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Value distribution of general Dirichlet series.
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ABSTRACT. A joint limit theorem on the complex plane for a
new class of general Dirichlet series is proved.

1. Introduction

Let s = o + it be a complex variable, {a,, : m € N} be a sequence of
complex numbers, and let {),, : m € N} be an increasing sequence of
positive numbers, lim \,, = +oo. The series of the form

m—0o0

f(s) =) ame (1)
m=1

is called a general Dirichlet series. If A,, = logm, we obtain the ordinary

Dirichlet series
o
Qm
Z ms :

m=1
It is well known that the region of convergence as well as of absolute
convergence of Dirichlet series is a half-plane.

The first probabilistic results for Dirichlet series were obtained by
H.Bohr and B.Jessen. In [2] and [3]| they proved theorems for the Rie-
mann zeta-function which are similar to modern limit theorems in the
sense of weak convergence of probability measures. The investigations
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of H.Bohr and B.Jessen were developed and generalized by A. Wint-
ner, V.Borchsenius, A.Selberg, P.D.T.A. Elliott, A.Ghosh, K.Matsumoto,
B.Bagchi, E.M.Nikishin, E.Stankus, J.Steuding, W.Schwarz, the author
and others. The results of such a kind can be found in [7], [8], [14] and
[20].

Limit theorems in the sense of weak convergence of probability mea-
sures in various spaces for general Dirichlet series were obtained [4]-[6],
[10]-[14] and [18], [19]. Limit theorems on the complex plane for gen-
eral Dirichlet series were proved in [12]-[14]. Denote by meas{A} the
Lebesgue measure of a measurable set A € R, and let, for T' > 0,

vp(...) = %meas{t €0,7): ...},

where in place of dots a condition satisfied by t is to be written. Moreover,
let B(S) be the class of Borel sets of the space S.
Denote by ~ the unit circle {s € C : |s| = 1} on the complex plane

C, and define
Q = H ’Yma
m=1

where ~,, = 7 for each m € N. Then the infinite-dimensional torus
Q) in view of the Tikhonov theorem is a compact topological Abelian
group, therefore the probability Haar measure mpg on (£, B(€2)) can be
defined. This gives a probability space (2, B(2),mg). Denote by w(m)
the projection of w € Q to the coordinate space ~,,, m € N.

Suppose that the series (1) converges absolutely for o > o,. Then the
function f(s) is analytic in the half-plane {s € C : o > 0,}. Moreover,
we require that the function f(s) should be meromorphically continuable
to the half-plane {s € C: o > 01}, 01 < 04, all poles being included in a
compact set, and that, for ¢ > oy, the estimates

flo+it) <[t]* a>0, [t]=1t >0, (2)
and
T
/If(a+z't)|2dt<< T, T — oo, (3)
-T

should be satisfied. Suppose that the exponents A, satisfy the inequality
Am = (logm)° (4)

with some positive 6 > 0. Then in [12] it was proved that under the last
conditions, for o > o1,

flo,w) = amw(m)e "7,
m=1
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is a complex-valued random variable defined on the probability space
(Q, B(Q2), m). If the system {\;,} is linearly independent over the field
of rational numbers, then it was obtained in [12] that, for o > o7, the
probability measure

vr(f(o+it) e A), AeB(C), (6)

converges weakly to the distribution of the random variable f(o,w) as
T — oo.

Condition (4) is rather strong, it limits a class of Dirichlet series for
which a limit theorem is true. Suppose that, for ¢ > o,

o0
Z | 2e™ P Tog?m < oco. (7)

m=1

Then in [14] the following statement has been obtained.
Theorem A. Suppose that the system {\n,} is linearly independent over
the field of rational numbers, and conditions (2), (3) and (7) are satisfied.
Then the probability measure (6) converges weakly to the distribution of
the random element f(o,w) as T — oo.

