proof. For $1 \leq n \leq m$ the value $w_{m}(n)$ equals $w(n)$, because the relation (2.5) can not be applied. For $n>m$ the value $w_{m}(n)$ equals $w(n)$ minus the count of words written in the form (2.7) such that $k \geq 2$, $p_{k+1} \geq m-1$ and $p_{k}>1$. This count equals the count of words (2.7) of length $(n-(m-1))$ such that $p_{k}>1$, that is

$$
\Phi_{n-(m-1)+3}-(n-(m-1)+2)
$$

Therefore, for $1 \leq n \leq m$ we have

$$
w_{m}(n)=\Phi_{n+4}-(n+2),
$$

and for $n>m$ the following equality holds:

$$
\begin{aligned}
w_{m}(n)=\left(\Phi_{n+4}-(n+2)\right)-\left(\Phi_{n-(m-1)+3}\right. & -(n-(m-1)+2))= \\
& =\Phi_{n+4}-\Phi_{n+4-m}-(m-1)
\end{aligned}
$$

2.4. Proofs of Theorems 1 and 2

Proposition 8. Let $\mathrm{s}_{1}, \mathrm{~s}_{2} \in S_{m}$ be arbitrary elements, written in the form (2.9):

$$
\begin{aligned}
& \mathrm{s}_{1}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{p_{k}} f_{0}^{p_{k+1}}, \\
& \mathrm{~s}_{2}=f_{0}^{t_{1}} f_{1} f_{0}^{t_{2}} f_{1} \ldots f_{0}^{t_{l-2}} f_{1} f_{0}^{t_{l-1}} f_{1}^{t_{l}} f_{0}^{t_{l+1}}
\end{aligned}
$$

They define the same transformation over the set X_{m}^{ω} if and only if they coincide graphically, that is

$$
k=l ; p_{i}=t_{i}, 1 \leq i \leq k
$$

Proof. Clearly s_{1} and s_{2} define the same transformation over X_{m}^{ω}, if they coincide graphically. Therefore it's enough to prove that if s_{1} and s_{2} have different forms (2.9), then they define different transformations over X_{m}^{ω}. Let us assume that elements s_{1} and s_{2} define the same transformation over X_{m}^{ω}, but written in the different form (2.9). Then for any $u \in X_{m}^{\omega}$ the following equality holds

$$
\begin{equation*}
\mathrm{s}_{1}(u)=\mathrm{s}_{2}(u) \tag{2.11}
\end{equation*}
$$

It follows from (2.11) that the equality holds

$$
\begin{equation*}
f_{0} s_{1} f_{0} f_{1}\left(0^{*}\right)=f_{0} s_{2} f_{0} f_{1}\left(0^{*}\right) \tag{2.12}
\end{equation*}
$$

Using Proposition 3, let us rewrite the left- and right-side words of the equality at the line above:

$$
\begin{aligned}
f_{0} s_{1} f_{0} f_{1}\left(0^{*}\right) & =f_{0}^{p_{1}+1} f_{1} f_{0}^{p_{2}} \ldots f_{1} f_{0}^{p_{k-1}} f_{1}^{\llbracket p_{k} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{p_{k}}{2}\right]} f_{0}^{p_{k+1}+1} f_{1}\left(0^{*}\right)= \\
& =0^{p_{1}+1} 10^{p_{2}} 1 \ldots 0^{p_{k-2}} 10^{p_{k-1}} 1^{\llbracket p_{k} \rrbracket}(01)^{\left[\frac{p_{k}}{2}\right]} 0^{p_{k+1}+1} 10^{*}, \\
f_{0} s_{2} f_{0} f_{1}\left(0^{*}\right) & =f_{0}^{t_{1}+1} f_{1} f_{0}^{t_{2}} \ldots f_{1} f_{0}^{t_{l-1}} f_{1}^{\llbracket t_{l} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{t_{l}}{2}\right]} f_{0}^{t_{l+1}+1} f_{1}\left(0^{*}\right)= \\
& =0^{t_{1}+1} 10^{t_{2}} 1 \ldots 0^{t_{l-2}} 10^{t_{l-1}} 1^{\llbracket t_{l} \rrbracket}(01)^{\left[\frac{t_{l}}{2}\right]} 0^{t_{l+1}+1} 10^{*} .
\end{aligned}
$$

