On minimal ω -composition non- \mathfrak{H} -formations Liudmila I. Belous, Vadim M. Sel'kin

Communicated by L. A. Shemetkov

ABSTRACT. Let \mathfrak{H} be some class of groups. A formation \mathfrak{F} is called a minimal τ -closed ω -composition non- \mathfrak{H} -formation [1] if $\mathfrak{F} \not\subseteq \mathfrak{H}$ but $\mathfrak{F}_1 \subseteq \mathfrak{H}$ for all proper τ -closed ω -composition subformations \mathfrak{F}_1 of \mathfrak{F} . In this paper we describe the minimal τ -closed ω -composition non- \mathfrak{H} -formations, where \mathfrak{H} is a 2-multiply local formation and τ is a subgroup functor such that for any group G all subgroups from $\tau(G)$ are subnormal in G.

Introduction

Throughout this paper all groups considered are finite. A non-empty set of formations Θ is called a full lattice of formations [2] if the intersection of any set of formations from Θ again belongs to Θ and in Θ there is a formation \mathfrak{F} such that $\mathfrak{H} \subseteq \mathfrak{F}$ for all $\mathfrak{H} \in \Theta$. Formations belonging to Θ are called Θ -formations. Let \mathfrak{H} be some class of groups. Recall that a Θ -formation \mathfrak{F} is called a minimal non- \mathfrak{H} - Θ -formation (L.A. Shemetkov [1]) or \mathfrak{H}_{Θ} -critical formation (A.N. Skiba [3]) if $\mathfrak{F} \not\subseteq \mathfrak{H}$ but $\mathfrak{F}_1 \subseteq \mathfrak{H}$ for all proper Θ -subformations \mathfrak{F}_1 of \mathfrak{F} .

The minimal non- \mathfrak{H} - Θ -formations, where Θ is the set of all saturated formations have been described in work [4]. This result have been applied in research of local formations with given subformations (see for more in details Chapter 4 in [5]). In the book [2] analogue of this result in the class of τ -closed saturated formations have been obtained. In the work [6] the minimal ω -saturated non- \mathfrak{H} -formations, where \mathfrak{H} is a 2-multiply local formation have been described. In [7] the minimal ω -saturated

²⁰⁰⁰ Mathematics Subject Classification: 20D20.

Key words and phrases: formation, τ -closed ω -composition, satellite.

non- \mathfrak{H} -formations, where \mathfrak{H} is an any formation of classical type have been described. In the work [9] the structure of the minimal non- \mathfrak{H} - \mathfrak{H} formations, where Θ is a class of all ω -composition formations has been described.

In this paper we describe the minimal τ -closed ω -composition non- \mathfrak{H} -formations, where \mathfrak{H} is a 2-multiply local formation and τ is a subgroup functor such that for any group G all subgroups from $\tau(G)$ are subnormal in G.

1. Preliminaries

We use standard terminology [10], [11]. In addition we shall need some definitions and notations from the work of L.A.Shemetkov and A.N. Skiba [8] and the concept of subgroup functor given by A.N.Skiba [2].

Let \mathfrak{L} be an arbitrary non-empty class of abelian simple groups and $\omega = \pi(\mathfrak{L})$. Every function

$$f:\omega\bigcup\{\omega'\}\longrightarrow\{formations\ of\ groups\}$$

is called an ω -composition satellite.

We use $C^{p}(G)$ to denote the intersection of all centralizers of abelian chief *p*-factors of the group G (we write $C^{p}(G) = G$ if G has no such chief factors). Let R(G) denote the radical of G (i.e. R(G) is the largest normal soluble subgroup of G).

Let \mathfrak{X} be a set of groups. We use $\operatorname{Com}(\mathfrak{X})$ to denote the class of all abelian simple groups A such that $A \simeq H/K$ for some composition factor H/K of some group $G \in \mathfrak{X}$. Also, we write $\operatorname{Com}(G)$ for the set $\operatorname{Com}(\{G\})$.

