Geometry monoid of the left distributivity and the left idempotency

Přemysl Jedlička

Communicated by L. Marki

Abstract

We construct here the geometry monoids of LDI (left distributive idempotent) and of LDLI (left distributive left idempotent) identities. We study their properties and construct a monoid with solvable word problem based on relations of the geometry monoid of LDLI.

Introduction

Geometry monoids and geometry groups are structures that describe the action of identities on terms. The most known ones are the Thompson group F as the geometry group of the associativity and the Thompson group V as the geometry group of the associativity and the commutativity [8]. Actually, every identity has its geometry monoid and its geometry group but the monoid can be too complicated and the group can be too far away from the monoid to tell us something about the investigated identity.

Nevertheless, in some cases, like of the left distributivity [5], studying the geometry monoid brought a solution of the world problem. And the method can be used also for some other identities, like $x(y z)=(x y)(y z)$ [6]. Hence a question arose whether this approach can or cannot solve the world problem of the left distributivity and the idempotency (LDI), that means of identities $x(y z)=(x y)(x z)$ and $x=x x$. Regrettably, only little progress has been achieved so far.

When studying the problem, the author focused on the identity of the left idempotency $x y=(x x) y$ which appears naturally in some left distributive structures (e.g. left distributive left quasigroups). It seems that the combination of the left distributivity and the left idempotency
(LDLI) is very close to LDI [9] and that their word problems could be of the same difficulty to solve.

It is likely that any attempt to attack the word problem of LDI considering its monoid of geometry is hopeless. However, the geometry monoid of LDLI looks more friendly and we manage here to construct a monoid with solvable word problem based on the geometry monoid. This monoid can serve as a corner stone for further constructions involving the geometric monoid of LDLI.

We use in the paper the same approach as Dehornoy used for proving properties of the geometry monoid of the left distributivity [4]. In Section 1 we introduce the geometry monoids for LDI and LDLI. In Section 2 we study some relations in the geometry monoids and write them down in a presentation. Monoids with this presentations are called syntactical. In Section 3 we study the syntactical monoids and establish some more complex relations. In Section 4 we prove that for any pair of elements there exists a common right multiple. We use the result in Section 5 where we prove by the word reversing method that the syntactical monoid of LDLI is left cancellative, has solvable word problem and its left divisibility order forms a lattice.

1. The geometry monoids

The construction of geometry monoids is already standard. We give thus only a brief description of the monoids properties and leave some propositions unproved. A more detailed description is given in [10].

We fix an infinite set of variables $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and we denote by T the set of all terms with these variables. We shall consider three types of identities

$$
\begin{aligned}
& \text { left distributivity (LD) } \\
& \text { idempotency (I) } \\
& \text { left idempotency (LI) }
\end{aligned}
$$

$$
\begin{aligned}
x(y z) & =(x y)(x z) \\
x & =x x \\
x y & =(x x) y
\end{aligned}
$$

To avoid excessive uses of parenthesis we write $x y z$ instead of $x(y z)$. We shall consider two families of identities: left distributivity + idempotency (LDI) and left distributivity + left idempotency (LDLI). We denote by $\stackrel{\text { LDI }}{=}$ and $\stackrel{\text { LDLI }}{=}$ the congruences on T generated by these families respectively.

Applying an identity means replacing a subterm of a specific form by a term of another specific form. We shall formalise this situation introducing addresses of subterms. Each subterm is represented by a
sequence from $\{0,1\}^{*}$ where 0 means left and 1 means right. The empty sequence is denoted by \varnothing. The set of all addresses is denoted \mathbf{A}.

Definition. For each address α, we define D_{α} as the partial function from T to T that replaces the subterm $t_{1} t_{2} t_{3}$ on the address α by the term $t_{1} t_{2} \cdot t_{1} t_{3}$. We also define I_{α} as the partial function from T to T that replaces the subterm t_{1} on the address α by the term $t_{1} t_{1}$. We write $t \bullet \mathrm{D}_{\alpha}$, respectively $t \bullet \mathrm{I}_{\alpha}$ to be the images of a term t under these mappings.

Example 1.1. Consider $t=x_{1} x_{2} x_{3} x_{4}$ (see Figure 1). The term belongs to the domain of the operators $\mathrm{D}_{\varnothing}, \mathrm{D}_{1}, \mathrm{I}_{\varnothing}, \mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{10}, \mathrm{I}_{11}, \mathrm{I}_{110}$ and I_{111}.

Figure 1: The operators D_{1} and I_{1} and their actions on the term $x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$.

We have not defined what is an LI-operator. In fact, we do not need it if we notice that replacing a subterm $t_{1} t_{2}$ on an address α by $t_{1} t_{1} \cdot t_{2}$ is the same as doubling the subterm on the address $\alpha 0$, i.e., applying the operator $\mathrm{I}_{\alpha 0}$.

We also need a formal notation for an operator that can mean either an D_{α} or an I_{α}. Since we will work in different contexts (LD, LDI or LDLI), we should be careful and give an exact definition of what such an operator DI_{α} means.

Definition. Let $\mathbf{A}_{\text {LD }}$ and $\mathbf{A}_{\text {I }}$ be two disjoint copies of the address set \mathbf{A}. We denote by $\mathbf{A}_{\text {LDI }}$ the set $\mathbf{A}_{\text {LD }} \cup \mathbf{A}_{I}$ and, for each α in $\mathbf{A}_{\text {LDI }}$, we define DI_{α} either as D_{α} if α belongs to \mathbf{A}_{LD}, or as I_{α} if α belongs to \mathbf{A}_{I}. We denote also by $\mathbf{A}_{\text {II }}$ the subset of \mathbf{A}_{I} defined as $\left\{\alpha \in \mathbf{A}_{\mathrm{I}} ; \exists \gamma: \alpha=\gamma 0\right\}$ and we denote by $\mathbf{A}_{\text {LDII }}$ the set $\mathbf{A}_{\mathrm{LD}} \cup \mathbf{A}_{\mathrm{LI}}$.

The following lemma results immediately from the definition of the operators:

Lemma 1.2. For each address α in $\mathbf{A}_{\mathrm{LDI}}$, the operator DI_{α} is a partial injective mapping to T; its inverse is the operator $\mathrm{DI}_{\alpha}^{-1}$ defined as DI_{α} but exchanging the roles of $t_{1} t_{2} t_{3}$ and $t_{1} t_{2} \cdot t_{1} t_{3}$, respectively t_{1} and $t_{1} t_{1}$.

All the following material in the section is written for the family LDI but we can formulate all the things the same way for the family LDLI.

Definition. The geometry monoid of LDI is the monoid $\mathcal{G}_{\text {LDI }}$ generated by the operators $\mathrm{DI}_{\alpha}^{ \pm 1}$ with α in $\mathbf{A}_{\mathrm{LDI}}$ using the composition. Analogically, the positive geometry monoid is the monoid $\mathcal{G}_{\mathrm{LDI}}^{+}$generated by the operators $\operatorname{DI}_{\alpha}$ with α in $\mathbf{A}_{\text {LDI }}$

The monoid $\mathcal{G}_{\text {LDI }}$ is not a group because the mapping $\mathrm{DI}_{\alpha}^{-1} \circ \mathrm{DI}_{\alpha}$ is not generally the identical mapping on T, it is only the identity on the domain of DI_{α}.

By definition, the elements of $\mathcal{G}_{\mathrm{LDI}}^{+}$are finite products of operators DI_{α} hence they are of the form

$$
\mathrm{DI}_{\alpha_{p}} \circ \cdots \circ \mathrm{DI}_{\alpha_{2}} \circ \mathrm{DI}_{\alpha_{1}} .
$$

Such elements can be expressed as finite sequences of addresses in $\mathbf{A}_{\text {LDI }}$, i.e., by words on $\mathbf{A}_{\mathrm{LDI}}$. We denote by $\mathbf{A}_{\mathrm{LDI}}^{*}$ the set of such words. The product of two words u and v is the concatenation of the words, denoted by $u v$ or $u \cdot v$. We write the ε symbol for the empty word.

Remark 1.3. We should not confuse \varnothing and ε. The word ε is a word of length 0 . The word \varnothing is a word of length 1 that consists of the address \varnothing (the empty address).

We consider that the operators DI_{α} act on the right, i.e., that we compose the operators from the left to the right. Therefore, in order not to confuse the composition to the right with the composition \circ, we use the symbol •.

Definition. For $\alpha_{1} \cdots \alpha_{p}$ in $\mathbf{A}_{\mathrm{LDI}}^{*}$, the operator DI_{u} is defined as $\mathrm{DI}_{\alpha_{1}} \cdot$ $\cdots \cdot \mathrm{DI}_{\alpha_{p}}$, i.e., as $\mathrm{DI}_{\alpha_{p}} \circ \cdots \circ \mathrm{DI}_{\alpha_{1}}$. The operator $\mathrm{DI}_{\varepsilon}$ is defined as the identity.

Consider now the monoid $\mathcal{G}_{\text {LDI }}$. Its elements are of the form

$$
\operatorname{DI}_{\alpha_{1}}^{e 1} \cdot \operatorname{DI}_{\alpha_{2}}^{e_{2}} \cdots \cdot \operatorname{DI}_{\alpha_{p}}^{e_{p}}
$$

with α_{i} in $\mathbf{A}_{\text {LDI }}$ and $e_{i}= \pm 1$, for i between 1 and p. To specify such a product, it is natural to introduce the formal inverse α^{-1} of an address α in $\mathbf{A}_{\text {LDI }}$. We write $\mathbf{A}_{\text {LDI }}^{-1}$ for the set of formal inverses of addresses in $\mathbf{A}_{\text {LDI }}$, and $\mathbf{A}_{\text {LDI }}^{ \pm 1}$ for the set $\mathbf{A}_{\text {LDI }} \cup \mathbf{A}_{\text {LDI }}^{-1}$.

Definition. For $w=\alpha_{1}^{e_{1}} \cdots \cdots \alpha_{p}^{e_{p}}$ in $\left(\mathbf{A}_{\mathrm{LDI}}^{ \pm 1}\right)^{*}$, the operator DI_{w} is defined as the product $\mathrm{DI}_{\alpha_{1}}^{e_{1}} \cdots \cdot \mathrm{DI}_{\alpha_{p}}^{e_{p}}$.

The elements in $\mathbf{A}_{\text {LDI }}^{*}$ are called positive words and the ones in $\left(\mathbf{A}_{\text {LDI }}^{ \pm 1}\right)^{*}$ are called simply words.

Definition. For a term t and a word w in $\left(\mathbf{A}_{\text {LDI }}^{ \pm 1}\right)^{*}$, the term $t \cdot w$ is defined as the image of t under the mapping DI_{w}, if it exists.

By construction, one has the relation $t \cdot w \stackrel{\text { LDI }}{=} t$ for each word w in $\left(\mathbf{A}_{\mathrm{LDI}}^{ \pm 1}\right)^{*}$, if t belongs to the domain of DI_{w}. In fact, if we consider the definition of an equivalence on terms, we get immediately an equivalence:

Proposition 1.4. Let t and t^{\prime} be two terms in T. The terms t and t^{\prime} are LDI-equivalent if and only if an operator in $\mathcal{G}_{\mathrm{LDI}}$ sends t to t^{\prime}, i.e., if we have $t^{\prime}=t \cdot w$ for a word w on $\mathbf{A}_{\mathrm{LDI}}^{ \pm 1}$.

In order to be able to study the operators more deeply, we have to describe their domains. This can be done by a rather standard technique and hence there is no need to prove the results here properly. The reader can look into Dehornoy's book [4], where the results were proved properly for the left distributivity, and check that it works exactly the same way for LDI (one needs only to notice that a term belongs to the domain of a positive operator DI_{α} if and only if it is large enough). We give here thus the results of the investigation only.

Definition. A substitution h is a homomorphism $h: T \rightarrow T$. A substitute of a term t is a term $h(t)$ for a substitution h.

Proposition 1.5. [10] For each positive word u on $\mathbf{A}_{\text {LDI }}$ there exists a unique (up to renaming of variables) pair of terms $\left(t_{u}^{L}, t_{u}^{R}\right)$ such that the operator DI_{u} sends a term t on a term t^{\prime} if and only if there exists a substitution h such that $\left(t_{u}^{L}\right)^{h}=t$ and $\left(t_{u}^{R}\right)^{h}=t^{\prime}$.

Example 1.6. Take, for instance, $\mathrm{D}_{u}=\mathrm{D}_{0} \cdot \mathrm{I}_{10}$. Every term in the domain of D_{u} has to contain the addresses 010 and 10. The most general such a term is $t_{u}^{L}=x_{1} x_{2} x_{3} \cdot x_{4} x_{5}$ and one has $t_{u}^{R}=t_{u}^{L} \cdot u=\left(x_{1} x_{2} \cdot x_{1} x_{3}\right)$. $x_{4} x_{4} \cdot x_{5}$.

Proposition 1.7. [10] Let u_{1}, \ldots, u_{m} be two words on $\mathbf{A}_{\text {LDI }}$. Then the intersection of the domains of the operators $\mathrm{DI}_{u_{1}}, \ldots, \mathrm{DI}_{u_{m}}$ is the set of all the substitutes of a unique term $t_{u_{1}, \ldots, u_{m}}^{L}$.
Example 1.8. Consider $\mathrm{DI}_{u_{1}}=\mathrm{D}_{0} \cdot \mathrm{I}_{10}$ and $\mathrm{DI}_{u_{2}}=\mathrm{D} \varnothing \cdot \mathrm{D}_{1} \cdot \mathrm{I}_{00}$. Any term in the domain of both the operators have to contain the addresses 010 and 10 (from u_{1}) as well as the addresses 10,110 and 0 (from u_{2}). The most general such a term is $t_{u_{1}, u_{2}}^{L}=x_{1} x_{2} x_{3} \cdot x_{4} x_{5} x_{6}$.

2. Relations in the positive geometry monoids

In this section we find some relations true in the positive geometry monoids. We consider the monoid $\mathcal{G}_{\text {LDII }}^{+}$as a submonoid of the monoid $\mathcal{G}_{\text {LDI }}^{+}$ and hence it suffices to state all the found results for $\mathcal{G}_{\mathrm{IDI}}^{+}$.

Definition. Let t be a term. An address α is called internal if there exists a subterm of t at the address α. The set of all internal addresses is called the skeleton of t and denoted by $\operatorname{Skel}(t)$. The outline of t, denoted by $\operatorname{Out}(t)$ is the set of all addresses of all leaves of t. An addresses α is called a prefix of an address β if we have $\alpha \gamma=\beta$ for some address γ. We write then $\alpha \sqsubseteq \beta$. If neither α is a prefix of β nor β is a prefix of α then we say that they are orthogonal and we write $\alpha \perp \beta$.

We first notice that if two operators act on orthogonal addresses then they act independently on independent subterms. Therefore we can commute them and obtain, for all α, β, γ,

$$
\mathrm{DI}_{\alpha 0 \gamma} \cdot \mathrm{DI}_{\alpha 1 \beta}=\mathrm{DI}_{\alpha 1 \beta} \bullet \mathrm{DI}_{\alpha 0 \gamma}
$$

Hence we can consider only pairs of addresses where one is a prefix of the other. For facilitating the notation we introduce the shifting of addresses.

Definition. For w a word on $\mathbf{A}_{\mathrm{LDI}}^{ \pm 1}$ and γ an address in \mathbf{A}, we denote by $\operatorname{sh}_{\gamma}(w)$, or simply by γw, the γ-shift of w defined as the word obtained from w replacing each address $\alpha^{ \pm 1}$ by the address $\gamma \alpha^{ \pm 1}$.