As s_{1} and s_{2} have the different forms (2.9) then the equality (2.12) can be true if and only if one of the element, say s_{1}, have the form

$$
\mathrm{s}_{1}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{p_{k}} f_{0}^{p_{k+1}}
$$

and the other, s_{2}, is written as

$$
\mathrm{s}_{2}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{\llbracket p_{k} \rrbracket}\left(f_{0} f_{1}\right)^{r_{1}} f_{0} f_{1}^{2 r_{2}+1} f_{0}^{p_{k+1}}
$$

where $r_{1} \geq 0, r_{2} \geq 0, r_{1}+1+r_{2}=\left[\frac{p_{k}}{2}\right], p_{k+1} \leq m-2, p_{k} \geq 2$.
It follows from (2.6) and (2.3), that for arbitrary $p_{k} \geq 1,1 \leq p_{k+1} \leq$ $m-2$, and for all $u \in X_{m}^{\omega}$ the equalities hold:

$$
\begin{aligned}
f_{0}^{p_{k+1}}\left(p_{k+1} \cdot u\right) & =1 \cdot f_{g_{2}} f_{g_{3}} \ldots f_{g_{p_{k+1}+1}}(u), \\
f_{1}^{p_{k}} f_{0}^{p_{k+1}}\left(p_{k+1} \cdot u\right) & =\left(1-\llbracket p_{k} \rrbracket\right) \cdot f_{1}^{\llbracket p_{k} \rrbracket}\left(f_{0} f_{1}\right)^{\left[\frac{p_{k}}{2}\right]} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p_{k+1}+1}}(u), \\
f_{0} f_{1}^{p_{k}} f_{0}^{p_{k+1}}\left(p_{k+1} \cdot u\right) & =0 \cdot f_{0}^{\llbracket p_{k} \rrbracket} f_{1}\left(f_{0} f_{1}\right)^{\left[\frac{p_{k}}{2}\right]} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p_{k+1}+1}}(u) .
\end{aligned}
$$

Without restricting the generality, let us assume that $p_{k+1} \geq 1$. Otherwise, we can repeat sequel speculations for the elements $s_{1} f_{0}$ and $s_{2} f_{0}$. It follows from the equalities at the line above that

$$
f_{0} \mathbf{s}_{1}\left(p_{k+1} \cdot u\right)=0 \cdot s_{1}^{\prime}(u) \quad \text { and } \quad f_{0} \mathbf{s}_{2}\left(p_{k+1} \cdot u\right)=0 \cdot s_{2}^{\prime}(u)
$$

where

$$
\begin{gathered}
\mathrm{s}_{1}^{\prime}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} \cdot f_{0}^{\llbracket p_{k} \rrbracket} f_{1}\left(f_{0} f_{1}\right)^{\left[\frac{p_{k}}{2}\right]} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p_{k+1}+1}}, \\
\mathrm{~s}_{2}^{\prime}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{\llbracket p_{k} \rrbracket}\left(f_{0} f_{1}\right)^{r_{1}-1} f_{0} . \\
f_{0} f_{1}\left(f_{0} f_{1}\right)^{r_{2}} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p_{k+1}+1}}
\end{gathered}
$$

For any word $u \in X_{m}^{\omega}$ the equality $\mathrm{s}_{1}^{\prime}(u)=\mathrm{s}_{2}^{\prime}(u)$ holds due by the assumption (2.11). Therefore the following equality hold:

$$
f_{0} s_{1}^{\prime} f_{0} f_{1}\left(0^{*}\right)=f_{0} s_{2}^{\prime} f_{0} f_{1}\left(0^{*}\right)
$$

Obviously, right multiplying by $f_{0} f_{1}$ may change only the ends of semigroup words $\mathbf{s}_{i}^{\prime}, i=1,2$, and affects on the subword $f_{1} f_{g_{2}} f_{g_{3}} \ldots f_{g_{p_{k+1}+1}}$. Hence it follows from Proposition 3 that the elements s_{1}^{\prime} and s_{2}^{\prime} define different transformations over X_{m}^{ω}. We get the contradiction with the assumption (2.11).