For an arbitrary ω -composition satellite f we put following [8]

$$CF_{\omega}(f) = \{G \mid G/(R(G) \cap O_{\omega}(G)) \in f(\omega') \text{ and } G/C^{p}(G) \in f(p) \text{ for all} \\ p \in \pi(Com(G)) \cap \omega\}.$$

If the formation \mathfrak{F} is such that $\mathfrak{F} = CF_{\omega}(f)$ for some ω -composition satellite f, then we say that \mathfrak{F} is an ω -composition formation and f is an ω -composition satellite of that formation [8]. A ω -composition satellite fof a ω -composition formation \mathfrak{F} is called an inner ω -composition satellite of \mathfrak{F} if $f(a) \subseteq \mathfrak{F}$ for all $a \in \omega \cup {\omega'}$.

Recall that a Skiba subgroup functor τ [2] associates with every group G a system of its subgroups $\tau(G)$ such that the following conditions hold:

1) $G \in \tau(G)$ for any group G;

2) for any epimorphism $\varphi : A \longrightarrow B$ and for any groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$. We write $\tau_1 \leq \tau_2$ if and only if $\tau_1(G) \subseteq \tau_2(G)$.

If for all groups H and G, where $H \in \tau(G)$ we have $\tau(H) \subseteq \tau(G)$, then they say that τ is a closed subgroup functor.

Let $\overline{\tau}$ be the intersection of all closed functors τ_i such that $\tau \leq \tau_i$. The functor $\overline{\tau}$ is called the closure of τ .

In this paper we consider the only subgroup functors τ such that for any group G the set $\tau(G)$ consists of some subnormal subgroups of G.

A formation \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for any group $G \in \mathfrak{F}$. A satellite f is called τ -valued if all values of f are τ -closed formations.

We denote by $c_{\omega}^{\tau} form(\mathfrak{X})$ the intersection of all τ -closed ω -composition formations containing the set of groups \mathfrak{X} . Then $c_{\omega}^{\tau} form(\mathfrak{X})$ is called the τ -closed ω -composition formation generated by \mathfrak{X} . If $\mathfrak{X} = \{G\}$ for some group G, then instead of $c_{\omega}^{\tau} form(G)$ we write $c_{\omega}^{\tau} formG$. Formations of this kind are called one-generated τ -closed ω -composition formations.

Let $\{f_i \mid i \in I\}$ be the set of ω -composition satellites. Then $\bigcap_{i \in I} f_i$ is a satellite such that $(\bigcap_{i \in I} f_i)(a) = \bigcap_{i \in I} f_i(a)$ for all $a \in \omega \cup \{\omega'\}$.

Now let $\{f_i \mid i \in I\}$ be the set of all ω -composition τ -valued satellites of the formation \mathfrak{F} . By Lemma 2 [8], $f = \bigcap_{i \in I} f_i$ is a ω -composition satellites of \mathfrak{F} . The satellite f is called the minimal ω -composition τ valued satellite of \mathfrak{F} .

Let f be the minimal ω -composition τ -valued satellite of \mathfrak{F} . And let F be a satellite such that

$$F(a) = \begin{cases} \mathfrak{N}_p f(p), & \text{if } a = p \in \omega; \\ \mathfrak{F}, & \text{if } a = \omega'. \end{cases}$$

Then F is a ω -composition satellite of the formation \mathfrak{F} [8] and it is called the canonical ω -composition satellite of \mathfrak{F} .

Let f and h be two ω -composition satellites of the formation \mathfrak{F} . Then we write $f \leq h$ if for all $a \in \omega \cup \{\omega'\}$ we have $f(a) \subseteq h(a)$.

Lemma 1.1. [8, 1]. Let G be a group, p be a prime. Assume that $N \leq G$ and that for every composition factor H/K of the subgroup N we have $p \neq |H/K|$. Then $C^p(G/N) = C^p(G)/N$.