Example 2.1. For $\mathrm{DI}_{u}=\mathrm{D}_{01} \cdot \mathrm{I}_{110} \cdot \mathrm{I}_{\varnothing}$ one has $\mathrm{DI}_{1 u}=\mathrm{D}_{101} \cdot \mathrm{I}_{1110} \cdot \mathrm{I}_{1}$. Analogously, $\mathrm{DI}_{1 \varepsilon}=\mathrm{DI}_{\varepsilon}=\mathrm{id}_{T}$ since ε is the empty address.

We immediately see
Lemma 2.2. For each $\alpha, \mathrm{DI}_{w}=\mathrm{DI}_{w^{\prime}}$ implies $\mathrm{DI}_{\alpha w}=\mathrm{DI}_{\alpha w^{\prime}}$.
Hence we can suppose from now on that one of the operators is $\mathrm{DI}_{\varnothing}$. Let us start with $\mathrm{I} \varnothing$. If an operator DI_{α} acts on a term t and we then double the term, it is the same as to apply $\mathrm{DI}_{0 \alpha} \cdot \mathrm{DI}_{1 \alpha}$ on the term $t \cdot t$. Therefore we get

$$
\mathrm{DI}_{\alpha} \cdot \mathrm{I}_{\varnothing}=\mathrm{I}_{\varnothing} \cdot \mathrm{DI}_{0 \alpha} \cdot \mathrm{DI}_{1 \alpha}
$$

Now consider the operator D_{\varnothing}. If an operator acts in the left subterm of a term t, for instance $\mathrm{DI}_{0 \alpha}$, its image is copied by $\mathrm{D} \varnothing$ to two addresses, namely 00α and 10α. Therefore we obtain

$$
\mathrm{DI}_{0 \alpha} \cdot \mathrm{D}_{\varnothing}=\mathrm{D}_{\varnothing} \cdot \mathrm{DI}_{00 \alpha} \cdot \mathrm{DI}_{10 \alpha}
$$

Analogically, the subterm 10 is sent to 01 and the subterm 11 is left untouched. Therefore we have

$$
\begin{aligned}
& \mathrm{DI}_{10 \alpha} \cdot \mathrm{D}_{\varnothing}=\mathrm{D}_{\varnothing} \cdot \mathrm{DI}_{01 \alpha}, \\
& \mathrm{DI}_{11 \alpha} \cdot \mathrm{D}_{\varnothing}=\mathrm{D}_{\varnothing} \cdot \mathrm{DI}_{11 \alpha} .
\end{aligned}
$$

However, not all relations are that simple. We present here a "relation" where we have to be careful about the domain of the operators.

Lemma 2.3. For each term t which is not a variable, we have

$$
t \cdot \mathrm{I}_{1} \cdot \mathrm{D}_{\varnothing}=t \cdot \mathrm{I}_{\varnothing}
$$

Proof. Let $t=t_{1} \cdot t_{2}$. Left side makes $t \mapsto t_{1} \cdot t_{2} \cdot t_{2} \mapsto\left(t_{1} \cdot t_{2}\right) \cdot\left(t_{1} \cdot t_{2}\right)$ which is clearly the image of t under $\mathrm{I} \varnothing$.

Although $\mathrm{I}_{1} \cdot \mathrm{D} \varnothing=\mathrm{I} \varnothing$ is not true (no variable is in the domain of the left hand side operator), once you multiply the "equality" on the left by anything, you obtain a real equality. Analogously, if you multiply the "equality" by something (not I_{\varnothing} nor I_{0} nor I_{1}) on the right, you demand that each term in the domain of both operators is more complex than a variable and hence you obtain an equality.

Now there are three more relations that are not so evident:
Lemma 2.4. One has

$$
\begin{aligned}
\mathrm{D}_{1} \cdot \mathrm{D}_{\varnothing} \cdot \mathrm{D}_{1} \cdot \mathrm{D}_{0} & =\mathrm{D} \varnothing \cdot \mathrm{D}_{1} \cdot \mathrm{D} \varnothing \\
\mathrm{I}_{10} \cdot \mathrm{D}_{\varnothing} \cdot \mathrm{D}_{0} & =\mathrm{D}_{\varnothing} \cdot \mathrm{I}_{0}, \\
\mathrm{I}_{1} \cdot \mathrm{D}_{\varnothing} \cdot \mathrm{D}_{1} \cdot \mathrm{D}_{0} & =\mathrm{D}_{\varnothing} \cdot \mathrm{I}_{\varnothing} .
\end{aligned}
$$

Proof. (i) The left side treats a term $t_{1} \cdot t_{2} \cdot t_{3} \cdot t_{4}$ followingly: $t_{1} \cdot t_{2} \cdot t_{3} \cdot t_{4} \mapsto$ $t_{1} \cdot\left(t_{2} \cdot t_{3}\right) \cdot t_{2} \cdot t_{4} \mapsto\left(t_{1} \cdot t_{2} \cdot t_{3}\right) \cdot t_{1} \cdot t_{2} \cdot t_{4} \mapsto\left(t_{1} \cdot t_{2} \cdot t_{3}\right) \cdot\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{4} \mapsto$ $\left(\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{3}\right) \cdot\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{4}$. The right side makes: $t_{1} \cdot t_{2} \cdot t_{3} \cdot t_{4} \mapsto$ $\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{3} \cdot t_{4} \mapsto\left(t_{1} \cdot t_{2}\right) \cdot\left(t_{1} \cdot t_{3}\right) \cdot t_{1} \cdot t_{4} \mapsto\left(\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{3}\right) \cdot\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{4}$.
(ii) The left side sends a term $t_{1} \cdot t_{2} \cdot t_{3}$ to $t_{1} \cdot\left(t_{2} \cdot t_{2}\right) \cdot t_{3} \mapsto\left(t_{1} \cdot t_{2}\right.$. $\left.t_{2}\right) \cdot t_{1} \cdot t_{3} \mapsto\left(\left(t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{2}\right) \cdot t_{1} \cdot t_{3}$ which is clearly the same as the image of $t_{1} \cdot t_{2} \cdot t_{3}$ under the right side. The third relation is $\mathrm{D}_{\varnothing} \cdot \mathrm{I}_{\varnothing}=\mathrm{I}_{\varnothing} \cdot \mathrm{D}_{1} \cdot \mathrm{D}_{0}$ combined with Lemma 2.3.

We finish at this point the study of relations in the geometry monoid since it is not too comfortable: we have to check every time equality of mappings and for more complicated relations it becomes too technical. In order to avoid this computation with operators, we are going to present formal monoids that could be isomorphic to geometry monoids; we simply
give the presentations of the formal monoids. These formal monoids are called syntactical monoids. Since the monoids can differ from the geometry ones, we have to use formally different elements.

Definition. The set $\mathcal{A}_{\text {IDI }}$ is defined as the set of symbols d_{α} and i_{α}, with α in $\mathbf{A}_{\text {LDI }}$. An LDI-relation is a pair of words in $\mathcal{A}_{\text {LDI }}$ among the following relations:

$$
\begin{array}{cl}
\left(\mathrm{d}_{\gamma 0 \alpha} \cdot \mathrm{~d}_{\gamma 1 \beta}, \mathrm{~d}_{\gamma 1 \beta} \cdot \mathrm{~d}_{\gamma 0 \alpha}\right) & \text { type } \perp \\
\left(\mathfrak{i}_{\gamma 0 \alpha} \cdot \mathrm{~d}_{\gamma 1 \beta}, \mathrm{~d}_{\gamma 1 \beta} \cdot \mathfrak{i}_{\gamma 0 \alpha}\right) & \text { type } \perp \\
\left(\mathrm{d}_{\gamma 0 \alpha} \cdot \mathfrak{i}_{\gamma 1 \beta}, \mathfrak{i}_{\gamma 1 \beta} \cdot \mathrm{~d}_{\gamma 0 \alpha}\right) & \text { type } \perp \\
\left(\mathfrak{i}_{\gamma 0 \alpha} \cdot \mathfrak{i}_{\gamma 1 \beta}, \mathfrak{i}_{\gamma 1 \beta} \cdot \mathfrak{i}_{\gamma 0 \alpha}\right) & \text { type } \perp \\
\left(\mathrm{d}_{\gamma 0 \alpha} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma} \cdot \mathrm{d}_{\gamma 00 \alpha} \cdot \mathrm{~d}_{\gamma 10 \alpha}\right) & \text { type D0 } \\
\left(\mathrm{d}_{\gamma 10 \alpha} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma} \cdot \mathrm{d}_{\gamma 01 \alpha}\right) & \text { type D10 } \\
\left(\mathrm{d}_{\gamma 11 \alpha} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma} \cdot \mathrm{d}_{\gamma 11 \alpha}\right) & \text { type D11 } \\
\left(\mathrm{d}_{\gamma 1} \cdot \mathrm{~d}_{\gamma} \cdot \mathrm{d}_{\gamma 1} \cdot \mathrm{~d}_{\gamma 0}, \mathrm{~d}_{\gamma} \cdot \mathrm{d}_{\gamma 1} \cdot \mathrm{~d}_{\gamma}\right) & \text { type D1 } \\
\left(\mathfrak{i}_{\gamma \alpha} \cdot \mathfrak{i}_{\gamma}, \mathfrak{i}_{\gamma} \cdot \mathfrak{i}_{\gamma 0 \alpha} \cdot \mathfrak{i}_{\gamma 1 \alpha}\right) & \text { type I } \\
\left(\mathrm{d}_{\gamma \alpha} \cdot \mathfrak{i}_{\gamma}, \mathfrak{i}_{\gamma} \cdot \mathrm{d}_{\gamma 0 \alpha} \cdot \mathrm{~d}_{\gamma 1 \alpha}\right) & \text { type DI } \\
\left(\mathfrak{i}_{\gamma 0 \alpha} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma} \cdot \mathfrak{i}_{\gamma 00 \alpha} \cdot \mathfrak{i}_{\gamma 10 \alpha}\right) & \text { type ID0 } \\
\left(\mathfrak{i}_{\gamma 10 \alpha} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma} \cdot \mathfrak{i}_{\gamma 01 \alpha}\right) & \text { type ID10 } \\
\left(\mathfrak{i}_{\gamma 10} \cdot \mathrm{~d}_{\gamma} \cdot \mathrm{d}_{\gamma 0}, \mathrm{~d}_{\gamma} \cdot \mathfrak{i}_{\gamma 0}\right) & \text { type ID10+ } \\
\left(\mathfrak{i}_{\gamma 11 \alpha} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma} \cdot \mathfrak{i}_{\gamma 11 \alpha}\right) & \text { type ID11 } \\
\left(\mathfrak{i}_{\gamma 1} \cdot \mathrm{~d}_{\gamma} \cdot \mathrm{d}_{\gamma 1} \cdot \mathrm{~d}_{\gamma 0}, \mathrm{~d}_{\gamma} \cdot \mathfrak{i}_{\gamma}\right) & \text { type ID1 } \\
\left(\mathrm{d}_{\gamma \alpha} \cdot \mathfrak{i}_{\gamma 1} \cdot \mathrm{~d}_{\gamma}, \mathrm{d}_{\gamma \alpha} \cdot \mathfrak{i}_{\gamma}\right) & \text { type C } \\
\left(\mathfrak{i}_{\gamma \alpha} \cdot \mathfrak{i}_{\gamma 1} \cdot \mathrm{~d}_{\gamma}, \mathfrak{i}_{\gamma \alpha} \cdot \mathfrak{i}_{\gamma}\right) & \text { type C } \\
\left(\mathrm{d}_{\gamma} \cdot \mathfrak{i}_{\gamma 11} \cdot \mathrm{~d}_{\gamma 1}, \mathrm{~d}_{\gamma} \cdot \mathfrak{i}_{\gamma 1}\right) & \text { type C } \\
\left(\mathfrak{i}_{\gamma 1} \cdot \mathrm{~d}_{\gamma} \cdot \mathfrak{i}_{\gamma \alpha}, \mathfrak{i}_{\gamma} \cdot \mathfrak{i}_{\gamma \alpha}\right) & \lg (\alpha) \geq 2 \\
\left(\mathfrak{i}_{\gamma 1} \cdot \mathrm{~d}_{\gamma} \cdot \mathrm{d}_{\gamma \alpha}, \mathfrak{i}_{\gamma} \cdot \mathrm{d}_{\gamma \alpha}\right) & \text { type C } \\
\text { and }
\end{array}
$$

The set $\mathcal{A}_{\text {IDLI }}$ is defined as the set of symbols d_{α} and \mathfrak{i}_{α}, with α in $\mathbf{A}_{\text {LDLI }}$. An LDLI-relation is an LDI-relation (u, v) such that u and v belong to $\mathcal{A}_{\text {LDII }}$. The relation $\equiv_{\mathrm{LDI}}^{+}$is defined as the congruence of the monoid $\mathcal{A}_{\mathrm{LDI}}^{*}$ generated by the LDI-relations. The relation $\equiv_{\text {LDLI }}^{+}$is defined analogously.

If we want to prove that syntactical monoids are isomorphic to geometry monoids, we have to prove $\mathrm{di}_{u} \equiv_{\text {LDI }}^{+} d \mathrm{~d}_{v}$ if and only if $\mathrm{DI}_{u}=\mathrm{DI}_{v}$, for all pairs u, v. One implication is immediate:

Proposition 2.5. For u, v in $\mathbf{A}_{\mathrm{LDI}}^{*}$, the relation $\mathrm{di}_{u} \equiv_{\mathrm{LDI}}^{+}$di i_{v} gives $\mathrm{DI}_{u}=$ DI_{v}.

Proof. If $\left(\mathrm{di}_{u}, \mathrm{di}_{v}\right)$ is an LDI-relation, the equality $\mathrm{DI}_{u}=\mathrm{DI}_{v}$ falls to one of the types discussed before the definition (possibly up to a shift, which does not make a difference due to Lemma 2.2). The rest is evident.

We will not prove here the other direction, its validity is unknown for LDI and known to be false for LDLI, as we will see in the last section. Nevertheless, the monoids given by these presentations are rich enough to have all the properties we need in our further study. And, of course, since the geometry monoids are factors of the syntactical monoids, all relations, which are proved in the syntactical monoids, hold also in the geometry monoids.

3. Syntactical relations

In this section we establish some more complex relations. We will work with both the relations $\equiv_{\text {LDI }}^{+}$and $\equiv_{\text {LDII }}^{+}$at once. To facilitate the expression, we will write only the symbol \equiv^{+}: the expression " $u \equiv^{+} v$, for all words u and $v "$ shall mean $u \equiv_{\mathrm{LDI}}^{+} v$, for all words u and v in $\mathbf{A}_{\mathrm{LDI}}^{*}$, as well as $u \equiv_{\text {LDLI }}^{+} v$, for all words u and v in $\mathbf{A}_{\text {LDII }}^{*}$. If some relation involves $\equiv_{\text {LDI }}^{+}$ only, we write $\equiv_{\text {LDI }}^{+}$explicitly.

Proposition 3.1. For u, u^{\prime} two words and α in \mathbf{A}, the relation $\mathrm{di}_{u} \equiv^{+}$ $\operatorname{di}_{u^{\prime}}$ gives $\mathrm{di}_{\alpha u} \equiv^{+} \mathrm{di}_{\alpha u^{\prime}}$.