In [13] a joint limit theorem on the complex plane for general Dirichlet
series was proved. Let, for o > 04,

oo
fj(s) = Z amjei)\mjsa
m=1

where {ap,;} and {\,,;} are a sequence of complex numbers and an in-

creasing sequence of positive numbers, lim A,,; = +o00, respectively,
m—0o0

j=1,..,r, r > 1. Suppose that the function f;(s) is meromorphically
continuable to the region {s € C: 0 > 01}, 01; < 045, j = 1,...,n, all
poles being included in a compact set, and, for o > o015, the estimates

fj(O’ + ’it) < ’t’aj, aj > 0, ’t| >ty >0, (8)
and
T
/|fj(a+z't)]2dt<<T, T — o, ()
-T

J = 1,...,r, are satisfied. Moreover, we assume that A\,; = Ay, j =
1,...,r, and
Am = c(logm)®, ¢>0, §>0. (10)
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Let C" = C x ... x C. On the probability space (Q, B(Q2), my) define, for
————

'
o1 > 011, ..., 0 > 015, an C"-valued random element F = F(oy,...,0.;w)

by
F =F(o1,....;o0r,w) = (f1(01,w), vy fr(op,w)),

where

(o, w E amjw Mmooy e Q.

Theorem B [13]|. Suppose that the system {\p,} is linearly indepen-
dent over the field of rational numbers, and that conditions (8)-(10) are
satisfied. Then the probability

Pr(A) Y ur((Aor +it), ., fr(on +it)) € A), A€ B(C),

for o1 > o1j,...,00 > 01, converges weakly to the distribution of the
random element F(o1,...,00;w) as T — oo.

The aim of this note is to change condition (10) in Theorem B by
a weaker one and to consider a general case of different exponents A, ;.
Therefore, for the proof we will apply a method different from that of
[13]. Suppose that, for o; > o1,

(e e}
Z |amj|2e_2’\mf”jlog2m <oo, j=1,..,7 (11)

m=1

Moreover, define Q" = Q1 x ... x Q, where Q; = Q for j =1,...,r. Then
Q" is also a compact topological Abelian group. Denote by mpg, the
probability Haar measure on (2", B(Q")).

In the next section it will be proved that, under condition (11), for
01 > 011, ...,0p > O1r,

F(O’l,...,UT;Q) = (fl(Ul,(.dl), '-'afT(JTawT)>7

where

o0
g5 o —
(05, w;j) g amjw;(m Amjj ywi €y, g=1,..,rw=(wi,..,w),
m=1

is a C"-valued random element defined on the probability
space (2", B(QY"), muy).

T [ee]

Theorem 1. Suppose that the set |J |J {Am;} is linearly independent
j=1m=1

over the field of rational numbers, and that conditions (8), (9) and (11)
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are satisfied. Then the probability measure Pr converges weakly to the
distribution of the random element F (o1, ...,0p;w) as T — oo.

Note that joint limit theorems can be used to derive the joint univer-
sality for considered functions, see, for example, [16] and [17].

2. The random element F(oy,...,0,;w)

In this section we will prove that, under condition (11), F (o1, ...,0p;w) is
a C"-valued random element. For the proof, we will apply a Rademacher’s
theorem on series of pairwise orthogonal random variables. Denote by [££
the expectation of the random element &.
Lemma 2.|20]| Suppose that {X,} is a sequence of orthogonal random
variables such that
o
Z E|X,,[2log?m < oco.
m=1
Then the series
[e.e]
> x,
m=1
converges almost surely.
Theorem 3. Suppose that condition (11) holds. Then F(o1,...,0p;w),
for o1 > 011, ..., 0p > o1y, 15 a C -valued random element defined on the
probability space (0, B(Q), mur).
Proof. Clearly, it suffices to prove that, for each j =1,...,r,

i(oj,w g am]w “Ami%i e Q,

for o; > o015, is a complex-valued random variable on the probability
space (2, B(Q), mp).
We fix j € {1,...,7}. Let 0 > oy, be fixed, and
Emj = Emj(w) = amjw(m)e*mic.
Then {,;} is a sequence of pairwise orthogonal complex-valued random
variables defined on the probability space (2, B(2), mg). Really, denot-
ing by z the complex conjugate of z € C, we find

E(fmj,gkj) = /fm] de _am]akj ()\mj+>\kj)o/u)(m)W( )de
Q
ifm #k,
|amj\2e_2)‘mj” ifm = k.
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Since o > o, hence we have in view of (11) that

o
Z E|¢m;]*log?m < oo.
m=1
This and Lemma 2 show that the series

Z Emj = Z amjw(m)e *mi% = f(o,w) (12)

m=1

converges almost surely with respect the Haar measure my. Then

o0
( E Am1W1 (m mlo'l E amrwr >\77L7’0’f'>
m=1

converges almost surely in C", and this proves the theorem. We note that
Mygr =Mpg X ... XMH.
—_———

3. Joint limit theorems for Dirichlet polynomials

We start with a joint limit theorem on the torus 2". Define the probability
measure

Qrr(A) = vr(((€ :m e N), ..., (" :m € N)) € A).