Lemma 1.2. [12, 2]. Let p be a prime, $O_p(G) = 1$ and $T = Z_p \wr G = [K]G$, where K is the base group of T. Then $K = C^p(T)$.

Lemma 1.3. [8, 4]. Let $\mathfrak{F} = CF_{\omega}(f)$ and $p \in \omega$. If $G/O_p(G) \in \mathfrak{F} \cap f(p)$, then $G \in \mathfrak{F}$.

Lemma 1.4. [8, 5]. Let \mathfrak{F} be an arbitrary non-empty set of groups and $\mathfrak{X} \subseteq \mathfrak{H}$, where \mathfrak{H} is a τ -closed formation. Let $\mathfrak{F} = c_{\omega}^{\tau} \operatorname{from}(\mathfrak{X})$ and $\pi =$

 $\pi(\text{Com}(\mathfrak{X}))$. Then \mathfrak{F} has the minimal τ -valued ω -composition satellite f and f has the following values:

(1) $f(\omega') = \tau \operatorname{form}(G/(O_{\omega}(G) \cap R(G)) | G \in \mathfrak{X}).$

(2) $f(p) = \tau \operatorname{form}(G/C^p(G)|G \in \mathfrak{X}), \text{ for all } p \in \pi \cap \omega.$

(3) $f(p) = \emptyset$, for all $p \in \omega \setminus \pi$.

(4) If $\mathfrak{F} = CF_{\omega}(h)$ and h be the τ -valued satellite, then

$$f(p) = \tau \operatorname{form}(A \mid A \in h(p) \cap \mathfrak{F}, \ O_p(A) = 1)$$

for all $p \in \pi \cap \omega$ and

 $f(\omega') = \tau \operatorname{form}(A \mid A \in h(\omega') \cap \mathfrak{F} \text{ and } R(A) \cap O_{\omega}(A) = 1).$

Lemma 1.5. [8, 6]. Let f_i be the minimal ω -composition satellite of the formation \mathfrak{F}_i , i = 1, 2. Then $\mathfrak{F}_1 \subseteq \mathfrak{F}_2$ if and only if $f_1 \leq f_2$.

Lemma 1.6. [2, 2.1.5]. Let A be a monolithic group and $R \not\subseteq \Phi(A)$ is the socle of G. Then the formation $\mathfrak{F} = \tau formA$ is a τ -irreducible and $\mathfrak{M} = \tau form(\mathfrak{X} \cup \{A/R\})$ is the unique maximal τ -closed subformation of \mathfrak{F} , where \mathfrak{X} is the set of all proper τ -subgroups of A.

2. Main results

A formation \mathfrak{F} is called a 2-multiply local if it has a local satellite f such that all non-empty values of f are local formations.

Theorem 2.1. Let f be the minimal τ -valued ω -composition satellite of the formation \mathfrak{F} and let H be the canonical ω -composition satellite of a 2-multiply local formation \mathfrak{H} . A formation \mathfrak{F} is a minimal τ -closed ω composition non- \mathfrak{H} -formation if and only if $\mathfrak{F} = c_{\omega}^{\tau}$ form G where G is a monolithic $\overline{\tau}$ -minimal non- \mathfrak{H} -group and $R = G^{\mathfrak{H}} = Soc(G)$ is the socle of G, where $R \nsubseteq \Phi(G)$ and either $\pi = \pi(Com(R)) \cap \omega = \emptyset$ or $\pi \neq \emptyset$ and G satisfies one of the following conditions:

1) G = R is a group of prime order $p \notin \pi(\mathfrak{H})$;

2) G = [R]M, where $R = O_p(G) = F_p(G)$ for same $p \in \pi$ and M is a monolithic $\overline{\tau}$ -minimal non-H(p)-group and $Q = M^{H(p)} = Soc(M)$ is the socle of M, where $p \notin \pi(Com(Q))$ and $Q \notin \Phi(M)$.