Lemma 3.2. Let u_{1} and u_{2} be two words such that each address in u_{1} is orthogonal to each address in u_{2}. Then we have

$$
\begin{aligned}
& d i_{u_{1}} \cdot d i_{u_{2}} \equiv^{+} d i_{u_{2}} \cdot d i_{u_{1}} \\
& d i_{u_{1}} \cdot d i_{u_{2}} \cdot i_{\varnothing} \equiv_{\text {LDI }}^{+} i_{\varnothing} \cdot d i_{0 u_{1}} \cdot d i_{0 u_{2}} \cdot d i_{1 u_{1}} d i_{1 u_{2}} \\
& d i_{0 u_{1}} \cdot d i_{0 u_{2}} \cdot d_{\varnothing} \equiv^{+} d_{\varnothing} \cdot \operatorname{di}_{00 u_{1}} \cdot \operatorname{di}_{00 u_{2}} \cdot \operatorname{di}_{10 u_{1}} \operatorname{di}_{10 u_{2}} \\
& \mathrm{di}_{10 u_{1}} \cdot \mathrm{di}_{10 u_{2}} \cdot \mathrm{~d}_{\varnothing} \equiv^{+} \mathrm{d}_{\varnothing} \cdot \mathrm{di}_{01 u_{1}} \mathrm{di}_{01 u_{2}} \\
& d i_{11 u_{1}} \cdot \operatorname{di}_{11 u_{2}} \cdot \mathrm{~d}_{\varnothing} \equiv^{+} \mathrm{d}_{\varnothing} \cdot \mathrm{di}_{11 u_{1}} \mathrm{di}_{11 u_{2}}
\end{aligned}
$$

Proof. Use the induction on $\lg \left(u_{1}\right)+\lg \left(u_{2}\right)$.
Now we define the heirs of a set B. The heirs are addresses obtained as images of B by an operator DI_{u}.

Definition. Let B a set of addresses of \mathbf{A}, and let u be a word on $\mathbf{A}_{\text {LDI }}$. The set Heir (B, u) of all heirs of addresses in B by the operator DI_{u} is defined inductively:
(i) $\operatorname{Heir}(B, u)$ exists if and only if $\operatorname{Heir}(\{\beta\}, u)$ exists for each β in B, and, in this case, we have $\operatorname{Heir}(B, u)=\bigcup_{\beta \in B} \operatorname{Heir}(\{\beta\}, u)$;
(ii) For each B we have $\operatorname{Heir}(B, \varepsilon)=B$;
(iii) For each α in $\mathbf{A}_{\mathrm{LDI}}$, $\operatorname{Heir}(\{\beta\}, \alpha)$ is defined as:
$\operatorname{Heir}(\{\beta\}, \alpha)=\left\{\begin{array}{lll}\{\beta\} & \text { for } \beta \perp \alpha \text { or } \beta=\alpha 11 \gamma, & \\ \{\alpha 00 \gamma, \alpha 10 \gamma\} & \text { for } \beta=\alpha 0 \gamma, & \text { for } \alpha \in \mathbf{A}_{\mathrm{LD}}, \\ \{\alpha 01 \gamma\} & \text { for } \beta=\alpha 10 \gamma, & \\ \text { is not defined } & \text { for } \beta \sqsubseteq \alpha 1, & \end{array}\right.$
$\operatorname{Heir}(\{\beta\}, \alpha)=\left\{\begin{array}{ll}\{\beta\} & \text { for } \beta \perp \alpha, \\ \{\alpha 0 \gamma, \alpha 1 \gamma\} & \text { for } \beta=\alpha \gamma, \\ \text { is not defined } & \text { for } \beta \sqsubset \alpha .\end{array} \quad\right.$ for $\alpha \in \mathbf{A}_{\mathrm{I}}$,
(iv) For $u=\alpha \cdot u_{0}$, we have $\operatorname{Heir}(B, u)=\operatorname{Heir}\left(\operatorname{Heir}(B, \alpha), u_{0}\right)$, if it exists.

The following lemma is easy to see:
Lemma 3.3. Let u be a word on $\mathbf{A}_{\text {LDI }}$ and let β be an address.
(i) If $\operatorname{Heir}(\{\beta\}, u)$ is defined then $\operatorname{Heir}(\{\beta \gamma\}, u)$ is also defined, for each address γ, and we have $\operatorname{Heir}(\{\beta \gamma\}, u)=\left\{\beta^{\prime} \gamma ; \beta^{\prime} \in \operatorname{Heir}(\{\beta\}, u)\right\}$.
(ii) The elements in every set $\operatorname{Heir}(\{\beta\}, u)$ are pairwise orthogonal.
(iii) Suppose $t^{\prime}=t \cdot u$ and β in $\operatorname{Skel}(t)$. If $\operatorname{Heir}(\{\beta\}, u)$ is defined then the subterms of t^{\prime} at all addresses in $\operatorname{Heir}(\{\beta\}, u)$ are equal.

Proposition 3.4. Suppose that u is a word, that β is an address in \mathbf{A} and that $\operatorname{Heir}(\{\beta\}, u)$ is defined. Then we have

$$
\begin{aligned}
\mathrm{d}_{\beta} \cdot \mathrm{di}_{u} & \equiv{ }^{+} \mathrm{di}_{u} \cdot \prod_{\beta^{\prime} \in \operatorname{Heir}(\{\beta\}, u)} \mathrm{d}_{\beta^{\prime}} \\
\mathfrak{i}_{\beta} \cdot \mathrm{di}_{u} & \equiv{ }^{+} \operatorname{di}_{u} \cdot \prod_{\beta^{\prime} \in \operatorname{Heir}(\{\beta\}, u)} \mathfrak{i}_{\beta^{\prime}}
\end{aligned}
$$

The latter equivalence is true for LDLI only if $\operatorname{Heir}(\{\beta\}, u)$ contains only addresses from \mathbf{A}_{LI}.

Proof. We show the result by the induction on $\lg (u)$. For $u=\varepsilon$, the result is evident. Suppose now $d i_{u}=\mathfrak{i}_{\alpha}$. The set Heir $(\{\beta\}, u)$ exists and so α is either orthogonal to β, or it is a prefix of β. The orthogonal case is solved by Lemma 3.2. Suppose $\alpha \gamma=\beta$. But the relation $\mathrm{di}_{\beta} \cdot \mathrm{i}_{\alpha} \equiv^{+}$ $\mathrm{i}_{\alpha} \cdot d \mathrm{i}_{\alpha 0 \gamma} \cdot \mathrm{di}_{\alpha 1 \gamma}$ is an LDI-relation of type DI or I.

For $\mathrm{di}_{u}=\mathrm{d}_{\alpha}$ there are four possibilities:
a) $\beta \perp \gamma$ is solved by Lemma 3.2 (i);
b) $\beta=\alpha 0 \gamma$ gives $\mathrm{di}_{\beta} \cdot \mathrm{d}_{\alpha} \equiv^{+} \mathrm{d}_{\alpha} \cdot \mathrm{di}_{\alpha 00 \gamma} \cdot \mathrm{di}_{\alpha 10 \gamma}$ (types D0 or ID0);
c) $\beta=\alpha 10 \gamma$ gives $\mathrm{di}_{\beta} \cdot \mathrm{d}_{\alpha} \equiv^{+} \mathrm{di}_{\alpha} \cdot \mathrm{di}_{\alpha 01 \gamma}$ (types D10 or ID10), except of
the case $d i_{\beta}=i_{\alpha 10}$ where the relation is not true for LDLI since $i_{\alpha 01}$ is not in $\mathcal{A}_{\text {IDLI }}$;
d) $\beta=\alpha 11 \gamma$ gives $\mathrm{di}_{\beta} \cdot \mathrm{d}_{\alpha} \equiv^{+} \mathrm{d}_{\alpha} \cdot \mathrm{di}_{\beta}$ (types D11 or ID11).

No other possibilities occur since the set $\operatorname{Heir}(\{\beta\}, u)$ is defined.
Suppose now $\lg (u) \geq 2$, let us say $u=\alpha \cdot u_{0}$. By construction, the hypothesis that $\operatorname{Heir}(\{\beta\}, u)$ exists gives the existence of the set $\operatorname{Heir}(\{\beta\}, \alpha)$ and of the set $\operatorname{Heir}\left(\operatorname{Heir}(\{\beta\}, \alpha), u_{0}\right)$ and that the latter is equal to $\operatorname{Heir}(\{\beta\}, u)$. By the induction hypothesis, one has

$$
\mathrm{di}_{\beta} \cdot \mathrm{di}_{u} \equiv^{+} \mathrm{di}_{\alpha} \cdot \prod_{\beta^{\prime} \in \operatorname{Heir}(\{\beta\}, \alpha)} \operatorname{di}_{\beta^{\prime}} \cdot \mathrm{di}_{u_{0}}
$$

By the induction hypothesis again, one has, for each β^{\prime} in $\operatorname{Heir}(\{\beta\}, \alpha)$,

$$
\operatorname{di}_{\beta^{\prime}} \cdot \operatorname{di}_{u_{0}} \equiv{ }^{+} \operatorname{di}_{u_{0}} \cdot \prod_{\beta^{\prime \prime} \in \operatorname{Heir}\left(\left\{\beta^{\prime}\right\}, u_{0}\right)} \operatorname{di}_{\beta^{\prime \prime}}
$$

and one gets

$$
\operatorname{di}_{\beta} \cdot \operatorname{di}_{u} \equiv^{+} \operatorname{di}_{\alpha} \cdot \prod_{\beta^{\prime} \in \operatorname{Heir}(\{\beta\}, \alpha)} \prod_{\beta^{\prime \prime} \in \operatorname{Heir}\left(\left\{\beta^{\prime}\right\}, u_{0}\right)} \operatorname{di}_{\beta^{\prime \prime}}
$$

Now, according to Lemma 3.3 (ii), the addresses β^{\prime} are pairwise orthogonal, the operators commute and the double product in the formula is equal to the expression $\prod_{\beta^{\prime} \in \operatorname{Heir}(\{\beta\}, u)} \mathrm{di}_{\beta^{\prime}}$.

One has to be more careful in the case of LDLI. If an address γ ends by 1 , there is always a heir of γ that ends by 1 . Therefore, if the set $\operatorname{Heir}(\{\beta\}, u)$ contains no address ending by 1 , neither does $\operatorname{Heir}(\{\beta\}, \alpha)$. Hence, the induction step is correct for \mathfrak{i}_{β} and LDLI-equivalence too.

Definition. The image of a term t under an element di_{u} from $\mathcal{A}_{\mathrm{LDI}}^{*}$, written $t \cdot \mathrm{di}_{u}$, is understood to be the term $t \cdot \mathrm{DI}_{u}$.

Note that, due to Proposition 2.5, two $\equiv{ }^{+}$-equivalent words have the same action on terms.

We are going to establish now a few relations tied to a distributive action called the uniform distribution.

Definition (uniform distribution). Let t_{0}, t be two terms. We define the term $t_{0} * t$ inductively:

$$
t_{0} * t= \begin{cases}t_{0} \cdot t & \text { for } t \text { a variable } \\ \left(t_{0} * t_{1}\right) \cdot\left(t_{0} * t_{2}\right) & \text { when } t=t_{1} \cdot t_{2}\end{cases}
$$

The uniform distribution consist of distributing t_{0} into every leaf of t, that means of replacing every variable x in t by $t_{0} \cdot x$ [4]. Now we introduce a word δ_{t} associated with the uniform distribution. More precisely said, any term $t_{0} \cdot t$ is sent by δ_{t} to $t_{0} * t$.

Definition. [4] For t a term, we define the word δ_{t} on $\mathcal{A}_{\mathrm{LD}}$ by:

$$
\delta_{t}= \begin{cases}\varepsilon & \text { when } t \text { is a variable } \\ \mathrm{d}_{\varnothing} \cdot \operatorname{sh}_{1}\left(\delta_{t_{2}}\right) \cdot \operatorname{sh}_{0}\left(\delta_{t_{1}}\right) & \text { for } t=t_{1} \cdot t_{2}\end{cases}
$$

where $\operatorname{sh}_{\gamma}\left(\mathrm{d}_{u}\right)$ stands for $\mathrm{d}_{\gamma u}$ and the symbol ε means in fact $\mathrm{di}_{\varepsilon}$ (the neutral element of the syntactical monoid).

Proposition 3.5. [4] For all terms t_{0}, t in T, we have $t_{0} t \bullet \delta_{t}=t_{0} * t$.
In the following parts of the paper we are going to make some more technical computations. Although many of the calculations can be represented using terms, all the work has to be done in a formal way. To facilitate the comprehension, we use the following notation:

$$
\begin{equation*}
\underset{\hat{\Lambda}}{\operatorname{di}} \cdot \operatorname{di}_{v} \cdot d i_{\alpha} \cdot d i_{w} \equiv^{+} d i_{u} \cdot d i_{\alpha} \cdot d i_{v^{\prime}} \cdot d i_{w} \tag{XY}
\end{equation*}
$$

meaning that we want to push the symbol di_{α} forward in front of the word di ${ }_{v}$. We do this using the relation of type XY which, in this situation, gives $d i_{v} \cdot d i_{\alpha} \equiv^{+} d i_{\alpha} \cdot d i_{v^{\prime}}$.

The first technical proposition says that if we have an action $t \rightarrow t^{\prime}$ and a uniform distribution $t_{0} \cdot t \rightarrow t_{0} * t$ then we can swap them, what means that $t_{0} \cdot t \rightarrow t_{0} * t \rightarrow t_{0} * t^{\prime}$ and $t_{0} \cdot t \rightarrow t_{0} \cdot t^{\prime} \rightarrow t_{0} * t^{\prime}$ give the same results.

Proposition 3.6. Suppose that u is a word, that t is not a variable and that di_{u} sends t on t^{\prime}. Then we have

$$
\delta_{t} \cdot \mathrm{di}_{u} \equiv^{+} \mathrm{di}_{1 u} \cdot \delta_{t^{\prime}}
$$

Proof. The proof for u in $\mathbf{A}_{\mathrm{LD}}^{*}$, is done in [4] hence suppose $u \notin \mathbf{A}_{\mathrm{LD}}^{*}$. We show the result by the induction on $\lg (u)$. For $u=\varepsilon$, the result is vacuously true, for $u=\alpha$, we do the induction on the length of α. Denote $t=t_{1} \cdot t_{2}$. For $\mathrm{di}_{\alpha}=\mathfrak{i}_{\varnothing}$, we have

$$
\begin{align*}
\delta_{t} \cdot \mathrm{di}_{u} & =\mathrm{d} \varnothing \cdot 1 \delta_{t_{2}} \cdot 0 \delta_{t_{1}} \cdot \mathfrak{i}_{\varnothing} \tag{DI}\\
& \equiv{ }_{\text {LDI }}^{+}{ }^{+} \mathrm{d} \varnothing \cdot \mathfrak{i}_{\varnothing} \cdot 01 \delta_{t_{2}} \cdot 11 \delta_{t_{2}} \cdot 00 \delta_{t_{1}} \cdot 10 \delta_{t_{1}} \tag{ID1}\\
& \equiv{ }_{\text {LDI }}^{+} \mathfrak{i}_{1} \cdot \mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0} \cdot 01 \delta_{t_{2}} \cdot 11 \delta_{t_{2}} \cdot 00 \delta_{t_{1}} \cdot 10 \delta_{t_{1}} \\
& \equiv_{\text {LDI }}^{+} \mathfrak{i}_{1} \cdot \mathrm{~d}_{\varnothing} \cdot 1 \delta_{t} \cdot 0 \delta_{t}=\mathrm{di}_{1 u} \cdot \delta_{t^{\prime}} .
\end{align*}
$$

Now suppose $\mathrm{di}_{\alpha}=\mathfrak{i}_{0}$. We have, for t_{1} a variable,

$$
\begin{align*}
\delta_{t} \cdot \mathrm{di}_{u} & =\mathrm{d}_{\varnothing} \cdot 1 \delta_{t_{2}} \cdot \mathfrak{i}_{0} \\
& \equiv_{\text {LDLI }}^{+} \stackrel{\mathrm{d} \varnothing \cdot \mathfrak{i}_{0} \cdot 1 \delta_{t_{2}}}{ } \tag{ID10+}\\
& \equiv_{\text {LDLI }}^{+} \mathfrak{i}_{10} \cdot \mathrm{~d}_{\varnothing} \cdot 1 \delta_{t_{2}} \cdot \mathrm{~d}_{0}=\mathrm{di}_{1 u} \cdot \delta_{t^{\prime}} .
\end{align*}
$$