Proof of Theorem 1. It follows from Proposition 2 that the relations r_{p}, $p \geq 1$, and (2.5) hold in the semigroup S_{m}. In Proposition 5 these relations allow to reduce an arbitrary element $s \in S_{m}$ to the form (2.9).

It is shown in Proposition 8 that two semigroup elements define the same transformation over X_{m}^{ω} if and only if they have the same form (2.9). Therefore, the set of relations

$$
f_{1}^{2} f_{0}^{m-1}=f_{0} f_{1} f_{0}^{m-1}, \quad f_{1}^{2} f_{0}^{p} f_{1}=f_{0} f_{1} f_{0}^{p} f_{1}, 1 \leq p \leq m-2
$$

is the set of defining relations. In addition, the relations do not depends on the numbers g_{i}, h_{i}, y_{i}, and all automata from the set $\mathbf{A}_{\mathbf{m}}$ define the same semigroup, whence Item 1 of Theorem 1 is true.

Let us calculate the growth functions of A_{m} and S_{m}. As the defining relations of S_{m} does not change the length of semigroup words then the equalities hold

$$
\gamma_{m}(n)=w_{m}(n), \quad \quad \gamma_{S_{m}}(n)=\sum_{i=1}^{n} w_{m}(i)
$$

Using Proposition 7, we have

$$
\gamma_{m}(n)=\Phi_{n+4}- \begin{cases}(n+2), & \text { if } 1 \leq n \leq m \\ \Phi_{n+4-m}+(m-1), & \text { if } n>m\end{cases}
$$

and Item 2 holds.
Let $n \leq m$. Then

$$
\begin{aligned}
\gamma_{S_{m}}(n)=\sum_{i=1}^{n}\left(\Phi_{i+4}-(i+2)\right)=\Phi_{n+6}-\Phi_{6} & -2 n-\frac{n^{2}+n}{2}= \\
= & \Phi_{n+6}-\frac{n^{2}+5 n+16}{2}
\end{aligned}
$$

Similarly for $n>m$ the following equalities hold

$$
\begin{aligned}
& \gamma_{S_{m}}(n)=\gamma_{S_{m}}(m)+\sum_{i=m+1}^{n}\left(\Phi_{i+4}-\Phi_{i+4-m}-(m-1)\right)= \\
& =\Phi_{m+6}-\frac{m^{2}+5 m+16}{2}+\Phi_{n+6}-\Phi_{m+6}-\Phi_{n+6-m}+\Phi_{m+6-m}- \\
& \quad-(n-m)(m-1)=\Phi_{n+6}-\Phi_{n+6-m}-\frac{2 n(m-1)+7 m-m^{2}}{2}
\end{aligned}
$$

that coincides with the formulae in Item 3.
Proposition 9. Let $\mathrm{s}_{1}, \mathrm{~s}_{2} \in S$ be arbitrary elements, written in the form (2.7):

$$
\begin{aligned}
& \mathrm{s}_{1}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{p_{k}} f_{0}^{p_{k+1}}, \\
& \mathrm{~s}_{2}=f_{0}^{t_{1}} f_{1} f_{0}^{t_{2}} f_{1} \ldots f_{0}^{t_{l-2}} f_{1} f_{0}^{t_{l-1}} f_{1}^{t_{l}} f_{0}^{t_{l+1}}
\end{aligned}
$$

They define the same transformation over the set X_{m}^{ω} if and only if they coincide graphically, that is

$$
k=l ; p_{i}=t_{i}, 1 \leq i \leq k
$$

Proof. Proposition 9 can be proved in the same way as Proposition 8. It follows from (2.3) and (2.4) that the actions of A_{m} and B_{m} differ only at the symbol $(m-1)$. Therefore it's enough to consider the case when the elements s_{1} and s_{2} are written in the following way:

$$
\begin{aligned}
& \mathrm{s}_{1}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{p_{k}} f_{0}^{p_{k+1}} \\
& \mathrm{~s}_{2}=f_{0}^{p_{1}} f_{1} f_{0}^{p_{2}} f_{1} \ldots f_{0}^{p_{k-2}} f_{1} f_{0}^{p_{k-1}} f_{1}^{\llbracket p_{k} \rrbracket}\left(f_{0} f_{1}\right)^{r_{1}} f_{0} f_{1}^{2 r_{2}+1} f_{0}^{p_{k+1}}
\end{aligned}
$$