Lemma 4. The probability measure Qr, converges weakly to the
Haar measure mg, on (2", B(Q")) as T — oo.
Proof. The dual group of Q" is

D D Zns:

j=1m=1

where Zy,; = Z for all m e Nand j =1,...,r
o0
(Elv "'aEr) — (k117k21a "'7klrak2ra ) S @ ZMJa

where only a finite number of integers k,j, m € N, j = 1,...,r, are
distinct from zero, acts on Q" by

(&1; ”')gr) - (&1 P H H CCm] ) g (xljvxzjv )7 !Tm] S Y,

j=1m=1
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m € N, j = 1...,r. Therefore, the Fourier transform gr,(k, ..., k,.) of the
measure Qr,, is

grr(ky, .. k) = /H H xm"jw dQr, = / H H oithmidms g ¢

Qr] 1m=1 j=1m=1

— / exp{ltzzkmj)‘mj}dt

j=1m=1

Since the set (J;_; U1 {Am;} is linearly independent over the field of
rational numbers, hence we find that

1 if (ky,....k,) = (0, ...,0),
g1 (ks o k,) = exp{fTZ P> kmﬂmj}l
' e f (k.o k) # (0, ..., 0)
ZTZ Z kg Am;

j=1m=1

Therefore,

1 if (kl?"‘akr) = (97'”79)7
0 if (ky, .., k,) % (0, ..., 0).

This and continuity theorems for probability measures on compact groups
[7] show that the probability measure Q7 converges weakly to the Haar
measure my, as 1 — o0o.

Let 09 > 045 — 015, and, for m,n € N,

lim gT,T’(E]_? "'7&7‘) ==
T—o00

vj(m,n) = exp{—e()‘m_’\”)@f}, j=1,..r.

Define, for N; € N, 0; > 01 and &; € €,

IN; jn(oj +it) g amjv] m,n)e )"”j("f“t),
. —Amj(oj+it s
INj jn(oj +it,05) = E amjw] Jvj(m,n)e m; (0 ), j=1,..r,
and consider the weak convergence of the probability measures

PT,Nl,...,NT,n(A) = VT((le,l,n(Ul + it), ceey fNr,T,n(Ur + Zt)) €A

and

ﬁT,N1,...7NT7n(A> = VT((le,Ln(Ul + it,@l), . fNT,r,n(Ur + it,@r)) S A,
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where (&1, ...,&,) € Q" and A € B(C").

Theorem 5. The probability measures Prn, .. N, n and ﬁT,Nl,..A,Nr,n
both converge weakly to the same probability measure on (C",B(C")) as
T — o0.

Proof. Let a function h : Q" — C" be given by

Ny
h(wiy .oy wy) = < Z amlv(m,n)e_)‘mwlwl_l(m), ey
m=1
Ny
Z v (M, n)e/\mr‘”wrl(m)> ,
m=1
(Wi, ..oywy) € Q7. Then, clearly,

h((eit’\’"1 :meN), ..., (e e N))

= (fNy1n(or +it), .o, N, rn(0r +it))

def
:e le,...,Nr,n(Ulv <y O t)7

and the function A is continuous. Therefore, Pr n, . N, n = QT’rh_l, and
by Theorem 5.1 of [1] and Lemma 4 the probability measure Pr n, . n, n
converges weakly to mpg,h~' as T — oo.

Now let Ay : Q" — Q" be defined by the formula

hi(wiy.ywy) = (w@fl, ...,w@,?l).

Then we have that

(le,l,n(Ul +it,&1), ., fNr,Ln(UT + it @r)) =
h(hl ((e“»‘ml :meN), ..., (e“»‘mr ‘m e N)))

Similarly to the case of the measure Pr n, .. n, » We obtain that the proba-
bility measure Pr n, .. N, n converges weakly to the measure m m(hhl)_1

as T' — oo. The Haar measure myy, is invariant with respect to transla-
tions by points from €2". Therefore,

mpr(hhy) ™t = (mp, by )R = myh ™

and the theorem is proved.
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4. Limit theorems for absolutely convergent series

Define, for wj € Qand j =1,...,7,

—AmjS
fn,] g am]vj m,n)e "

and

—Amj$
fnji(s,w;) E am]wj Jvj(m,n)e .