For $t_{1}=t_{3} \cdot t_{4}$, we have

$$
\begin{align*}
\delta_{t} \cdot \mathrm{di}_{u} & =\mathrm{d} \varnothing \cdot 1 \delta_{t_{2}} \cdot 0 \delta_{t_{1}} \cdot \mathfrak{i}_{0}=\mathrm{d} \varnothing \cdot 1 \delta_{t_{2}} \cdot \mathrm{~d}_{0} \cdot 01 \delta_{t_{4}} \cdot 00 \delta_{t_{3}} \cdot \mathfrak{i}_{0} \tag{DI}\\
& \equiv_{\text {LDLI }}^{+} \mathrm{d} \varnothing \cdot \mathfrak{i}_{0} \cdot 1 \delta_{t_{2}} \cdot \mathrm{~d}_{00} \cdot \mathrm{~d}_{01} \cdot 001 \delta_{t_{4}} \cdot 011 \delta_{t_{4}} \cdot 000 \delta_{t_{3}} \cdot 010 \delta_{t_{3}} \tag{ID10+}\\
& \equiv_{\text {LDLI }}^{+} \mathfrak{i}_{10} \cdot \mathrm{~d}_{\varnothing} \cdot 1 \delta_{t_{2}} \cdot \mathrm{~d}_{0} \cdot 01 \delta_{t_{1}} \cdot 00 \delta_{t_{1}}=\mathrm{di}_{1 u} \cdot \delta_{t^{\prime}} .
\end{align*}
$$

Suppose now $\alpha=0 \beta$ with β nonempty in \mathbf{A}_{I}, respectively in \mathbf{A}_{LI}. We write $t^{\prime}=t_{1}^{\prime} \cdot t_{2}^{\prime}$ and we know that di_{β} sends t_{1} on t_{1}^{\prime}. By the induction hypothesis we have $\delta_{t_{1}} \cdot \mathfrak{i}_{\beta} \equiv{ }^{+} \mathfrak{i}_{1 \beta} \cdot \delta_{t_{1}^{\prime}}$. According to Proposition 3.1, we have $0 \delta_{t_{1}} \cdot \mathfrak{i}_{0 \beta} \equiv{ }^{+} \mathfrak{i}_{01 \beta} \cdot 0 \delta_{t_{1}^{\prime}}$ and we find

$$
\begin{align*}
& \delta_{t} \cdot \mathrm{di}_{u}=\mathrm{d} \varnothing \cdot 1 \delta_{t_{2}} \cdot 0 \delta_{t_{1}} \cdot \mathrm{i}_{0 \beta} \equiv^{+} \mathrm{d} \varnothing \cdot 0 \delta_{t_{1}} \cdot \mathfrak{i}_{0 \beta} \cdot 1 \delta_{t_{2}} \quad(\perp),(\text { hyp.) } \\
& \equiv{ }^{+} \mathrm{d}_{\varnothing} \cdot \mathrm{i}_{01 \beta} \cdot 0 \delta_{t_{1}^{\prime}} \cdot 1 \delta_{t_{2}} \\
& \equiv{ }^{+} \mathrm{di}_{10 \beta} \cdot \mathrm{~d} \varnothing \cdot 1 \delta_{t_{2}} \cdot 0 \delta_{t_{1}^{\prime}}=\mathrm{di}_{1 \alpha} \cdot \delta_{t^{\prime}} .
\end{align*}
$$

The argument for $\alpha=1 \beta$ is similar and the induction on $\lg (u)$ is simple.

The following lemma expresses that making $t_{0} *\left(t_{1} * t_{2}\right)$ is in fact replacing each variable x of the term t_{2} by the term $\left(t_{0} * t_{1}\right) \cdot\left(t_{0} \cdot x\right)$.
Lemma 3.7. For each t_{1}, t_{2}, we have

$$
\delta_{t_{1} * t_{2}} \equiv \equiv^{+} \delta_{t_{2}} \cdot \prod_{\alpha \in \operatorname{Out}\left(t_{2}\right)}\left(\mathrm{d}_{\alpha} \cdot \alpha 0 \delta_{t_{1}}\right)
$$

Proof. This product is correctly defined because all the addresses from the outline of t_{2} are pairwise orthogonal. We show the lemma by induction on t_{2}. When t_{2} is a variable, one has $\delta_{t_{1} * t_{2}}=\delta_{t_{1} \cdot t_{2}}=\mathrm{d}_{\varnothing} \cdot 0 \delta_{t_{1}}=\delta_{t_{2}} \cdot\left(\mathrm{~d}_{\varnothing}\right.$. $0 \delta_{t_{1}}$. Hence suppose $t_{2}=t_{3} \cdot t_{4}$. One computes

$$
\begin{align*}
\delta_{t_{1} * t_{2}} & =\delta_{\left(t_{1} * t_{3}\right) \cdot\left(t_{1} * t_{4}\right)}=\mathrm{d} \varnothing \cdot 1 \delta_{t_{1} * t_{4}} \cdot 0 \delta_{t_{1} * t_{3}} \\
& \equiv{ }^{+} \mathrm{d}_{\varnothing} \cdot 1 \delta_{t_{4}} \cdot \prod_{\alpha \in \operatorname{Out}\left(t_{4}\right)}\left(\mathrm{d}_{1 \alpha} \cdot 1 \alpha 0 \delta_{t_{1}}\right) \cdot 0 \delta_{t_{3}} \cdot \prod_{\beta \in \operatorname{Out}\left(t_{3}\right)}\left(\mathrm{d}_{0 \beta} \cdot 0 \beta 0 \delta_{t_{1}}\right) \\
& \equiv^{+} \delta_{t_{2}} \cdot \prod_{\alpha \in \operatorname{Out}\left(t_{2}\right)}\left(\mathrm{d}_{\alpha} \cdot \alpha 0 \delta_{t_{1}}\right)
\end{align*}
$$

and this is the searched form.

Proposition 3.8. For each term t and each u a word, we have

$$
\mathrm{di}_{0 u} \cdot \delta_{t} \equiv^{+} \delta_{t} \cdot \prod_{\alpha \in \operatorname{Out}(t)} \mathrm{di}_{\alpha 0 u}
$$

Proof. The idea of the proof is the following: let t_{0} be a term in the domain of DI_{u} and let t_{0}^{\prime} be its inverse under DI_{u}. Then the left-hand side encodes $t_{0} t \rightarrow t_{0}^{\prime} t \rightarrow t_{0}^{\prime} * t$ and the right hand side encodes $t_{0} t \rightarrow t_{0} * t \rightarrow$ $t_{0}^{\prime} * t$.

More precisely, δ_{t} applied to $t_{0} t$ distributes t_{0} into every leaf of t. Therefore $\operatorname{Heir}\left(\{0\}, \delta_{t}\right)$ is $\{\alpha 0, \alpha \in \operatorname{Out}(t)\}$ and analogously $\operatorname{Heir}\left(\{0 \beta\}, \delta_{t}\right)$ is $\{\alpha 0 \beta, \alpha \in \operatorname{Out}(t)\}$ (see [4]). Hence, applying Proposition 3.4, we get the result.

4. Confluence

In this section we prove the existence of a common right multiple of an arbitrary pair of elements. The geometric idea (which is to be proved further in the section) is the following: let t be a term and let t_{1}, t_{2}, \ldots be terms obtained by different positive operators $\mathrm{DI}_{\alpha_{i}}$ with t in its domain. Then there exists a term, denoted by ∂t, and positive words u_{1}, u_{2}, \ldots such that ∂t is the image of t_{i} under $\mathrm{DI}_{u_{i}}$ for each i. The term ∂t is described inductively:
Definition. [14] Let t be a term. We define the terms $\partial_{\mathrm{LDDI}} t$ et $\partial_{\mathrm{LDHII}} t$ by:

$$
\begin{aligned}
\partial_{\mathrm{LDII}} t & = \begin{cases}t \cdot t & \text { if } t \text { is a variable } \\
\partial_{\mathrm{LDI}} t_{1} * \partial_{\mathrm{LDII}} t_{2} & \text { for } t=t_{1} \cdot t_{2}\end{cases} \\
\partial_{\mathrm{LDDII}} t & = \begin{cases}t & \text { if } t \text { is a variable } \\
\partial_{\mathrm{LDI}} t_{1} * \partial_{\mathrm{LDDI}} t_{2} & \text { for } t=t_{1} \cdot t_{2}\end{cases}
\end{aligned}
$$

We write only ∂t when a statement is declared for both $\partial_{\text {LDII }} t$ and $\partial_{\text {LDDII }} t$.
We translate the geometrical situation introducing the elements Δ_{t} which send t to ∂t.

Definition. For t a term, we define the elements $\Delta_{t}^{\mathrm{LDI}}$ and $\Delta_{t}^{\mathrm{LDLI}}$ inductively:

$$
\begin{aligned}
\Delta_{t}^{\mathrm{LDI}} & = \begin{cases}i_{\varnothing} & \text { when } t \text { is a variable }, \\
\operatorname{sh}_{0}\left(\Delta_{t_{1}}^{\mathrm{LDD}}\right) \cdot \delta_{t_{2}} \cdot \Delta_{t_{2}}^{\mathrm{LDD}} & \text { for } t=t_{1} \cdot t_{2},\end{cases} \\
\Delta_{t}^{\mathrm{LDLI}} & = \begin{cases}\varepsilon & \text { when } t \text { is a variable }, \\
\operatorname{sh}_{0}\left(\Delta_{t_{1}}^{\mathrm{LDI}}\right) \cdot \delta_{t_{2}} \cdot \Delta_{t_{2}}^{\mathrm{LDLI}} & \text { for } t=t_{1} \cdot t_{2},\end{cases}
\end{aligned}
$$

Again, we write simply Δ_{t} when a statement is true for both $\Delta_{t}^{\text {LDI }}$ and $\Delta_{t}^{\text {LDLI }}$.

Lemma 4.1. We define $\hat{\Delta}_{t}$ as Δ_{t}, for t a variable, and as $0 \hat{\Delta}_{t_{1}}^{\mathrm{LDD}} \cdot 1 \hat{\Delta}_{t_{2}} \cdot \delta_{\partial t_{2}}$, for $t=t_{1} t_{2}$. Then $\hat{\Delta}_{t}$ sends to ∂t, for each t.

Proof. When t is a variable, the result holds. Suppose now $t=t_{1} \cdot t_{2}$ and

$$
\begin{array}{r}
t \cdot \hat{\Delta}_{t}=\left(t_{1} \cdot t_{2}\right) \cdot\left(0 \hat{\Delta}_{t_{1}}^{\mathrm{LDI}} \cdot 1 \hat{\Delta}_{t_{2}} \cdot \delta_{\partial t_{2}}\right)=\left(\partial_{\mathrm{LDI}} t_{1} \cdot t_{2}\right) \cdot\left(1 \hat{\Delta}_{t_{2}} \cdot \delta_{\partial t_{2}}\right)= \\
=\left(\partial_{\mathrm{LDI}} t_{1} \cdot \partial t_{2}\right) \cdot \delta_{\partial t_{2}}=\partial_{\mathrm{LDI}} t_{1} * \partial t_{2}=\partial t
\end{array}
$$

is obtained.
Lemma 4.2. Suppose $t=t_{1} \cdot t_{2}$. Then one has

$$
\begin{align*}
\Delta_{t} & \equiv^{+} 1 \Delta_{t_{2}} \cdot 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \delta_{\partial t_{2}} \tag{i}\\
\Delta_{t} & \equiv^{+} \delta_{t_{2}} \cdot \prod_{\alpha \in \operatorname{Out}\left(t_{2}\right)} \alpha 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \Delta_{t_{2}} \tag{ii}
\end{align*}
$$

(i) We prove the relation by induction on t_{2} as well as $\Delta_{t} \equiv^{+} \hat{\Delta}_{t}$ from Lemma 4.1. When t_{2} is a variable, the result is true for $\Delta_{t}^{\text {LDLI }}$ since $\delta_{t_{2}}=\delta_{\partial t_{2}}=\varepsilon$. For $\Delta_{t}^{\mathrm{LDI}}$ one has

$$
\begin{align*}
\Delta_{t}^{\mathrm{LDI}}=0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \mathfrak{i}_{\varnothing} & \equiv_{\mathrm{LDI}}^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \mathfrak{i}_{1} \cdot \mathrm{~d}_{\varnothing}=0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 1 \Delta_{t_{2}}^{\mathrm{LDI}} \cdot \delta_{\partial t_{2}}=\hat{\Delta}_{t}^{\mathrm{LDI}} \tag{C}\\
& \equiv_{\mathrm{LDI}}^{+} 1 \Delta_{t_{2}}^{\mathrm{LDI}} \cdot 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \delta_{\partial t_{2}} .
\end{align*}
$$

When t_{2} is not a variable, we use Proposition 3.6, Lemma 4.1 and the induction hypothesis to obtain $\Delta_{t} \equiv^{+} 0 \Delta_{t_{1}} \cdot 1 \Delta_{t_{2}} \cdot \delta_{\partial t_{2}} \equiv{ }^{+} \hat{\Delta}_{t}$. The idea is that $\Delta_{t_{2}}$, being equivalent to $\hat{\Delta}_{t_{2}}$, sends t to ∂t.
(ii) This follows from (i) and Proposition 3.8.

Proposition 4.3. For each t, one has $t \cdot \Delta_{t}=\partial t$.
Proof. It was already proved in the proof of Lemma $4.2(i)$.
Lemma 4.4. For each term t we have $\Delta_{t}^{\mathrm{LDI}} \equiv_{\mathrm{LDI}}^{+} \mathfrak{i}_{\varnothing} \cdot 0 \Delta_{t}^{\mathrm{LDLI}} \cdot 1 \Delta_{t}^{\mathrm{LDLI}}$.
Proof. We use the induction on t. The result holds trivially when t is a variable. For $t=t_{1} \cdot t_{2}$ we obtain

$$
\begin{array}{rlrl}
\Delta_{t}^{\mathrm{LDI}} & \equiv_{\mathrm{LDI}}^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \delta_{t_{2}} \cdot \mathfrak{i}_{\varnothing} \cdot 0 \Delta_{t_{2}}^{\mathrm{LDLI}} \cdot 1 \Delta_{t_{2}}^{\mathrm{LDLI}} & & (\mathrm{hyp} .),(\mathrm{DI}) \\
& \equiv_{\mathrm{LDI}}^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \mathfrak{i}_{\varnothing} \cdot 0 \delta_{t_{2}} \cdot 1 \delta_{t_{2}} \cdot 0 \Delta_{t_{2}}^{\mathrm{LDII}} \cdot 1 \Delta_{t_{2}}^{\mathrm{LDLI}} & & (\mathrm{I}),(\mathrm{DI}),(\perp) \tag{I}\\
& \equiv_{\mathrm{LDI}}^{+} \mathfrak{i}_{\varnothing} \cdot 00 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 10 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 0 \delta_{t_{2}} \cdot 0 \Delta_{t_{2}}^{\mathrm{LDLI}} \cdot 1 \delta_{t_{2}} \cdot 1 \Delta_{t_{2}}^{\mathrm{LDLI}} & & (\perp) \\
& \equiv_{\mathrm{LDI}}^{+} \mathfrak{i}_{\varnothing} \cdot 0 \Delta_{t}^{\mathrm{LDLI}} \cdot 1 \Delta_{t}^{\mathrm{LDLI}}, &
\end{array}
$$

which finishes the proof.