Proof. Necessity. Let G be a group of minimal order in $\mathfrak{F} \setminus \mathfrak{H}$. Then G is a monolithic $\overline{\tau}$ -minimal non- \mathfrak{H} -group and $R = G^{\mathfrak{H}} \neq 1$ is the socle of G. Let $\mathfrak{F} \neq c_{\omega}^{\tau} formG$. Then $c_{\omega}^{\tau} formG \subseteq \mathfrak{H}$ and so $G \in \mathfrak{H}$. This contradiction shows that $\mathfrak{F} = c_{\omega}^{\tau} formG$. Since by hypothesis \mathfrak{H} is a local formation, then by Theorem 4.3 [11], \mathfrak{H} is a saturated formation and so $R \not\subseteq \Phi(G)$.

Let $\pi = \pi(Com(R)) \cap \omega = \emptyset$. In this case the condition of the theorem is carried out.

Let's consider the case $\pi \neq \emptyset$ and $p \in \pi$.

Assume that $G = C_G(R)$. Let $R \neq G$. Assume that $H(p) = \emptyset$. Consequently $p \notin \pi(\mathfrak{H})$ and so $Z_p \notin \mathfrak{H}$. Then $\mathfrak{N}_p \notin \mathfrak{H}$. Consequently $\mathfrak{N}_p = \mathfrak{F}$ and G is a p-group. So $G/R \in \mathfrak{H}$ and G/R is a p-group. If $G/R \neq 1$, then $p \in \pi(\mathfrak{H})$. This contradiction shows that $G = R = Z_p$ and $\mathfrak{F} \neq c_{\omega}^{\tau} form G = \mathfrak{N}_p$. Thus G satisfies Condition 1). Assume that $H(p) \neq \emptyset$ and so $1 = G/C_G(R) \in H(p)$. Hence $G \in \mathfrak{H}$. A contradiction.

Let $G \neq C_G(R)$, where R is an abelian p-group. Let's consider the group T = [R]M, where $M = G/C_G(R)$. Let $C = C_G(R)$. Then $C = C \cap RM = R(C \cap M)$. Evidently that $(C \cap M)$ is a normal subgroup of G. But G is a monolithic group, then $C \cap M = 1$ and so $R = C_G(R) = O_p(G) = F_p(G)$. It is not difficult to see that $R = C^p(G)$ and $O_p(G/C^p(G)) = O_p(G/O_p(G)) = O_p(M) = 1$ and so by Lemma 1.2, $C^p(T) = R$. Consequently by Lemma 1.3, $sT \in \mathfrak{F}$. Evidently that $|T| \leq |G|$. Now we suppose that |T| < |G|. Then $T \in \mathfrak{H}$ and so

$$T/C^p(T) \simeq T/R \simeq M \simeq G/C_G(R) \simeq G/R \in H(p).$$

But $G/O_p(G) \simeq G/R \in \mathfrak{H}$ and so $G \in \mathfrak{H}$ by Lemma 1.3. This contradiction shows that $T \notin \mathfrak{H}$. Consequently $T \in \mathfrak{F} \setminus \mathfrak{H}$. Thus in view of the choice of G we have |T| = |G| and $\mathfrak{F} = c_{\omega}^{\tau} form T$. It is clear that $R = T^{\mathfrak{H}}$. By Lemma 1.4,

$$f(p) = \tau form(T/C^{p}(T)) = \tau form(T/R) = \tau form(G/C_{G}(R)) = \tau form(G/R) = \tau form(G/R) = \tau formM.$$

Let $M \in H(p)$. Consequently $G \in \mathfrak{N}_p H(p) = H(p)$. A contradiction. Hence $M \notin H(p)$ and so $\tau form M \nsubseteq H(p)$.