Then the latter series both converge absolutely for o > o1;. The proof
of this is given in [12|, Lemma 4. In this section we consider the weak
convergence of the probability measures

PT,TL(A) = VT(((fn,l(Gl + it)? sty fn,r(gr + Zt)) € A)a A€ B(Cr)a
and
Pro(A) = v ((fai (o1 +it,w1), ey far(or +it,w,)) € A), A€ B(CT).

Theorem 6. Let 0; > o015, j = 1,...,7. Then there exists a probability
measure P, on (C",B(C)) such that the measures Pr, and ﬁT,n both
converge weakly to P, as T — co.

Proof. We will apply Theorem 5. Without loss of generality

we take Ny = ... = N, def N. Then by Theorem 5 the mea-

sures PT,Nl,...,NT,n :ef PT,N,n and ﬁT,Nl,...,NT,n d:ef ﬁT,N,n both converge
weakly to the same measure Py ,, say, as 1" — oo.

First we will prove that the family of probability measures {Py,}
is tight for fixed n. Let n be a random variable defined on a certain
probability space (ﬁ,]: ,IP) and uniformly distributed on [0, 1], and let,
forj=1,...,r,

XrNjn = X1.Njn(0f) = fnjn(oj +iTn).

Then we have that

def

D
XT7N77—L = (XT,N,Lm-'-»XT,N,T,n) 2 KNyna (12)

T—o00

where Xy, is a C"-valued random element with distribution Py, ., and

D e
— means the convergence in distribution.
Let 21 = (211, -, 21r)s 29 = (221, ..., 22;) € C". Define a metric p in
C" by
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I8
1
p(z1:20) = () |21 — 25%) 7.
j=

Then, clearly, this metric induces the topology of C".
Since the series for f, ; converges absolutely for o > o015, j = 1,...,7,
we obtain, for M > 0,

lim sup P(p(KT,N,mQ) > M) <

T—o00
T

1 1
< — sup limsu / 01y, 03 1),0) At =
M N}I?l T—>oopT / p(iN7n< 1 ) )

1
1 ) IR 22
:SuthlSUpT/O (ZfN,],n(O'j+Zt)’ > dt <

M N1 T—oo o

1
1 . 1« [T N 2
< — sup limsup (T ;/O |fnjn(oj + it)] dt> —

M N1 T—oo

N
1 - Can o0y L
= M}svulci( g E ]amj|2v?(m,n)e 2)"”703)2 < R < o0,
j=1m=1

(13)

where
iN,n(Ul’ "'7UT;t) = (fN,l,n(Ul +it), -~afN,r,n(Ur +it))'

Now we take M = Re~!, where € is an arbitrary positive number. Then
(13) yields
limsup P(p(X 7 x.,,0) > M) <.

T—o00

This and (12) imply the inequality
P(p(X g0, 0) > M) < c. (14)

Now we define

K.={z€C": p(z,0) < M}.

Then, obviously, K. is a compact subset of the space C". In view of (14)
and of the definition of Py,

Pynp(Ke) >1—€
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for all N € N. This shows that the tightness of the family {Py,}.
Hence, by the Prokhorov theorem, see, for example, [1], the latter family
is relatively compact.

By the definition of f, ;(s) and fnn ;(s), for o > 015,

lim fnjn(s) = fn;(s), j=1,..r,
N—o00
and the series for f, j(s) absolutely converges. Therefore, denoting

in(ab "'7GT;t) = (fn,l(al + Zt)a "'7fn,7“(0-7‘ + Zt))>

we have, for every € > 0 and o; > 015, j = 1,...,7, that

im limsupy(p(iN’n(al, ...,JT;t),in(O'l, vy Op3 b)) = 6) <

1
N—oo T

1 (T
< lim limsupT/ P(iNn(Ul,---,Ur;t)7fn(01,---,Ur;t))dt:0- (15)
0 ' -

N—0o T—og €
Define, for o; > 01;,
Xrjn = Xrn(oj) = fnjloj+iTn), j=1,..,r,
and put