Now we show the geometric idea from the beginning of the section.
Proposition 4.5. Suppose that t belongs to the domain of DI_{α}, with α an address. Then there exists a positive word u satisfying $\mathrm{di}_{\alpha} \cdot \mathrm{di}_{u} \equiv^{+} \Delta_{t}$.

Proof. When t is a variable then the result holds by definition. Suppose $t=t_{1} \cdot t_{2}$. We use the induction on α. For $\mathrm{di}_{\alpha}=\mathrm{d}_{\varnothing}$, the result follows from Lemma $4.2(i i)$. For $\mathrm{di}_{\alpha}=\mathfrak{i}_{\varnothing}$ or $\mathrm{di}_{\alpha}=\mathfrak{i}_{0}$, we use Lemma 4.4. Suppose now $\alpha=0 \beta$. By definition, the word Δ_{t} begins by $0 \Delta_{t_{1}}$. By the induction hypothesis, the word $\Delta_{t_{1}}$ is equivalent to $\mathrm{di}_{\beta} \cdot \mathrm{di}_{u^{\prime}}$ for a word u^{\prime}. Hence we obtain $\Delta_{t} \equiv^{+} \mathrm{di}_{\alpha} \cdot \mathrm{di}_{0 u^{\prime}} \cdot \delta_{t_{2}} \cdot \Delta_{t_{2}}$. The argument is similar for $\alpha=1 \beta$ due to Lemma $4.2(i)$.

Now a few lemmas come in the direction of finding a common right multiple.

Lemma 4.6. If α sends t on t^{\prime} then there exists a positive word u such that $\mathrm{di}_{\alpha} \cdot \Delta_{t^{\prime}} \equiv^{+} \Delta_{t} \cdot \mathrm{di}_{u}$.

Proof. We show the result by the induction on α. For $\mathrm{di}_{\alpha}=\mathfrak{i}_{\varnothing}$, one has

$$
\mathrm{di}_{\alpha} \cdot \Delta_{t^{\prime}}^{\mathrm{LDI}} \equiv_{\mathrm{LDI}}^{+} i_{\varnothing} \cdot 0 \Delta_{t}^{\mathrm{LDI}} \cdot 1 \Delta_{t}^{\mathrm{LDI}} \cdot \delta_{\partial_{\mathrm{LDI}}} \equiv_{\mathrm{LDI}}^{+} \Delta_{t}^{\mathrm{LDI}} \cdot \mathfrak{i}_{\varnothing} \cdot \delta_{\partial_{\mathrm{LDI}} t} .
$$

For $\mathrm{di}_{\alpha}=\mathfrak{i}_{0}$ and $t=t_{1} \cdot t_{2}$, one has

Suppose $\mathrm{di}_{\alpha}=\mathrm{d}_{\varnothing}$ and $t=t_{1} \cdot\left(t_{2} \cdot t_{3}\right)$. One has

$$
\cdot 11 \Delta_{t_{3}} \cdot 1 \delta_{\partial t_{3}} \cdot \delta_{\partial_{\mathrm{LDI}} t_{1} * \partial t_{3}} \quad(\perp, \mathrm{D} 0, \text { ID } 0)
$$

$$
\begin{align*}
& \mathrm{d}_{\alpha} \cdot \Delta_{t^{\prime}}=\mathrm{d}_{\varnothing} \cdot \Delta_{\left(t_{1} \cdot t_{2}\right) \cdot\left(t_{1} \cdot t_{3}\right)} \\
& \equiv^{+} \mathrm{d}_{\varnothing} \cdot 0 \Delta_{t_{1} \cdot t_{2}}^{\mathrm{LD}} \cdot 1 \Delta_{t_{1} \cdot t_{3}} \cdot \delta_{\partial\left(t_{1} \cdot t_{3}\right)} \tag{L4.2}\\
& \equiv^{+} \mathrm{d} \varnothing \cdot 00 \Delta_{t_{1}}^{\mathrm{LDD}} \cdot 01 \Delta_{t_{2}}^{\mathrm{LDI}} \cdot 0 \delta_{\partial_{\mathrm{LDI}} t_{2}} \cdot 10\left(\Delta_{t_{1}}^{\mathrm{LDI}}\right) \\
& \equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \mathrm{~d}_{\varnothing} \cdot 01 \Delta_{t_{2}}^{\mathrm{LDI}} \cdot 11 \Delta_{t_{3}} \cdot 0 \delta_{\partial_{\text {LDI }} t_{2}} \\
& \cdot 1 \delta_{\partial t_{3}} \cdot \delta_{\partial_{\mathrm{LDII}} t_{1} * \partial t_{3}} \tag{D10,ID10}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{di}_{\alpha} \cdot \Delta_{t^{\prime}}^{\text {LDI }} \equiv_{\text {LDLI }}^{+} \mathfrak{i}_{0} \cdot 0 \Delta_{t_{1} \cdot t_{1}}^{\text {LDI }} \cdot 1 \Delta_{t_{2}}^{\text {LDLI }} \cdot \delta_{\partial_{\text {LDLI }} t_{2}} \tag{L4.2}
\end{align*}
$$

$$
\begin{align*}
& \equiv_{\text {LDLI }}^{+} 0 \Delta_{t_{1}}^{\text {LDI }} \cdot 1 \Delta_{t_{2}}^{\text {LDLI }} \cdot \hat{i}_{0} \cdot 0 \delta_{\partial_{\text {LDI }} t_{1}} \cdot \delta_{\partial_{\text {LDII }} t_{2}} \tag{P3.8}\\
& \equiv_{\text {LDLI }}^{+} 0 \Delta_{t_{1}}^{\text {LDI }} \cdot 1 \Delta_{t_{2}}^{\text {LDII }} \cdot \delta_{\partial_{\text {LDII }} t_{2}} \cdot \Pi\left(i_{\beta 0} \cdot \beta 0 \delta_{\partial_{\text {LDI }} t_{1}}\right) \tag{L4.2}\\
& \equiv_{\text {LDLI }}^{+} \Delta_{t}^{\text {LDLI }} \cdot \Pi_{\beta \in \operatorname{Out}\left(\partial_{\mathrm{LDLI}} t_{2}\right)}\left(\mathrm{i}_{\beta 0} \cdot \beta 0 \delta_{\partial_{\mathrm{LDII}} t_{1}}\right) \text {. }
\end{align*}
$$

$$
\begin{gather*}
\equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 10 \Delta_{t_{2}}^{\mathrm{LDII}} \cdot \mathrm{~d}_{\varnothing} \cdot 11 \Delta_{t_{3}} \cdot 0 \delta_{\partial_{\mathrm{LDI}} t_{2}} \\
\cdot 1 \delta_{\partial t_{3}} \cdot \delta_{\partial_{\mathrm{LDI}} t_{1} * \partial t_{3}} \tag{D11,ID11}\\
\equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 10 \Delta_{t_{2}}^{\mathrm{LDI}} \cdot 11 \Delta_{t_{3}} \cdot \mathrm{~d}_{\varnothing} \cdot 0 \delta_{\partial_{\mathrm{LDI}} t_{2}} \\
\cdot 1 \delta_{\partial t_{3}} \cdot \delta_{\partial_{\mathrm{LDI}} t_{1} * \partial t_{3}} \tag{L3.7}\\
\equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 10 \Delta_{t_{2}}^{\mathrm{LDD}} \cdot 11 \Delta_{t_{3}} \cdot \delta_{\partial_{\mathrm{LDII}_{2}} \cdot \partial t_{3}} \cdot \delta_{\partial t_{3}} \\
\cdot \Pi\left(\mathrm{~d}_{\alpha} \cdot \alpha 0 \delta_{\partial_{\mathrm{LDI}} t_{1}}\right) \tag{P3.6}\\
\equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 10 \Delta_{t_{2}}^{\mathrm{LD}} \cdot 11 \Delta_{t_{3}} \cdot 1 \delta_{\partial t_{3}} \\
\cdot \delta_{\partial_{\mathrm{LDI}} t_{2} * \partial t_{3}} \cdot \Pi\left(\mathrm{~d}_{\alpha} \cdot \alpha 0 \delta_{\partial_{\mathrm{LDI}} t_{1}}\right) \tag{L4.2}\\
\equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 1 \Delta_{t_{2} \cdot t_{3}} \cdot \delta_{\partial\left(t_{2} \cdot t_{3}\right)} \cdot \Pi\left(\mathrm{d}_{\alpha} \cdot \alpha 0 \delta_{\partial_{\mathrm{LDI}} t_{1}}\right) \tag{L4.2}\\
\equiv^{+} \Delta_{t_{1} \cdot\left(t_{2} \cdot t_{3}\right)} \cdot \Pi\left(\mathrm{d}_{\alpha} \cdot \alpha 0 \delta_{\partial_{\mathrm{LDI}} t_{1}}\right)
\end{gather*}
$$

Suppose now $\alpha=0 \beta$ and $t=t_{1} \cdot t_{2}$. Since di i_{β} sends t_{1} on a term t_{1}^{\prime}, the hypothesis gives us $\mathrm{di}_{\beta} \cdot \Delta_{t_{1}^{\prime}} \equiv^{+} \Delta_{t_{1}} \cdot \mathrm{di}_{u^{\prime}}$ for a word u^{\prime}. Hence one has

$$
\begin{align*}
\mathrm{di}_{\alpha} \cdot \Delta_{t^{\prime}} & =\operatorname{di}_{0 \beta} \cdot \Delta_{t_{1}^{\prime} \cdot t_{2}}=\operatorname{di}_{0 \beta} \cdot 0 \Delta_{t_{1 \Lambda}^{\prime}}^{\mathrm{LDI}} \cdot \delta_{t_{2}} \cdot \Delta_{t_{2}} \tag{hyp}\\
& \equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \operatorname{di}_{0 u^{\prime}} \cdot 1 \Delta_{t_{2}} \cdot \delta_{\partial t_{2}} \tag{P3.8}\\
& \equiv^{+} 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot 1 \Delta_{t_{2}} \cdot \delta_{\partial t_{2}} \cdot \Pi\left(\mathrm{di}_{\beta 0 u^{\prime}}\right) \\
& \equiv^{+} \Delta_{t} \cdot \Pi\left(\mathrm{di}_{\beta 0 u^{\prime}}\right)
\end{align*}
$$

Finally, we suppose $\alpha=1 \beta$ and $t^{\prime}=t_{1} \cdot t_{2}^{\prime}$. By the induction hypothesis, one has $\mathrm{di}_{\beta} \cdot \Delta_{t_{2}^{\prime}} \equiv^{+} \Delta_{t_{2}} \cdot \mathrm{di}_{u^{\prime}}$. One finds

$$
\begin{align*}
& \mathrm{di}_{\alpha} \cdot \Delta_{t^{\prime}} \equiv^{+} \underset{\mathrm{di}_{1 \beta} \cdot 1 \Delta_{t_{2}^{\prime}} \cdot 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \delta_{\partial t_{2}^{\prime}}}{ } \tag{hyp}\\
& \equiv^{+} 1 \Delta_{t_{2}} \cdot \mathrm{di}_{1 u^{\prime}} \cdot 0 \Delta_{t_{1}}^{\mathrm{LDI}^{\prime}} \cdot \delta_{\partial t_{2}^{\prime}} \tag{P3.6}\\
& \equiv^{+} 1 \Delta_{t_{2}} \cdot 0 \Delta_{t_{1}}^{\mathrm{LDI}} \cdot \delta_{\partial t_{2}} \cdot \mathrm{di}_{u^{\prime}} \\
& \equiv^{+} \Delta_{t} \cdot \mathrm{di}_{u^{\prime}}
\end{align*}
$$

where the equality $\mathrm{di}_{1 u^{\prime}} \cdot \delta_{\partial t_{2}^{\prime}} \equiv{ }^{+} \delta_{\partial t_{2}} \cdot \mathrm{~d}_{u^{\prime}}$ follows from Proposition 3.6 since one has $t_{2} \cdot\left(\mathrm{di}_{\beta} \cdot \Delta_{t_{2}^{\prime}}\right)=\partial t_{2}^{\prime}=t_{2} \cdot\left(\Delta_{t_{2}} \cdot \mathrm{di}_{u^{\prime}}\right)$ and hence one has $\partial t_{2}^{\prime}=\partial t_{2} \cdot \mathrm{di}_{u^{\prime}}$.

Lemma 4.7. Suppose that u is a positive word and that DI_{u} sends t on t^{\prime}. Then there exists a positive word u^{\prime} satisfying

$$
\mathrm{di}_{u} \cdot \Delta_{t^{\prime}} \equiv^{+} \Delta_{t} \cdot \mathrm{di}_{u^{\prime}}
$$

Proof. We use the induction on $\lg (u)$. For $u=\varepsilon$, the result is trivial. For $\lg (u)=1$, the result is Lemma 4.6. Suppose now $u=u_{1} \cdot u_{2}$,
where neither u_{1} nor u_{2} are empty. Let $t_{1}=t \cdot \mathrm{DI}_{u}$. By the induction hypothesis, there exist u_{1}^{\prime} and u_{2}^{\prime} satisfying $\mathrm{di}_{u_{1}} \cdot \Delta_{t_{1}} \equiv{ }^{+} \Delta_{t} \cdot \mathrm{di}_{u_{1}^{\prime}}$ and di $i_{u_{2}} \cdot \Delta_{t^{\prime}} \equiv^{+} \Delta_{t_{1}} \cdot \mathrm{di}_{u_{2}^{\prime}}$. We thus deduce di $\cdot \Delta_{t^{\prime}} \equiv^{+} \mathrm{di}_{u_{1}} \cdot \Delta_{t_{1}} \cdot \mathrm{di}_{u_{2}^{\prime}} \equiv^{+}$ $\Delta_{t} \cdot \mathrm{di}_{u_{1}^{\prime}} \cdot \mathrm{di}_{u_{2}^{\prime}}$.

The following definition encodes iterative usage of the ∂ operation in the obvious way that ${ }^{k} \Delta_{t}$ sends t to $\partial^{k} t$.

Definition. For each term t, we put ${ }^{0} \Delta_{t}^{\mathrm{LDI}}=\varepsilon$ and ${ }^{k} \Delta_{t}^{\mathrm{LDI}}=\Delta_{t}^{\mathrm{LDI}} \cdot \Delta_{\partial_{\mathrm{LDI}} t}^{\mathrm{LDI}}$. $\cdots \Delta_{\partial_{\mathrm{LDI}}^{k-1} t}^{\mathrm{LDI}}$ for $k \geq 1$. The word ${ }^{k} \Delta_{t}^{\mathrm{LDLI}}$ is defined analogously.

Lemma 4.8. Let u be a positive word of length at most k and let t be a term from the domain of DI_{u}. Then there exists a positive word v^{\prime} satisfying $\mathrm{di}_{u} \cdot \mathrm{di}_{v^{\prime}} \equiv^{+}{ }^{k} \Delta_{t}$.