Let \mathfrak{M} be a proper τ -closed subformation of f(p). Assume that $\mathfrak{M} \notin H(p)$ and A be a group of minimal order in $\mathfrak{M} \setminus H(p)$. Since $H(p) = \mathfrak{N}_p H(p)$, then $O_p(A) = 1$. By Lemma 18.8 [5], exists a simple and faithful $F_p[A]$ -module P over F_p . Let F = [P]A. Then $P = C_F(P) = O_p(F) = C^p(F)$ and so

$$F/O_p(F) \simeq F/P \simeq A \in \mathfrak{M} \subset f(p) \subseteq f(p) \cap \mathfrak{F}.$$

By Lemma 1.3, $F \in \mathfrak{F}$. Hence $c_{\omega}^{\tau} form F \subseteq \mathfrak{F}$. If $c_{\omega}^{\tau} form F = \mathfrak{F}$, then by Lemma 1.4,

$$f(p) = \tau form(F/C^p(F)) = \tau form(F/P) = \tau form(A) \subseteq \mathfrak{M} \subset f(p).$$

This contradiction shows that $c_{\omega}^{\tau} form F \subset \mathfrak{F}$. Then $c_{\omega}^{\tau} form F \subseteq \mathfrak{H}$ and so $F \in \mathfrak{H}$. Hence $F/C^p(F) \simeq A \in H(p)$. A contradiction. Hence $\mathfrak{M} \subseteq H(p)$. Thus f(p) is a minimal τ -closed non-H(p)-formation.

Let M_1 be a group of minimal order in $\tau form M \setminus H(p)$. Then M_1 is a monolithic $\overline{\tau}$ -minimal non-H(p)-group with the socle $Q = M_1^{H(p)}$ and $\tau form M = \tau form M_1$.

Assume that $Q \subseteq \Phi(M_1)$. Let t be the minimal 1-multiply local satellite of \mathfrak{H} . By Theorem 8.3 [5], t is an inner satellite of \mathfrak{H} . Therefore $t(p) \subseteq H(p)$. Applying Theorem 8.3 [5] again and Consequence 8.6 [5] we see that $H(p) = \mathfrak{N}_p t(p)$ is a local formation, as it is the product of two local formations \mathfrak{N}_p and t(p) (see Consequence 7.14 [5]). By Theorem 4.3 [11], \mathfrak{H} is a saturated formation. Since $M_1/Q \in H(p)$, then $M_1/\Phi(M_1) \in$ H(p). Consequently $M_1 \in H(p)$. This contradiction shows that $Q \not\subseteq \Phi(M_1)$.

Assume that $p \in \pi(Com(Q))$. Since $M_1/Q \in H(p)$, then $M_1 \in \mathfrak{N}_pH(p) = H(p)$. This contradiction shows that Q is not a p-group. Hence $O_p(M_1) = 1$. Thus there exists a simple and faithful $F_p[M_1]$ module R_1 over F_p . Let $G_1 = [R_1]M_1$. Hence $R_1 = C_{G_1}(R_1) = O_p(G_1) = C^p(G_1) = F_p(G_1)$ is a minimal normal p-subgroup of G_1 and so

$$G_1/O_p(G_1) \simeq G_1/R_1 \simeq M_1 \in \tau form M = f(p) \subseteq f(p) \cap \mathfrak{F}.$$

By Lemma 1.3, $G_1 \in \mathfrak{F}$.

Let $\mathfrak{H}_1 = c_{\omega}^{\tau} form G_1$ and h_1 be the minimal τ -valued ω -composition satellite of \mathfrak{H}_1 . By Lemma 1.4,

$$h_1(p) = \tau form(G_1/C^p(G_1)) = \tau form(G_1/R_1) = \tau form(M_1).$$

If $\mathfrak{H}_1 \subset \mathfrak{F}$, then $\mathfrak{H}_1 \subseteq \mathfrak{H}$. Therefore by Lemma 1.5, $h_1 \leq H$, consequently,

$$M_1 \simeq G_1 / R_1 \in H(p).$$

This contradiction shows that $\mathfrak{H}_1 = \mathfrak{F}$. Thus

$$\mathfrak{F} = c_{\omega}^{\tau} form G_1 = c_{\omega}^{\tau} form G.$$

Now we shall show that G_1 satisfies the hypothesis of the theorem. In fact we have only to prove that $R_1 = G_1^{\mathfrak{H}}$.