X = (X110 X1
Then by (15)

lim limsup P(p(X7,y . X7,) > €) = 0. (16)

N—oo T

The family {Py,} is relatively compact. Therefore, there exists a sub-
sequence {Pys,} C {Pn,} which converges weakly to the probability
measure P,, say, as N’ — oo. Then

D

n
N —o0

The space C" is separable. Therefore, (12), (16) and (17) show that the
conditions of Theorem 4.2 from [1]| are satisfied. Consequently,

T—o0

i.e. the measure Pr, converges weakly to the probability measure F,, on
(C",B(C")) as T — oo.

In view of (18), the measure P, is independent of the subsequence
{Pn'n}. Therefore, by (17)
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Now, repeating the above arguments for the random elements
Xrnn = (XN, XN n)

and

where
XT7N7.j7n = XT7N’]an(O-J’w]) = fN».]JL(O-J + ZTT]’WJ)7 ] = 1’ "'7r’

XT,j,n = XT,j,n(o-jij) = fj,n(aj + iTn,wj), j=1,..r

and taking into account (19), we obtain that the probability measure ﬁT,n
also converges weakly to P, as T' — oco. The theorem is proved.

5. Approximation in the mean

To pass from the functions f, j(s) to f;j(s) we need an approximation in

the mean of fi(s), ..., fr(s) and of fi(s,w1), ..., fr(s,wr) by fr1(s), ..., fnr(s)
and by fp1(s,w1), ..., fur(s,wr), respectively. Let

i(o'la -~-a0r;t) = (fl(o-l + it), ~--af7"(0'r + it)),

and
i(o-la ...,O'r;t,g) = (fl(o-l + /L'tawl)a ey fr(Ur + itvw'r‘)>7

in(glv "'70-7“;75)@) - (fn,l(o-l + it,W1), ceey fn,T(UT + Ztvw'r‘))
Theorem 7. Let o; > o015, j =1,...,7. Then

1 (T
lim limsupT/ p(f(o1,..y005t), f (01, .y 005t)) At =0
0

N—oo T 0o

and

1 T
lim limsupT/ p(i(al,...,ar;t,g),in(al,...,ar;t,g))dt:0
0

—00 T S0

for almost all (w1, ...,wy).
Proof. Suppose that the function f(s) satisfies the conditions of The-
orem A, and for o > o1,

fu(s) = Z amv(m,n)e s,
m=1
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fu(s,w) = Z amw(m)v(m,n)e=ms,
m=1

where v(m,n) = exp{—e~A=Am)2} with oy > 0, — 01, and w € Q.
Then in [12] it was obtained that, for o > o1,

1 (T
lim limsup/ |f(o+it) — fa(o+it)|dt =0
0

N—oo 700

and

1 T
lim limsup/ |f(o+it,w) — fu(o+it,w)|dt =0
0

N—oo T
for almost all w € Q. Since

T

pz1,22) <D |21 — 295,
j=1

hence the theorem follows.

6. Joint limit theorems for f;(s) and f;(s,w)

In this section we begin to prove Theorem 1. We will prove limit theorems
for the vectors f(o1,...,0,;t) and f(o1,...,0.;t,w) defined in Section 5.

Theorem 8. Leto; > 015, j = 1,...,7. Then the probability measures
Pr and

~

Pr(A) = VT(i(O'l, ey Oy tw) € A), A e B(C"),

both converge weakly to the same probability measure on (C", B(C")) as
T — o0.

Proof. We argue similarly to the proof of Theorem 6. By Theorem 6
the probability measures Pr, and Pr, converge weakly to the same
measure P, on (C",B(C")) as T — oo. We will show that the family of
probability measures { P, : n € N} is tight. For this, we will preserve the
notation of previous sections.