Proof. We use the induction on k. For $k=0$, the result is trivial. Otherwise, we write $u=u_{0} \cdot \alpha$ with α an address. By the induction hypothesis, there exists a positive word v_{0}^{\prime} satisfying $\mathrm{di}_{u_{0}} \cdot \mathrm{di}_{v_{0}^{\prime}} \equiv^{+k-1} \Delta_{t}$. Let t^{\prime} be the image of t by $\mathrm{DI}_{u_{0}}$. By the hypothesis, the term t^{\prime} belongs to the domain of DI_{α} and therefore, according to Proposition 4.5, there exists a positive word v satisfying $\mathrm{di}_{\alpha} \cdot \mathrm{di}_{v} \equiv^{+} \Delta_{t^{\prime}}$. Applicating Lemma 4.7 on the terms t^{\prime} and $\partial^{k-1} t$, we see that there exists a positive word $v_{0}^{\prime \prime}$ that satisfies di $v_{v_{0}^{\prime}} \cdot \Delta_{\partial^{k-1} t} \equiv^{+} \Delta_{t^{\prime}} \cdot \mathrm{di}_{v_{0}^{\prime \prime}}$. We then deduce

$$
\begin{aligned}
d i_{u} \cdot d i_{v} \cdot d i_{v_{0}^{\prime \prime}}=d i_{u_{0}} & \cdot d i_{\alpha} \cdot d i_{v} \cdot d i_{v_{0}^{\prime \prime}} \equiv^{+} \operatorname{di}_{u_{0}} \cdot \Delta_{t^{\prime}} \cdot d i_{v_{0}^{\prime \prime}} \equiv^{+} \\
& { }^{+} \operatorname{di}_{u_{0}} \cdot \operatorname{di}_{v_{0}^{\prime}} \cdot \Delta_{\partial^{k-1} t} \equiv^{+k-1} \Delta_{t} \cdot \Delta_{\partial^{k-1} t}={ }^{k} \Delta_{t}
\end{aligned}
$$

Hence we obtain the result putting $v^{\prime}=v \cdot v_{0}^{\prime \prime}$.
Proposition 4.9. Let u, v be two positive words of the length at most k. Then there exist positive words u^{\prime}, v^{\prime} satisfying

$$
\mathrm{di}_{u} \cdot \mathrm{di}_{v^{\prime}} \equiv^{+} \mathrm{di}_{v} \cdot \mathrm{di}_{u^{\prime}} \equiv^{+k} \Delta_{t_{u, v}^{L}}
$$

Proof. The intersection of the domains of the operators DI_{u} and DI_{v} contains the term $t_{u, v}^{L}$, due to Proposition 1.7. According to Lemma 4.8, there exist two positive words u^{\prime} and v^{\prime} such that $\mathrm{di}_{u} \cdot \mathrm{di}_{v^{\prime}}$ and $\mathrm{di}_{v} \cdot \mathrm{di}_{u^{\prime}}$ are \equiv^{+}-equivalent to ${ }^{k} \Delta_{t_{u, v}^{L}}$.

We have just proved that all pairs of elements have common right multiples and we have proved it at once for the $\equiv_{\text {LDI }}^{+}$and $\equiv_{\text {LDII }}^{+}$relations as well as for the positive geometry monoids $\mathcal{G}_{\mathrm{LDI}}^{+}$and $\mathcal{G}_{\mathrm{LDII}}^{+}$.

5. Syntactical monoid

In this section we study the monoid generated by the LDLI-relations using the method of complemented presentations, described in [7]. This method gives an algorithm for resolving the word problem of this monoid and it enables us to say that the monoid is left cancellative and that the left divisibility order forms a lattice. We are not interested in LDI-relations because there are too many of them and the corresponding monoid seems to be less useful than the monoid of LDLI.

Definition. [4] Let A be an alphabet. We say that f is a complement on A if f is a partial mapping from $A \times A$ to A^{*} satisfying $f(x, x)=\varepsilon$, for each x in A, and that $f(x, y)$ exists if $f(y, x)$ exists. We denote by \equiv_{f}^{+} the relation generated by the relations $(x f(x, y), y f(y, x))$ with (x, y) in the domain of f. The monoid associated on the right is the monoid A^{*} factored by \equiv_{f}^{+}.

Let us define the syntactical monoid of LDLI $M_{\text {LDLI }}$ as the monoid $\left(\mathbf{A}_{\text {LDII }}\right)^{*}$ factored by the LDLI-relations. It is not immediate to see but after a closer look we observe that the monoid $M_{\text {LDLI }}$ is associated to a right complement: we have

$$
\begin{aligned}
& f\left(d_{\alpha}, \operatorname{di}_{\beta}\right)= \begin{cases}\varepsilon & \text { for } \mathrm{di}_{\alpha}=\mathrm{di}_{\beta}, \\
\mathrm{di}_{\beta} & \text { for } \beta \perp \alpha \text { or } \alpha 11 \sqsubseteq \beta \text { or }(\beta \sqsubset \alpha \text { and } \alpha \neq \beta 1), \\
\mathfrak{i}_{\beta} & \text { for } \mathrm{di}_{\beta}=\mathfrak{i}_{\beta} \text { and }(\alpha=\beta \text { or } \alpha=\beta 1), \\
d i_{\alpha 10 \gamma} \cdot d i_{\alpha 00 \gamma} & \text { for } \beta=\alpha 0 \gamma, \\
\operatorname{di}_{\alpha 01 \gamma} & \text { for } \beta=\alpha 10 \gamma \text { and } d i_{\beta} \neq \mathfrak{i}_{\alpha 10}, \\
\mathfrak{i}_{\alpha 0} & \text { for } \mathrm{di}_{\beta}=\mathfrak{i}_{\alpha 10}, \\
\mathrm{~d}_{\beta} \cdot \mathrm{d}_{\alpha} & \text { for } \beta=\alpha 1, \\
d_{\beta} \cdot \mathrm{d}_{\alpha} \cdot \mathrm{d}_{\beta 0} & \text { for } \alpha=\beta 1,\end{cases} \\
& f\left(\mathfrak{i}_{\alpha}, \mathrm{di}_{\beta}\right)= \begin{cases}\varepsilon & \text { for } \mathrm{di}_{\alpha}=\mathrm{di}_{\beta}, \\
\mathrm{di}_{\beta} & \text { for } \beta \perp \alpha \text { or }\left(\beta \sqsubset \alpha \text { and }\left(\alpha \neq \beta 10 \text { or } \beta \in \mathbf{A}_{\mathrm{LI}}\right)\right), \\
\mathrm{di}_{\alpha 0 \gamma} \cdot d \mathrm{i}_{\alpha 1 \gamma} & \text { for } \beta=\alpha \gamma \text { and } \mathrm{di}_{\alpha} \neq \mathrm{di}_{\beta}, \\
\mathrm{d}_{\beta} \cdot \mathrm{d}_{\beta 0} & \text { for } \alpha=\beta 10 \text { and } \beta \in \mathbf{A}_{\mathrm{LD}} .\end{cases}
\end{aligned}
$$

The LDI-relations do not give a complement because there is, e.g., the relation $i_{\varnothing} \cdot i_{\varnothing} \equiv_{\text {LDI }}^{+} i_{\varnothing} \cdot i_{0} \cdot i_{1}$.

The complemented presentations permit the usage of a combinatorial method called the word reversing. The reversing consists of iteratively replacing a subword $x^{-1} \cdot y$ by the subword $f(x, y) \cdot f(y, x)^{-1}$.

Definition. [7] Let w, w^{\prime} be two words. We say that w is reversed to the right into w^{\prime}, denoted by $w \curvearrowright w^{\prime}$, if there exists a sequence of words $w=$ $w_{1}, \ldots, w_{k}=w^{\prime}$ satisfying, for each $i<k$,

$$
w_{i}=w_{i}^{\prime} \cdot x_{i}^{-1} \cdot y_{i} \cdot w_{i}^{\prime \prime} \quad \text { and } \quad w_{i+1}=w_{i}^{\prime} \cdot f\left(x_{i}, y_{i}\right) \cdot f\left(y_{i}, x_{i}\right)^{-1} \cdot w_{i}^{\prime \prime}
$$

where x_{i} and y_{i} are letters.
We see that $w \curvearrowright w^{\prime}$ implies $w \equiv_{f} w^{\prime}$. Hence we can possibly obtain by the reversing a word equivalent to w which is a product of a positive word and a negative word. A priori, the reversing needs not to be a deterministic process, at each step we can reverse arbitrary pair of letters $x^{-1} y$. Though, the process is confluent and if we reach a word $v u^{-1}$, then it is unique.

Proposition 5.1. [4] Each word w can be reversed into at most one word of the form $v \cdot u^{-1}$ with u and v positive words.

Definition. [4] Let u and v be two positive words. We define $u \backslash v$ as the unique word u^{\prime} such that $v^{-1} u$ is reversed into $v^{\prime} u^{\prime-1}$ with u^{\prime} and v^{\prime} positive, if such a word exists.

We can see particularly that we have $x \backslash y=f(x, y)$ for all x, y in A. Remark also a "symmetry" of the definition: a word $v^{-1} u$ is reversed always into $(v \backslash u)(u \backslash v)^{-1}$.

If there is $u \backslash v=v \backslash u=\varepsilon$, then we have $u \equiv_{f}^{+} v$. We would like this implication to be an equivalence, that means, we would like to have $u \equiv_{f}^{+} v$ if and only if $u^{-1} v \curvearrowright \varepsilon$.

Definition. [7] We say that a complement f on an alphabet A is right homogeneous if there exists a mapping $\lambda: A^{*} \rightarrow \mathbb{N}$ satisfying

$$
\lambda(x v)>\lambda(v) \quad \text { and } \quad \lambda(u)=\lambda(v)
$$

for all x in A and $u \equiv_{f}^{+} v$ positive words.
Proposition 5.2. [7] Let M be a monoid associated with a right homogeneous right complement $f: A \times A \rightarrow A^{*}$. Then the relation $u \equiv_{f}^{+} v$ implies $u^{-1} v \curvearrowright \varepsilon$ if and only if the following condition is satisfied for all x, y, z in A :

$$
((x \backslash y) \backslash(x \backslash z)) \backslash((y \backslash x) \backslash(y \backslash z))=\varepsilon
$$

We want to show that the monoid $M_{\text {LDLI }}$ satisfies the conditions of Proposition 5.2. We start with the homogeneity of the complement f.

Lemma 5.3. The complement f of the monoid $M_{\text {LDLI }}$ is right homogeneous.

Proof. We define, for each positive word u,

$$
\lambda\left(\mathrm{di}_{u}\right)=\lg \left(t_{u}^{R}\right)-\lg \left(t_{u}^{L}\right)
$$

where the length of a term is the number of all addresses in its skeleton. Since $\mathrm{di}_{u} \equiv_{\text {LDLI }}^{+} \mathrm{di}_{v}$ implies $\mathrm{DI}_{u}=\mathrm{DI}_{v}$, we have $t_{u}^{L}=t_{v}^{L}$ and $t_{u}^{R}=t_{v}^{R}$ and also $\lambda\left(\mathrm{di}_{u}\right)=\lambda\left(d \mathrm{i}_{v}\right)$. By definition, we have $t_{\alpha \cdot u}^{R}=t_{\alpha \cdot u}^{L} \cdot \alpha \cdot u$, hence there exists a substitution h satisfying $t_{\alpha \cdot u}^{L} \bullet \alpha=\left(t_{u}^{L}\right)^{h}$ and $t_{\alpha \cdot u}^{R}=\left(t_{u}^{R}\right)^{h}$. We deduce

$$
\begin{aligned}
\lambda\left(\mathrm{di}_{\alpha} \cdot \mathrm{di}_{u}\right) & =\lg \left(t_{\alpha \cdot u}^{R}\right)-\lg \left(t_{\alpha \cdot u}^{L}\right) \\
& =\lg \left(t_{\alpha \cdot u}^{R}\right)-\lg \left(t_{\alpha \cdot u}^{L} \cdot \alpha\right)+\lg \left(t_{\alpha \cdot u}^{L} \cdot \alpha\right)-\lg \left(t_{\alpha \cdot u}^{L}\right) \\
& =\lg \left(\left(t_{u}^{R}\right)^{h}\right)-\lg \left(\left(t_{u}^{L}\right)^{h}\right)+\lg \left(t_{\alpha \cdot u}^{L} \cdot \alpha\right)-\lg \left(t_{\alpha \cdot u}^{L}\right) \\
& >\lg \left(\left(t_{u}^{R}\right)^{h}\right)-\lg \left(\left(t_{u}^{L}\right)^{h}\right) \geq \lg \left(t_{u}^{R}\right)-\lg \left(t_{u}^{L}\right)=\lambda\left(\operatorname{di}_{u}\right) .
\end{aligned}
$$

Hence f is right homogeneous.
Now we want to prove the condition (\star). We need an auxiliary lemma. We write $\mathrm{di}_{u}=^{\perp} \mathrm{di}_{v}$ for two positive words u and v if the word v is obtained from u using only replacements of a subword $\alpha_{1} \cdot \alpha_{2}$ by a subword $\alpha_{2} \cdot \alpha_{1}$ with $\alpha_{1} \perp \alpha_{2}$.

Lemma 5.4. Let di_{u}, di_{v} and di_{w} be words on $\mathcal{A}_{\mathrm{LDLI}}$. Then
(i) $d i_{u} \backslash\left(d i_{v} \cdot d i_{w}\right)=d i_{u} \backslash d i_{v} \cdot\left(d i_{v} \backslash d i_{u}\right) \backslash d i_{w}$,
(ii) $\left(\mathrm{di}_{u} \cdot \mathrm{di}_{v}\right) \backslash \mathrm{di}_{w}=\mathrm{di}_{v} \backslash\left(d \mathrm{i}_{u} \backslash \mathrm{di}_{w}\right)$,
(iii) $\mathrm{di}_{u}={ }^{\perp} \mathrm{di}_{v}$ implies $\mathrm{di}_{u} \backslash \mathrm{di}_{v}=\mathrm{di}_{v} \backslash \mathrm{di}_{u}=\varepsilon$.

Proof. (i) Denote $\mathrm{di}_{v}^{-1} \cdot \mathrm{di}_{u} \curvearrowright \mathrm{di}_{v^{\prime}} \cdot \mathrm{di}_{u^{\prime}}^{-1}$ and $\mathrm{di}_{w}^{-1} \cdot \mathrm{di}_{v^{\prime}} \curvearrowright \mathrm{di}_{w^{\prime}} \cdot \mathrm{di}_{v^{\prime \prime}}^{-1}$ Then

$$
\mathrm{di}_{w}^{-1} \cdot \mathrm{di}_{v}^{-1} \cdot \mathrm{di}_{u} \curvearrowright \mathrm{di}_{w}^{-1} \cdot \mathrm{di}_{v^{\prime}} \cdot \mathrm{di}_{u^{\prime}}^{-1} \curvearrowright \mathrm{di}_{w^{\prime}} \cdot \mathrm{di}_{v^{\prime \prime}}^{-1} \cdot \mathrm{di}_{u^{\prime}}^{-1}
$$

(ii) Denote $\mathrm{di}_{w}^{-1} \cdot \mathrm{di}_{u} \curvearrowright \mathrm{di}_{w^{\prime}} \cdot \mathrm{di}_{u^{\prime}}^{-1}$ and $\mathrm{di}_{u^{\prime}}^{-1} \cdot \mathrm{di}_{v} \curvearrowright \mathrm{di}_{u^{\prime \prime}} \cdot \mathrm{di}_{v^{\prime}}^{-1}$. Then

$$
d i_{w}^{-1} \cdot d i_{u} \cdot d i_{v} \curvearrowright d i_{w^{\prime}} \cdot d i_{u^{\prime}}^{-1} \cdot d i_{v} \curvearrowright d i_{w^{\prime}} \cdot d i_{u^{\prime}} \cdot d i_{v^{\prime}}^{-1}
$$

(iii) For $u=\varepsilon$ the result is trivial. Suppose $u=\alpha \cdot u_{0}$. The word v is of the form $v_{0} \cdot \alpha \cdot v_{1}$, where each address of v_{0} is orthogonal to α. Now we have

$$
d i_{u}^{-1} \cdot d i_{v} \curvearrowright d i_{u_{0}}^{-1} \cdot d i_{v_{0}} \cdot d i_{\alpha}^{-1} \cdot d i_{\alpha} \cdot d i_{v_{1}} \curvearrowright d i_{u_{0}}^{-1} \cdot d i_{v_{0}} \cdot d i_{v_{1}} \curvearrowright \varepsilon
$$

by the induction hypothesis because $\mathrm{di}_{u_{0}}={ }^{\perp} \mathrm{di}_{v_{0}} \cdot d \mathrm{di}_{v_{1}}$.