Indeed, if $M_1 \in \mathfrak{H}$, then $G_1/R_1 = G_1/C^p(G_1) \simeq M_1 \in H(p)$. This contradiction shows that $G_1 \notin \mathfrak{H}$. Consequently $G_1^{\mathfrak{H}} = R_1$.

Let $M_1 \notin \mathfrak{H}$. Consequently $c_{\omega}^{\tau} form M_1 = \mathfrak{F}$. By Lemma 1.4,

$$f(p) = \tau form(M_1/C^p(M_1)) = \tau form(M_1).$$

But Q is not a p-group, so $Q \subseteq C^p(M_1)$. So $\tau form(M_1/C^p(M_1)) \subseteq \tau form(M_1/Q)$. Therefore $\tau formM_1 \subseteq \tau form(M_1/Q)$. By Lemma 1.6, $\mathfrak{M} = \tau form(\mathfrak{X} \cup \{M_1/Q\})$ is the unique maximal τ -closed subformation of $\tau formM_1$, where \mathfrak{X} is the set of all proper τ -subgroups of M_1 . Hence $\mathfrak{M} \subset \tau formM_1$. This contradiction shows that $M_1 \notin \mathfrak{H}$. Therefore $R_1 = G_1^{\mathfrak{H}}$.

Sufficiency. Let G be a group from the theorem. It is clear that $\mathfrak{F} \not\subseteq \mathfrak{H}$.

Let $\pi = \emptyset$. In this case $O_{\omega}(G) \cap R(G) = 1$. By Lemma 1.4,

$$f(\omega') = \tau form(G/(O_{\omega} \cap R(G))) = \tau form(G).$$

Since $G \notin \mathfrak{H}$, then

$$f(\omega') = \tau form(G) \nsubseteq \mathfrak{H} = H(\omega').$$

By Lemma 1.6, $\tau form(\mathfrak{X} \cup \{G/R\})$ is the unique maximal τ -closed subformation of $f(\omega') = \tau form G$, where \mathfrak{X} is the set of all proper τ -subgroups of the group G. Since by hypothesis, all proper τ -subgroups of G are contained in \mathfrak{H} , then

$$\tau form(\mathfrak{X} \cup \{G/R\}) \subseteq \mathfrak{H} = H(\omega').$$

Hence all proper τ -closed subformations of $f(\omega')$ are contained in $H(\omega')$.

So $f(\omega')$ is a minimal τ -closed non- $H(\omega')$ -formation.

Let \mathfrak{M} be a proper τ -closed ω -composition subformation of \mathfrak{F} and m be the minimal τ -valued ω -composition satellite of \mathfrak{M} . By Lemma 1.5, $m \leq f$. We shall show that $m \leq H$.

Since

$$f(\omega') = \tau form(G) \nsubseteq m(\omega') = \mathfrak{M},$$

consequently $m(\omega') \subset f(\omega')$. Hence $m(\omega') \subseteq H(\omega')$. Besides, since $G/R \in \mathfrak{H}$, then $G/R/C^q(G/R) \in H(q)$ for all $q \in \omega \cup \pi(Com(G/R))$. By Lemma 1.1, $C^q(G)/R = C^q(G/R)$ for all $q \in \omega$. Consequently $G/C^q(G) \in H(q)$. Hence

$$m(q) \subseteq f(q) = \tau form(G/C^q(G)) \subseteq H(q)$$

Consequently $m \leq H$ and so by Lemma 1.5, $\mathfrak{M} \subseteq \mathfrak{H}$. Thus \mathfrak{F} is a minimal τ -closed ω -composition non- \mathfrak{H} -formation.

Let $\pi \neq \emptyset$ and $p \in \pi$.

If the group G satisfies Condition 1), then obviously, \mathfrak{F} is a minimal τ -closed ω -composition non- \mathfrak{H} -formation.