By Theorem 6

Xpp o X (20)

T—o00 n’

where X, is a C"-valued random element with distribution P,. Since the
series (11) converges and the series for each f,, ; converges absolutely, we
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have, for M > 0,

limsup P(p(Xr,,,0) > M) <
T—o0
T

1 1
< — suplimsu / 01y, 0051),0)dt =
Mn}rl) T—»oopT'0 p(in( 1 r ) )

n>1 T—oo

1
1 1 (7 3
< i sup lim sup <T ]z;/o | fr,j(o + it)|? dt) =

1
1 _ 1 (T 2) 2
_MsuphmsupT/O <j§_1‘fn’j(0—j+2t)’ ) dt <

n>1 T—oo

1
1 T oo 3 . E
= MSUP<§ E \amj\%?-(m,n)e 2)‘”0]) <
n>1

j=1m=1
1 r oo %
S M<Z > |amj|2€_2Amj”j> < R < oo,
j=1m=1

Hence, taking M = Re™ !, we find that

limsup P(p(X7.,,,0) > M) < c.

T—oo

Consequently, in view of (20)
P(p(X,,,0) > M) <e.

This shows that
P, (K >1—¢€

for all n € N, i.e. the family {P,} is tight. Hence, by the Prokhor

ov

theorem, it is relatively compact. Therefore, there exists a subsequence
{P,,} C {P,} which converges weakly to the probability measure P, say,

on (C",B(C")) as ny — oco. Then

D

- n:)oo
Let, for o; > 01
Xrj=Xr;(05) = fjloj+iTn), j=1,..r

and

Xo= (X1, ..., X1p).

P. (21)
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Then by the first assertion of Theorem 7

lim limsupP(p(X 1, X7) > €) <

nTO0 T oo

1 (T
lim limsup T/ p(fn(o'l,...,or;t),f(ol,...,ar;t)) =0.
, P\ I

This, (20), (21) and Theorem 4.2 of [1] show that
Xp — P (23)
Now let, for o; > 0y;,
Xry = Xrj(05) = fi(oj +iTn.w), j=1,r,

and

X, = (XT,l, -~-75€T,r)~

Then, reasoning similarly as above for the vectors )A(T,n and X 7, and
using (23) and the second assertion of Theorem 7, we obtain that the
probability measure ﬁT also converges to P as T' — oco0. The theorem is
proved.

7. Proof of Theorem 1

It remains to identify the limit measure P in Theorem 8. For this, we
will apply some elements of the ergodic theory.

Let a;; = {e”™mit : m € N} for t € R, j = 1,...,7. Then, for each
J, {arj : t € R} is a one-parameter group. We define the one-parameter
family {¢:; : t € R} of transformations on Q; by ¢;; = a¢jw; for
w; € 5,7 =1,...,r. Then we obtain a one parameter group {¢;; : t € R}
of measurable transformations on €;, j =1,...,r.

Define {&; : t € R} = {1 : t € R} x ... x {¢y, : t € R}. Then
{®; : t € R} is a one-parameter group of measurable transformations on
Qr.

Lemma 9. The one-parameter group {®; : t € R} is ergodic.

Proof. In [18] it was proved that {¢;; : t € R} for each j =1,...,r is
an ergodic one—parameter group. Hence the lemma follows.

Proof of Theorem 1. Let A € B(C") be a continuity set of the measure
P in Theorem 8. Then, by Theorem 10, for o1 > 011, ..., 0 > 01y,

TlEn vr(f(o1,...,omt,w) € A) = P(A) (24)
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for almost all w € Q". Now we fix the set A and define a random variable

6 on (Q",B(Q"), mp,) by

0(w) = {1 if F(o1,...,0mw) € A,

0 if E(Ulv"'var;ﬂ) ¢ A.
Then

E(0) :/ Odmpy, = mHT(w €Q: Foy,...,0n5w) € A) def Pr
Qr

is the distribution of the random element F'. Since by Lemma 9 the one—
parameter group {®, : t € R} is ergodic, the random process 0(®;(w)) is
also ergodic. Therefore, by the Birkkhoff-Khinchine theorem

T
i [ 6w at = E(6) (26)

T—o00

for almost all w € Q". The definitions of 6 and of {®; : t € R} yield

;/OT O(Py(w))dt = l/T(i(O'l, vy O tw) € A).
Hence and from (25), (26), we deduce that
Tlgréo vr(f(o1, ..., t,w)) = Pp(A)
for almost all w € Q. Consequently, by (24)
P(4) = Pp(4)

for any continuity set A of the measure P. It is well known that all
continuity sets constitute the determining class. Therefore,

P(A) = Pr(A)

for all A € B(C"), and the theorem is proved.
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