Proposition 5.5. The complement f of the monoid $M_{\text {LDLI }}$ satisfies the condition (\star).

Proof. We consider all the triples $\mathrm{di}_{\alpha}, \mathrm{di}_{\beta}, \mathrm{di}_{\gamma}$ from $\mathcal{A}_{\text {IDII }}$. Since the LDLI-relations are closed under shifts, we can consider that the greatest common prefix of α, β and γ is the address \varnothing or the address 0 .
Case 1. Two elements are equal. Suppose $\mathrm{di}_{\alpha}=\mathrm{di}_{\beta}$. One has

$$
\begin{aligned}
\left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right) & =\varepsilon \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right)=d i_{\alpha} \backslash d i_{\gamma} \\
\left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right) & =\varepsilon \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=d i_{\beta} \backslash d i_{\gamma} ; \\
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash \varepsilon=\varepsilon, \\
\left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right) & =\left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=\varepsilon ;
\end{aligned}
$$

and this suffices because α and β play a symmetrical role.
Case 2. An address is orthogonal to the greatest common prefix of the other two addresses. Suppose that γ is orthogonal to the greatest common prefix of α and β. In this case, γ is also orthogonal to each address in the words $d i_{\alpha} \backslash d i_{\beta}$ and $d i_{\beta} \backslash d i_{\alpha}$. One has

$$
\begin{aligned}
& \left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right)=\left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash d i_{\gamma}=d i_{\gamma}, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=\left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash d i_{\gamma}=d i_{\gamma} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(\mathrm{di}_{\beta} \backslash d i_{\alpha}\right)=d i_{\gamma} \backslash\left(\mathrm{di}_{\beta} \backslash \mathrm{di}_{\alpha}\right)=\left(\mathrm{di}_{\beta} \backslash \mathrm{di}_{\alpha}\right), \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=d i_{\gamma} \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=\left(d i_{\beta} \backslash d i_{\alpha}\right) ;
\end{aligned}
$$

and this suffices because α and β play a symmetrical role.
Case 3. One of the elements is i_{0} and 0 is the greatest common prefix of all addresses. Suppose $d i_{\gamma}=\mathfrak{i}_{0}$. We can suppose that the other addresses are different from \mathfrak{i}_{0}, otherwise we are in the case 1 . We write $\beta=0 \beta_{0}$ and $\gamma=0 \gamma_{0}$. One has

$$
\begin{aligned}
\left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right) & =\left(d i_{0 \alpha_{0}} \backslash d i_{0 \beta_{0}}\right) \backslash \mathfrak{i}_{0}=\mathfrak{i}_{0}, \\
\left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right) & =\left(d i_{0 \beta_{0}} \backslash d i_{0 \alpha_{0}}\right) \backslash \mathfrak{i}_{0}=\mathfrak{i}_{0} ; \\
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =\mathfrak{i}_{0} \backslash\left(d i_{0 \beta_{0}} \backslash d i_{0 \alpha_{0}}\right) \\
& ={ }^{\perp}\left(d i_{00 \beta_{0}} \backslash d i_{00 \alpha_{0}}\right) \cdot\left(\operatorname{di}_{01 \beta_{0}} \backslash d i_{01 \alpha_{0}}\right), \\
\left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right) & =\left(d i_{00 \beta_{0}} \cdot d i_{01 \beta_{0}}\right) \backslash\left(d i_{00 \alpha_{0}} \cdot \operatorname{di} i_{01 \alpha_{0}}\right) \\
& =\left(\operatorname{di}_{00 \beta_{0}} \backslash d i_{00 \alpha_{0}}\right) \cdot\left(\operatorname{di}_{01 \beta_{0}} \backslash d i_{01 \alpha_{0}}\right) ;
\end{aligned}
$$

Case 4. An address is a proper prefix of the greatest common prefix of the other two addresses. We suppose that γ is a prefix of the greatest common prefix γ^{\prime} of α and β. We can suppose $d i_{\gamma}=\mathrm{d} \varnothing$, otherwise we are in the case 3 .

Case 4.1. The address 0 is a prefix of α and of β. We write $\alpha=0 \alpha_{0}$ and $\beta=0 \beta_{0}$. One has

$$
\begin{aligned}
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right)=\operatorname{sh}_{0}\left(\mathrm{di}_{\alpha_{0}} \backslash \mathrm{di}_{\beta_{0}}\right) \backslash \mathrm{d}_{\varnothing}=\mathrm{d} \varnothing, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=\operatorname{sh}_{0}\left(d i_{\alpha_{0}} \backslash d i_{\beta_{0}}\right) \backslash \mathrm{d}_{\varnothing}=\mathrm{d}_{\varnothing} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=d_{\varnothing} \backslash \operatorname{sh}_{0}\left(\mathrm{di}_{\beta_{0}} \backslash d i_{\alpha_{0}}\right) \\
& ={ }^{\perp} \operatorname{sh}_{10}\left(d i_{\beta_{0}} \backslash d i_{\alpha_{0}}\right) \cdot \operatorname{sh}_{00}\left(d i_{\beta_{0}} \backslash d i_{\alpha_{0}}\right), \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=\left(d i_{10 \beta_{0}} \cdot d i_{00 \beta_{0}}\right) \backslash\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \\
& =\operatorname{sh}_{10}\left(\mathrm{di}_{\beta_{0}} \backslash \mathrm{di}_{\alpha_{0}}\right) \cdot \operatorname{sh}_{00}\left(\mathrm{di}_{\beta_{0}} \backslash \mathrm{di}_{\alpha_{0}}\right) ;
\end{aligned}
$$

and this suffices because α and β play a symmetrical role.
Case 4.2. The address 1 is a proper prefix of a common prefix of α and β.

Case 4.2.1. One of the elements is i_{10}. We suppose $\mathrm{di}_{\beta}=\mathfrak{i}_{10}$ and $d i_{\alpha}=\operatorname{di}_{10 \alpha_{0}} \neq i_{10}$.

$$
\begin{aligned}
& \left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right)=i_{10} \backslash d_{\varnothing}=d_{\varnothing} \cdot d_{0}, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=\left(d i_{100 \alpha_{0}} \cdot d i_{101 \alpha_{0}}\right) \backslash\left(d_{\varnothing} \cdot d_{0}\right) \\
& =\mathrm{d}_{\varnothing} \cdot\left(\left(\mathrm{di}_{010 \alpha_{0}} \cdot \mathrm{di}_{011 \alpha_{0}}\right) \backslash \mathrm{d}_{0}\right)=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{0} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=\left(d_{\varnothing} \cdot d_{0}\right) \backslash\left(d i_{100 \alpha_{0}} \cdot d i_{101 \alpha_{0}}\right) \\
& =\mathrm{d}_{0} \backslash\left(\mathrm{di}_{010 \alpha_{0}} \cdot \mathrm{di}_{011 \alpha_{0}}\right)=\mathrm{di}_{001 \alpha_{0}} \cdot \mathrm{di}_{011 \alpha_{0}}, \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=i_{0} \backslash d i_{01 \alpha_{0}}=d i_{001 \alpha_{0}} \cdot d i_{011 \alpha_{0}} ; \\
& \left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(d i_{\gamma} \backslash d i_{\beta}\right)=d i_{01 \alpha_{0}} \backslash \mathfrak{i}_{0}=\mathfrak{i}_{0}, \\
& \left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right)=d_{\varnothing} \backslash i_{10}=i_{0} .
\end{aligned}
$$

Case 4.2.2. None of the elements is \mathfrak{i}_{10}. We write $\alpha=1 e \alpha_{0}$ and $\beta=$ $1 e \beta_{0}$ with $e=0$ or $e=1$. One has

$$
\begin{aligned}
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right)=\operatorname{sh}_{1 e}\left(\mathrm{di}_{\alpha_{0}} \backslash \mathrm{di}_{\beta_{0}}\right) \backslash \mathrm{d}_{\varnothing}=\mathrm{d}_{\varnothing}, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=\operatorname{sh}_{1 e}\left(\operatorname{di}_{\beta_{0}} \backslash \mathrm{di}_{\alpha_{0}}\right) \backslash \mathrm{d}_{\varnothing}=\mathrm{d}_{\varnothing} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=d_{\varnothing} \backslash \operatorname{sh}_{1 e}\left(d i_{\beta_{0}} \backslash d i_{\alpha_{0}}\right)=\operatorname{sh}_{e 1}\left(d i_{\beta_{0}} \backslash d i_{\alpha_{0}}\right), \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=d i_{e 1 \beta_{0}} \backslash d i_{e 1 \alpha_{0}}=\operatorname{sh}_{e 1}\left(d i_{\beta_{0}} \backslash d i_{\alpha_{0}}\right) ;
\end{aligned}
$$

and this suffices because α and β play a symmetrical role.
Case 4.3. The address 1 is the greatest common prefix of α and β.
Case 4.3.1. The addresses α and β are orthogonal.
Case 4.3.1.1 One of the elements is \mathfrak{i}_{10}. We suppose $d i_{\beta}=\mathfrak{i}_{10}$ and $\alpha=11 \alpha_{0}$. One has

$$
\begin{aligned}
& \left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right)=i_{10} \backslash d_{\varnothing}=d_{\varnothing} \cdot d_{0} \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=\operatorname{di}_{11 \alpha_{0} \backslash\left(d_{\varnothing} \cdot d_{0}\right)=d_{\varnothing} \cdot d_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=\left(d_{\varnothing} \cdot d_{0}\right) \backslash d i_{11 \alpha_{0}}=d i_{11 \alpha_{0}}, \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=\mathfrak{i}_{0} \backslash \operatorname{di}_{11 \alpha_{0}}=\operatorname{di}_{11 \alpha_{0}} ; \\
& \left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(d i_{\gamma} \backslash d i_{\beta}\right)=\operatorname{di}_{11 \alpha_{0} \backslash \mathfrak{i}_{0}=\mathfrak{i}_{0},}^{\left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right)=d_{\varnothing} \backslash \mathfrak{i}_{10}=\mathfrak{i}_{0} .} .
\end{aligned}
$$

Case 4.3.1.2 None of the elements is \mathfrak{i}_{10}. We suppose $\beta=10 \beta_{0}$ and $\alpha=11 \alpha_{0}$.

$$
\begin{aligned}
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right)=\mathrm{di}_{10 \beta_{0}} \backslash \mathrm{~d}_{\varnothing}=\mathrm{d}_{\varnothing}, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(\mathrm{di}_{\beta} \backslash \mathrm{di}_{\gamma}\right)=\mathrm{di}_{11 \alpha_{0}} \backslash \mathrm{~d}_{\varnothing}=\mathrm{d}_{\varnothing} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=d_{\varnothing} \backslash d i_{11 \alpha_{0}}=d i_{11 \alpha_{0}}, \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=d i_{10 \beta_{1}} \backslash \operatorname{di}_{11 \alpha_{0}}=d i_{11 \alpha_{0}} ; \\
& \left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(d i_{\gamma} \backslash d i_{\beta}\right)=d i_{11 \alpha_{0}} \backslash \operatorname{di}_{10 \beta_{0}}=\operatorname{di}_{10 \beta_{0}}, \\
& \left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right)=d_{\varnothing} \backslash \operatorname{di}_{10 \beta_{0}}=d i_{10 \beta_{0}} .
\end{aligned}
$$

Case 4.3.2. The addresses α and β are comparable. We can suppose that β is a proper prefix of α, hence $\mathrm{di}_{\beta}=\mathrm{d}_{1}$. (The element i_{1} does not belong to $M_{\text {LDLI }}$.)

Case 4.3.2.1 The address 10 is a prefix of α.
Case 4.3.2.1.1. The element di_{α} is \mathfrak{i}_{10}. One has

$$
\begin{aligned}
& \left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right)=d_{1} \backslash\left(d_{\varnothing} \cdot d_{0}\right)=d_{\varnothing} \cdot d_{1} \cdot d_{0} \cdot\left(\left(d_{1} \cdot d_{\varnothing}\right) \backslash d_{0}\right) \\
& =\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0} \cdot\left(\mathrm{~d}_{\varnothing} \backslash \mathrm{d}_{0}\right)=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0} \cdot \mathrm{~d}_{10} \cdot \mathrm{~d}_{00}, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=\left(i_{100} \cdot i_{110}\right) \backslash\left(d_{\varnothing} \cdot d_{1} \cdot d_{0}\right) \\
& =\mathrm{d}_{\varnothing} \cdot\left(\left(\mathrm{i}_{010} \cdot \mathrm{i}_{110}\right) \backslash\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right)\right)=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{10} \cdot \mathrm{~d}_{0} \cdot \mathrm{~d}_{00} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(\mathrm{di}_{\beta} \backslash \mathrm{di}_{\alpha}\right)=\left(\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right) \backslash\left(\mathfrak{i}_{100} \cdot \mathfrak{i}_{110}\right)=\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right) \backslash\left(\mathfrak{i}_{010} \cdot \mathfrak{i}_{110}\right) \\
& =\mathfrak{i}_{00} \cdot \mathfrak{i}_{10} \text {, } \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(\mathrm{di}_{\gamma} \backslash \mathrm{di}_{\alpha}\right)=\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing}\right) \backslash \mathfrak{i}_{0}=\mathrm{d}_{\varnothing} \backslash \mathfrak{i}_{0}=\mathfrak{i}_{10} \cdot \mathfrak{i}_{00} ; \\
& \left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(d i_{\gamma} \backslash d i_{\beta}\right)=i_{0} \backslash\left(d_{1} \cdot d_{\varnothing}\right)=d_{1} \cdot d_{\varnothing}, \\
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right)=\left(\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{0}\right) \backslash \mathrm{d}_{1}=\mathrm{d}_{0} \backslash\left(\mathrm{~d}_{1} \cdot \mathrm{~d}_{\varnothing}\right)=\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing} .
\end{aligned}
$$

Case 4.3.2.1.2. The element di_{α} is not i_{10}. We write $\alpha=10 \alpha_{0}$.
One has

$$
\begin{aligned}
\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right) & =\mathrm{d}_{1} \backslash \mathrm{~d}_{\varnothing}=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}, \\
\left(\mathrm{di}_{\beta} \backslash \mathrm{ii}_{\alpha}\right) \backslash\left(\mathrm{di}_{\beta} \backslash d i_{\gamma}\right) & =\left(\mathrm{di}_{110 \alpha_{0}} \cdot \mathrm{di}_{100 \alpha_{0}}\right) \backslash\left(\mathrm{d}_{1} \backslash \mathrm{~d}_{\varnothing}=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right) \\
& =\mathrm{d}_{1} \backslash \mathrm{~d}_{\varnothing}=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}
\end{aligned}
$$

$$
\begin{aligned}
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =\left(d_{\varnothing} \cdot d_{1} \cdot d_{0}\right) \backslash\left(d i_{110 \alpha_{0}} \cdot d i_{100 \alpha_{0}}\right) \\
& =\left(d_{1} \cdot d_{0}\right) \backslash\left(d i_{110 \alpha_{0}} \cdot d i_{010 \alpha_{0}}\right)=d i_{101 \alpha_{0}} \cdot d i_{001 \alpha_{0}}, \\
\left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right) & =\left(d_{1} \cdot d_{\varnothing}\right) \backslash d i_{01 \alpha_{0}}=d_{\varnothing} \backslash d i_{01 \alpha_{0}}=d i_{101 \alpha_{0}} \cdot d i_{001 \alpha_{0}} ; \\
\left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(d i_{\gamma} \backslash d i_{\beta}\right) & =d i_{01 \alpha_{0}} \backslash\left(d_{1} \cdot d_{\varnothing}\right)=d_{1} \cdot d_{\varnothing}, \\
\left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right) & =d_{\varnothing} \backslash d_{1}=d_{1} \cdot d_{\varnothing} ;
\end{aligned}
$$