Let G satisfies Condition 2). By Lemma 1.4,

$$f(p) = \tau form(G/C^p(G)) = \tau form(G/R) = \tau form(M).$$

But M is a monolithic $\overline{\tau}$ -minimal non-H(p)-group, then $M \notin H(p)$ and so $f(p) \not\subseteq H(p)$.

Let \mathfrak{X} be the set of all proper $\overline{\tau}$ -subgroups of M. Therefore $\mathfrak{X} \subseteq H(p)$. But $M/Q = M/M^{H(p)} \in H(p)$. Hence

$$\tau form(\mathfrak{X} \cup \{M/Q\}) \subseteq H(p).$$

By Lemma 1.6, $\tau form(\mathfrak{X} \cup \{M/Q\})$ is the unique maximal τ -closed subformation of $f(p) = \tau form(M)$. Therefore all proper τ -closed subformations of f(p) are contained in H(p).

Consequently f(p) is a minimal τ -closed non-H(p)-formation, where $p \in \pi$. We shall show that in this case the formation \mathfrak{F} is a minimal τ -closed ω -composition non- \mathfrak{H} -formation.

Let \mathfrak{M} be a proper τ -closed ω -composition subformation of \mathfrak{F} and mbe the minimal τ -valued ω -composition satellite of \mathfrak{M} . By Lemma 1.5, $m \leq f$. We shall show that $m \leq H$. Assume that m(p) = f(p). Then $G/C^p(G) = G/R = G/O_p(G) \in m(p)$. Using now Lemma 1.3 we see that $G \in \mathfrak{M}$ and so

$$\mathfrak{F} = c^{\tau}_{\omega} form G \subseteq \mathfrak{M} \subset \mathfrak{F}.$$

This contradiction shows that $m(p) \subset f(p)$ and so from above we know that $m(p) \subseteq H(p)$. By Lemma 1.1, $C^q(G)/R = C^q(G/R)$ for all prime $q \neq p$ and $(R(G) \cap O_{\omega}(G))/R = R(G/R) \cap O_{\omega}(G/R)$. And since $G/R \in \mathfrak{H}$, then $f(\omega') \subseteq H(\omega')$ and $f(q) \subseteq H(q)$ for all $q \in \omega \setminus \{p\}$. But $m \leq f$ and hence $m(p) \subseteq H(p)$ for all $p \in \{\omega'\} \cup \omega$. By Lemma 1.5, $m \leq H$. Consequently $\mathfrak{M} \subseteq \mathfrak{H}$. Thus \mathfrak{F} is a minimal τ -closed ω -composition non- \mathfrak{H} -formation.

Remark 1. If in Theorem 2.1 the formation \mathfrak{H} is those, that $\mathfrak{N} \subseteq \mathfrak{H}$, then *G* cannot be a group of prime order.

Remark 2. If \mathfrak{H} is a τ -closed formation, then every minimal non- \mathfrak{H} -group is a $\overline{\tau}$ -minimal non- \mathfrak{H} -group.

Let's note that in the case when τ is a trivial subgroup functor (i.e. $\tau(G) = G$ for any group G) we obtain the following corollary:

Corollary 1. Let f be the minimal ω -composition satellite of the formation \mathfrak{F} and let H be the canonical ω -composition satellite of a 2-multiply local formation \mathfrak{H} . A formation \mathfrak{F} is a minimal ω -composition non- \mathfrak{H} -formation if and only if $\mathfrak{F} = c_{\omega}$ form G, where G is a monolithic group and $R = G^{\mathfrak{H}} = Soc(G)$ is the socle of G, where $R \nsubseteq \Phi(G)$ and either $\pi = \pi(Com(R)) \cap \omega = \emptyset$ or $\pi \neq \emptyset$ and G satisfies one of the following conditions:

1) G = R is a group of prime order $p \notin \pi(\mathfrak{H})$;

2) G = [R]M, where $R = O_p(G) = F_p(G)$ for same $p \in \pi$ and M is a monolithic group and $Q = M^{H(p)} = Soc(M)$ is the socle of M, where $p \notin \pi(Com(Q))$ and $Q \notin \Phi(M)$.