where $r_{1} \geq 0, r_{2} \geq 0, r_{1}+1+r_{2}=\left[\frac{p_{k}}{2}\right], p_{k} \geq 2$. Using the unrolled forms (2.4) the equalities hold for arbitrary $p_{k}, p_{k+1} \geq 1$, and any $u \in X_{m}^{\omega}$:

$$
\begin{aligned}
f_{0}^{p_{k+1}}((m-1) \cdot u) & =(m-1) \cdot f_{g_{m-1}}^{p_{k+1}}(u), \\
f_{1}^{p_{k}} f_{0}^{p_{k+1}}((m-1) \cdot u) & =\left(1-\llbracket p_{k} \rrbracket\right) \cdot f_{0}^{1-\llbracket p_{k} \rrbracket}\left(f_{1} f_{0}\right)^{\left[\frac{p_{k}-1}{2}\right]} f_{h_{m-1}} f_{g_{m-1}}^{p_{k+1}}(u), \\
f_{0} f_{1}^{p_{k}} f_{0}^{p_{k+1}}((m-1) \cdot u) & =0 \cdot f_{1}^{1-\llbracket p_{k} \rrbracket} f_{0}\left(f_{1} f_{0}\right)^{\left[\frac{p_{k}-1}{2}\right]} f_{h_{m-1}} f_{g_{m-1}}^{p_{k+1}}(u) .
\end{aligned}
$$

The sequel speculations are carried out similarly to the case of A_{m}.
Proof of Theorem 2. The relations $r_{p}, p \geq 1$, hold in S, and an arbitrary element is reduced to the form (2.7) by applying these relations in Proposition 4. It is proved in Proposition 9 that two semigroup elements written in different form (2.7) define the different transformations over X_{m}^{ω}. Therefore, the presentation of the semigroup, defined by B_{m}, does not depend on m and the numbers g_{i}, h_{i}, y_{i}, and S have the presentation, stated in Theorem 2.

The count of words of length n, that written in the form (2.7), is calculated in Proposition 6, and this count doesn't depend on m. Using the equalities

$$
\gamma(n)=w(n), \quad \gamma_{S}(n)=\sum_{i=1}^{n} w(i)
$$

and the calculations in the proof of Theorem 1, the growth functions of each automaton from the set $\mathbf{B}_{\mathbf{m}}$ and the semigroup S are defined by the equalities:

$$
\gamma(n)=\Phi_{n+4}-(n+2), \quad \gamma_{S}(n)=\Phi_{n+6}-\frac{n^{2}+5 n+16}{2}
$$

for all $n \geq 1$.

Proof of Corollary 1. Let us fix $n \geq 1$. It follows from Theorem 1 and 2 that for all $m \geq M=n+1$ the equalities hold:

$$
\gamma_{m}(n)=\gamma(n), \quad \quad \gamma_{S_{m}}(n)=\gamma_{S}(n)
$$

Hence the functions γ and γ_{S} are the pointwise limits of the sequences $\left\{\gamma_{m}, m \geq 3\right\}$ and $\left\{\gamma_{S_{m}}, m \geq 3\right\}$ as m tends to the infinity respectively.

3. Conclusions

3.1. Examples of expanding sequences

Let us construct examples of expanding sequences, using the automata from the sets $\mathbf{A}_{\mathbf{m}}$ and \mathbf{B}. Let $\left\{g_{2}, g_{3}, \ldots\right\},\left\{h_{2}, h_{3}, \ldots\right\}$, and $\left\{y_{2}, y_{3}, \ldots\right\}$ be the infinite sequences such that $g_{i}, h_{i}, y_{i} \in\{0,1\}, i \geq 2$. Let us consider the 2-state Mealy automaton sequence $\mathfrak{A}=\left\{A_{m}, m \geq 3\right\}$ such that A_{m} belongs to $\mathbf{A}_{\mathbf{m}}$ and its automaton transformations are defined by the numbers $\left\{g_{2}, g_{3}, \ldots, g_{m-1}\right\},\left\{h_{2}, h_{3}, \ldots, h_{m-1}\right\}$, and $\left\{y_{2}, y_{3}, \ldots, y_{m-1}\right\}$. Obviously, the automaton A_{m+1} is an expansion of A_{m} for all $m \geq 3$. Therefore \mathfrak{A} has the limit automaton A_{∞} such that its automaton transformations are defined by the following equalities:

$$
\begin{aligned}
& f_{0}=\left(f_{0}, f_{1}, f_{g_{2}}, f_{g_{3}}, \ldots, f_{g_{m-1}}, \ldots\right)(0,0,1,2, \ldots, m-2, \ldots) \\
& f_{1}=\left(f_{0}, f_{1}, f_{h_{2}}, f_{h_{3}}, \ldots, f_{h_{m-1}}, \ldots\right)\left(1,0, y_{2}, y_{3}, \ldots, y_{m-1}, \ldots\right)
\end{aligned}
$$

Let us note, that all growth functions $\left\{\gamma_{m}, m \geq 3\right\}$ are different, and let $m_{i}=i+2, i \geq 1$. It follows from Theorem 1 that the equalities hold

$$
\begin{aligned}
& \gamma_{A_{m}}(m+1)=\Phi_{m+5}-\Phi_{5}-(m-1)=\Phi_{m+5}-(m+4), \\
& \gamma_{A_{m}}(m+1)=\Phi_{m+5}-(m+1+2)=\Phi_{m+5}-(m+3)
\end{aligned}
$$

whence $N_{m_{i}}=m_{i}, i \geq 1$, (in definitions of Section 1) and we have

$$
\begin{array}{lr}
\gamma_{A_{m}}(n)=\gamma_{A_{m+1}}(n), & 1 \leq n \leq m \\
\gamma_{A_{m}}(n)<\gamma_{A_{m+1}}(n), & n>m
\end{array}
$$

Therefore, the limit growth function is defined by the equalities

$$
\gamma_{\mathfrak{A}}(n)= \begin{cases}\gamma_{A_{3}}(n), & \text { if } 1 \leq n<3 \\ \gamma_{A_{n+1}}(n), & \text { if } n \geq 3\end{cases}
$$

whence

$$
\gamma_{\mathfrak{A}}(n)=\Phi_{n+4}-(n+2), n \geq 1
$$

As the relations r_{p} for $p \geq m$ follow from the relation (2.5) then it is enough to choose in S_{m} the set of relations

$$
R_{i}=\left\{r_{p}, 1 \leq p \leq m-2 ; f_{1}^{2} f_{0}^{m-1}=f_{0} f_{1} f_{0}^{m-1}\right\}
$$

and these sets form the sequence

$$
R_{1} \supset R_{2} \supset R_{3} \supset \ldots
$$

The set of defining relations of $S_{\mathfrak{A}}$ is defined by the equality

$$
R_{\mathfrak{A}}=\bigcap_{i \geq 1} R_{i}=\left\{r_{p}, p \geq 1\right\}
$$

It follows from Theorem 2 that any automaton $B \in \mathfrak{B}$ can be considered as the finite limit of the sequence \mathfrak{A}. In this case, the finite limit automaton exists.

3.2. Some remarks

The ideas and notions introduced in Section 1 require more attention. There are appear many questions, that can be separated into the following groups:

1. the development of constructing methods of Mealy automaton sequences such that the limit automaton and the finite limit automaton exist;
2. the research of sequences of automatic transformation semigroup, defined by Mealy automaton sequences, and research of correlation between the semigroup defined by the limit automaton and the limit of semigroup sequence;
3. the investigations of interrelation between sequences and finite limit automata, the existence of these automata, and constructing methods of the finite limit automata.

References

[1] Reznykov, Illya I., On 2-state Mealy automata of polynomial growth, Algebra and Discrete Mathematics, no.4., (2003), pp. 66-85.
[2] A.M. Bogomolov, I.S. Grunsky, The experiments with automata, Naukova dumka, Kiev, (1973), 200 p.
[3] Vilenkin N. Ya., Combinatorics, Nauka, Moscow, (1969), 328 p.

Contact information

I. Reznykov
 5, Krasnogvardeyskaya st., of. 2 02660, Kyiv
 Ukraine
 E-Mail: Illya.Reznykov@ikc5.com.ua

Received by the editors: 14.03.2005
and in final form 10.04.2007.

[^0]: 2000 Mathematics Subject Classification: 20M35, 68Q70.
 Key words and phrases: Mealy automaton, growth function, automaton sequence.