Case 4.3.2.2 The address 11 is a proper prefix of α.
Case 4.3.2.2.1. The element $d i_{\alpha}$ is i_{110}. One has

$$
\begin{aligned}
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right)=\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{10}\right) \backslash \mathrm{d}_{\varnothing}=\mathrm{d}_{10} \backslash\left(\mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right) \\
& =d_{\varnothing} \cdot\left(d_{01} \backslash\left(d_{1} \cdot d_{0}\right)\right)=d_{\varnothing} \cdot d_{1} \cdot d_{0} \cdot d_{01} \cdot d_{00}, \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=i_{10} \backslash\left(d_{\varnothing} \cdot d_{1} \cdot d_{0}\right) \\
& =\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{0} \cdot\left(\mathrm{i}_{0} \backslash\left(\mathrm{~d}_{1} \cdot \mathrm{~d}_{0}\right)\right)=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{0} \cdot \mathrm{~d}_{1} \cdot \mathrm{~d}_{00} \cdot \mathrm{~d}_{01} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=\left(d_{\varnothing} \cdot d_{1} \cdot d_{0}\right) \backslash i_{10}=i_{0}, \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(\mathrm{di}_{\gamma} \backslash \mathrm{di}_{\alpha}\right)=\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing}\right) \backslash \mathfrak{i}_{110}=\mathrm{d}_{\varnothing} \backslash \mathfrak{i}_{10}=\mathfrak{i}_{0} ; \\
& \left(d i_{\gamma} \backslash d i_{\alpha}\right) \backslash\left(\mathrm{di}_{\gamma} \backslash \mathrm{di}_{\beta}\right)=\mathfrak{i}_{110} \backslash\left(\mathrm{~d}_{1} \cdot \mathrm{~d}_{\varnothing}\right)=\mathrm{d}_{1} \cdot \mathrm{~d}_{10} \cdot\left(\mathrm{i}_{10} \backslash \mathrm{~d}_{\varnothing}\right) \\
& =\mathrm{d}_{1} \cdot \mathrm{~d}_{10} \cdot \mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{0}, \\
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right)=\mathrm{d}_{\varnothing} \backslash\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{10}\right)=\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing} \cdot\left(\left(\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right) \backslash \mathrm{d}_{10}\right) \\
& =\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing} \cdot\left(\left(\mathrm{d}_{1} \cdot \mathrm{~d}_{0}\right) \backslash \mathrm{d}_{01}\right)=\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{01} \cdot \mathrm{~d}_{0} ;
\end{aligned}
$$

and one finds

$$
\begin{aligned}
\mathrm{d}_{0}^{-1} \cdot \mathrm{~d}_{\varnothing}^{-1} \cdot \mathrm{~d}_{10}^{-1} \cdot \mathrm{~d}_{1}^{-1} \cdot \mathrm{~d}_{1} \cdot \mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{01} \cdot \mathrm{~d}_{0} & \curvearrowright \mathrm{~d}_{0}^{-1} \cdot \mathrm{~d}_{\varnothing}^{-1} \cdot \mathrm{~d}_{10}^{-1} \cdot \mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{01} \cdot \mathrm{~d}_{0} \\
& \curvearrowright \mathrm{~d}_{0}^{-1} \cdot \mathrm{~d}_{\varnothing}^{-1} \cdot \mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{01}^{-1} \cdot \mathrm{~d}_{01} \cdot \mathrm{~d}_{0} \curvearrowright \mathrm{~d}_{0}^{-1} \cdot \mathrm{~d}_{0} \curvearrowright \varepsilon .
\end{aligned}
$$

Case 4.3.2.1.2. The element di_{α} is not \mathfrak{i}_{110}. We write $\alpha=$ $11 e \alpha_{0}$. One has

$$
\begin{aligned}
& \left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\gamma}\right)=\mathrm{d}_{1} \backslash \mathrm{~d}_{\varnothing}=\mathrm{d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}, \\
& \left(\mathrm{di}_{\beta} \backslash \mathrm{di}_{\alpha}\right) \backslash\left(\mathrm{di}_{\beta} \backslash \mathrm{di}_{\gamma}\right)=\mathrm{di}_{1 e 1 \alpha_{0}} \backslash\left(\mathrm{~d}_{\varnothing} \cdot \mathrm{d}_{1} \cdot \mathrm{~d}_{0}=\mathrm{d} \varnothing \cdot \mathrm{~d}_{1} \cdot \mathrm{~d}_{0} ;\right. \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=\left(d_{\varnothing} \cdot d_{1} \cdot d_{0}\right) \backslash d i_{1 e 1 \alpha_{0}}=\left(d_{1} \cdot d_{0}\right) \backslash d i_{e 11 \alpha_{0}}=d i_{e 11 \alpha_{0}}, \\
& \left(d i_{\gamma} \backslash d i_{\beta}\right) \backslash\left(d i_{\gamma} \backslash d i_{\alpha}\right)=\left(d_{1} \cdot d_{\varnothing}\right) \backslash d i_{11 e \alpha_{0}}=d_{\varnothing} \backslash d i_{1 e 1 \alpha_{0}}=d i_{e 11 \alpha_{0}} ; \\
& \left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(\mathrm{di}_{\alpha} \backslash \mathrm{di}_{\beta}\right)=\mathrm{di}_{11 e \alpha_{0}} \backslash\left(\mathrm{~d}_{1} \cdot \mathrm{~d}_{\varnothing}\right)=\mathrm{d}_{1} \cdot \mathrm{~d}_{\varnothing}, \\
& \left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right)=d_{\varnothing} \backslash d_{1}=d_{1} \cdot d_{\varnothing} .
\end{aligned}
$$

Case 4.3.2.3 The address α is 11 . This is the most complicated one but we do not need to consider it here because all these three addresses belong to \mathbf{A}_{LD} and this one is shown in [4].
Case 5. The address \varnothing is the greatest common prefix of α and β. We can suppose $\alpha \perp \beta$, otherwise we are in the case 1 . We write $\alpha=0 \alpha_{0}$.

Case 5.1. The address 1 is a proper prefix of β.
Case 5.1.1. The element di_{β} is \mathfrak{i}_{10}. One has

$$
\begin{aligned}
\left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right) & =i_{10} \backslash d_{\varnothing}=d_{\varnothing} \cdot d_{0}, \\
\left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right) & =d i_{0 \alpha_{0}} \backslash\left(d_{\varnothing} \cdot d_{0}\right)=d_{\varnothing} \cdot d_{0} ; \\
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =\left(d_{\varnothing} \cdot d_{0}\right) \backslash d i_{0 \alpha_{0}}=d_{0} \backslash\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \\
& =d i_{10 \alpha_{0}} \cdot d i_{010 \alpha_{0}} \cdot d i_{000 \alpha_{0}}, \\
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =i_{0} \backslash\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right)=d i_{00 \alpha_{0}} \cdot d i_{000 \alpha_{0}} \cdot d i_{010 \alpha_{0}} ; \\
\left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right) & =\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \backslash i_{0}=i_{0}, \\
\left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right) & =d_{\varnothing} \backslash i_{10}=i_{0} .
\end{aligned}
$$

Case 5.1.2. The element di_{β} is not \mathfrak{i}_{10}. We write $\beta=1 e \beta_{0}$ and we have

$$
\begin{aligned}
& \left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right)=d i_{1 e \beta_{0}} \backslash d_{\varnothing}=d \varnothing \\
& \left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right)=d i_{0 \alpha_{0}} \backslash d_{\varnothing}=d_{\varnothing} ; \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=d \varnothing \backslash d i_{0 \alpha_{0}}=d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}, \\
& \left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right)=d i_{e 1 \beta_{0}} \backslash\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right)=d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}} ; \\
& \left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right)=\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \backslash d i_{e 1 \beta_{0}}=d i_{e 1 \beta_{0}}, \\
& \left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right)=d_{\varnothing} \backslash d i_{1 e \beta_{0}}=d i_{1 e \beta_{0}} .
\end{aligned}
$$

Case 5.2. The address β is equal to 1 . We find

$$
\begin{aligned}
\left(d i_{\alpha} \backslash d i_{\beta}\right) \backslash\left(d i_{\alpha} \backslash d i_{\gamma}\right) & =d_{1} \backslash d_{\varnothing}=d \varnothing \cdot d . d_{0} \\
\left(d i_{\beta} \backslash d i_{\alpha}\right) \backslash\left(d i_{\beta} \backslash d i_{\gamma}\right) & =d i_{0 \alpha_{0}} \backslash\left(d_{\varnothing} \cdot d \cdot d_{0}\right)=d \varnothing \cdot d . d_{0} ; \\
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =\left(d_{\varnothing} \cdot d_{1} \cdot d_{0}\right) \backslash d i_{0 \alpha_{0}}=\left(d_{1} \cdot d_{0}\right) \backslash\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \\
& =d i_{110 \alpha_{0}} \cdot d i_{100 \alpha_{0}} \cdot d i_{010 \alpha_{0}} \cdot d i_{000 \alpha_{0}}, \\
\left(d i_{\beta} \backslash d i_{\gamma}\right) \backslash\left(d i_{\beta} \backslash d i_{\alpha}\right) & =\left(d_{1} \cdot d_{\varnothing}\right) \backslash\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \\
& =\operatorname{di}_{110 \alpha_{0}} \cdot \operatorname{di}_{010 \alpha_{0}} \cdot \operatorname{di}_{100 \alpha_{0}} \cdot d i_{000 \alpha_{0}} ; \\
\left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right) & =\left(d i_{10 \alpha_{0}} \cdot d i_{00 \alpha_{0}}\right) \backslash\left(d_{1} \cdot d_{\varnothing}\right)=d_{1} \cdot d_{\varnothing} \\
\left(d i_{\alpha} \backslash d i_{\gamma}\right) \backslash\left(d i_{\alpha} \backslash d i_{\beta}\right) & =d_{\varnothing} \backslash d_{1}=d_{1} \cdot d \varnothing
\end{aligned}
$$

Case 6. The greatest common prefix of two addresses is a prefix of the third one. Suppose that the greatest prefix γ^{\prime} of α and β is a prefix of γ. If we have $\beta=\gamma^{\prime}$ or $\gamma=\gamma^{\prime}$, then we are in the case 4 or in the case 5 . If α and β are orthogonal, then we are in the case 1 . We have considered all the cases and the proof is finished.

We deduce from Proposition 5.2:
Proposition 5.6. : The word problem of $M_{\text {LDI }}$ is solvable.
Each monoid satisfying the conditions of Proposition 5.2 has some good properties:

Proposition 5.7. The monoid $M_{\text {LDu }}$ is left cancellative and the left divisibility order on $M_{\text {LDu }}$ forms a lattice.

Proof. It is shown in [4] that each monoid satisfying the conditions of Proposition 5.2 is left cancellative, each two elements have a unique greatest common left divisor and each two elements having a common right multiple have also the least one. According to Proposition 4.9, each pair of elements in $M_{\text {IDII }}$ has a common right multiple and hence the left divisibility order on M_{LDLI} forms a lattice.

Remark 5.8. The canonical projection $M_{\text {IDII }} \rightarrow \mathcal{G}_{\text {IDII }}^{+}$is not injective. We have $i_{0} \cdot i_{00} \cdot i_{0} \equiv_{\text {LDII }}^{+} i_{0} \cdot i_{0} \cdot d_{0}$, because $M_{\text {L.ए. }}$ is left cancellative and $\mathrm{I}_{00} \cdot$ $\mathrm{I}_{0} \neq \mathrm{I}_{0} \cdot \mathrm{D}_{0}$: the operator $\mathrm{I}_{00} \cdot \mathrm{I}_{0}$ sends $(x \cdot y) \cdot z$ onto $(((x \cdot x) \cdot y) \cdot((x \cdot x) \cdot y)) \cdot z$ and the operator $\mathrm{I}_{0} \cdot \mathrm{D}_{0}$ sends $(x \cdot y) \cdot z$ onto $(((x \cdot y) \cdot x) \cdot((x \cdot y) \cdot y)) \cdot z$. However, we have

$$
\begin{aligned}
i_{0} \cdot i_{00} \cdot i_{0} \equiv_{\text {LDI }}^{+} i_{0} \cdot i_{0} \cdot i_{000} \cdot i_{010} & \equiv_{\text {LDI }}^{+} i_{0} \cdot i_{01} \cdot d_{0} \cdot i_{000} \cdot i_{010} \equiv_{\text {LDI }}^{+} \\
& \equiv_{\text {LDI }}^{+} i_{0} \cdot i_{01} \cdot i_{00} \cdot d_{0} \equiv_{\text {LDI }}^{+} i_{0} \cdot i_{0} \cdot d_{0}
\end{aligned}
$$

and hence also the equality $\mathrm{I}_{0} \cdot \mathrm{I}_{00} \cdot \mathrm{I}_{0}=\mathrm{I}_{0} \cdot \mathrm{I}_{0} \cdot \mathrm{D}_{0}$.
The solution of the word problem of the LD identity actually uses the geometry group, not the geometry monoid nor the positive geometry monoid. The geometry group is obtained as the fraction group of the positive geometry monoid. In the cases of LDI and LDLI the positive geometry monoids are not cancellative and it is unlikely that their group of fractions could describe the identities well. Nevertheless, the monoid $M_{\text {LDI }}$ is (at least left) cancellative and it has all the important properties of the positive geometry monoid of LDLI. Hence it might be possible to attack the word problem from this direction.

References

[1] S. N. Burris, H. P. Sankappanavar: "A Course in Universal Algebra", Grad. texts in Math., Springer-Verlag, 1981
[2] J. W. Cannon, W. J. Floyd, W. R. Parry: Introductory Notes to Richard Thompson's Groups, L'Enseignement Mathématique 42, 1996, 215-256
[3] P. Dehornoy: The structure group for the associativity identity, J. of Pure and Appl. Algebra 111, 1996, 59-82
[4] P. Dehornoy: "Braids and Self-Distributivity"; Prog. in Math. 192; Birkhäuser, 2000
[5] P. Dehornoy: The fine structure of LD-equivalence, Adv. in Math., 155, 2000, 264-316
[6] P. Dehornoy: Study of an identity, Alg. Univ. 48, 2002, 223-248
[7] P. Dehornoy: Complete positive group presentation, J. of Alg. 268, 2003, 156197
[8] P. Dehornoy: Geometric presentations for Thompson's groups, J. Pure Appl. Alg., 203, 2005, 1-44
[9] P. Jedlička: On Left Distributive Left Idempotent Groupoids, Comment. Math. Univ. Carol. 46,1, 2005, 15-20
[10] P. Jedlička: "Treillis, groupes de Coxeter et les systèmes LDI" (french and czech), Ph.D. thesis, University of Caen, 2004, Caen
[11] T. Kepka: Notes On Left Distributive Groupoids, Acta Univ. Carolinae - Math. et Phys. 22.2, 1981, 23-37
[12] T. Kepka, Non-idempotent left symmetric left distributive groupoids, Commentat. Math. Univ. Carol. 35.1, 1994, 181-186
[13] T. Kepka, P. Němec: Selfdistributive Groupoids Part A1: Non-Idempotent Left Distributive Groupoids, Acta Univ. Carolinae - Math. et Phys. 44.1, 2003, 3-94
[14] D. Larue: Left-Distributive Idempotent Algebras, Commun. Alg. 27/5, 1999, 2003-2009

Contact information

P. Jedlička

Czech University of Agriculture
Faculty of Engineering
Department of Mathematics
Kamýcká 129
16521, Prague 6 - Suchdol
Czech Republic
E-Mail: jedlickap@tf.czu.cz
URL: http://tf.czu.cz/~jedlickap

Received by the editors: 26.02.2007 and in final form 12.04.2007.