In the case when for all groups G the set $\tau(G)$ is the set of all subnormal subgroups of the group G instead of τ they write s_{sn} .

Corollary 2. Let f be the minimal s_{sn} -valued ω -composition satellite of the formation \mathfrak{F} and let H be the canonical ω -composition satellite of a 2-multiply local formation \mathfrak{H} . A formation \mathfrak{F} is a minimal s_{sn} -closed ω composition non- \mathfrak{H} -formation if and only if $\mathfrak{F} = c_{\omega}^{s_{sn}}$ formG, where G is a monolithic non- \mathfrak{H} -group and $R = G^{\mathfrak{H}} = Soc(G)$ is the socle of G, where $R \nsubseteq \Phi(G)$ such that every popper subnormal subgroup of G belongs to \mathfrak{H} and either $\pi = \pi(Com(R)) \cap \omega = \emptyset$ or $\pi \neq \emptyset$ and G satisfies one of the following conditions:

1) G = R is a group of prime order $p \notin \pi(\mathfrak{H})$;

2) G = [R]M, where $R = O_p(G) = F_p(G)$ for same $p \in \pi$ and M is a monolithic non-H(p)-group and $Q = M^{H(p)} = Soc(M)$ is the socle of M, where $p \notin \pi(Com(Q))$ and $Q \notin \Phi(M)$ such that every popper subnormal subgroup of M belongs to H(p).

Corollary 3. Let \mathfrak{S} be the formation of all soluble groups. A formation \mathfrak{F} is a minimal τ -closed ω -composition non-soluble formation if and only if $\mathfrak{F} = c_{\omega}^{\tau}$ form G, where G is a monolithic τ -minimal non-soluble group and $R = G^{\mathfrak{S}} = Soc(G)$ is the non-abelian socle of G.

Proof. Let H be the canonical ω -composition satellite of the formation \mathfrak{S} . Hence $H(a) = \mathfrak{S}$ for all $a \in \omega \cup \{\omega'\}$.

Necessity. By Theorem 2.1 and Remark 1, $\mathfrak{F} = c_{\omega}^{\tau} form G$, where G is a monolithic $\overline{\tau}$ -minimal non- \mathfrak{S} -group and $R = G^{\mathfrak{S}} \not\subseteq \Phi(G)$ is the socle of G and either $\pi = \pi(Com(R)) \cap \omega = \emptyset$ or $\pi \neq \emptyset$ and G = [R]M, where $R = O_p(G) = F_p(G)$ for same $p \in \pi$ and M is a monolithic $\overline{\tau}$ -minimal non- \mathfrak{S} -group and $Q = M^{\mathfrak{S}}$ is the socle of M, where $Q \not\subseteq \Phi(M)$.

Let's $\pi \neq \emptyset$. In this case R is an abelian p-group. But $G/R \in \mathfrak{S}$ is a soluble group and so G is a soluble group. Then $R = G^{\mathfrak{S}} = 1$. A contradiction. Therefore R is a non-abelian group.

Sufficiency follows from Theorem 2.1.

Corollary 4. Let \mathfrak{N} be the formation of all nilpotent groups. A formation \mathfrak{F} is a minimal τ -closed ω -composition non- \mathfrak{N} -formation if and only if $\mathfrak{F} = c_{\omega}^{\tau}$ form G, where G is a monolithic τ -minimal non- \mathfrak{N} -group and $R = G^{\mathfrak{N}} = Soc(G)$ is the socle of G and either $\pi = \pi(Com(R)) \cap \omega = \emptyset$ or $\pi \neq \emptyset$ and G is a Schmidt group.

Proof. Let H be the canonical ω -composition satellite of the formation \mathfrak{H} . Hence

$$H(a) = \begin{cases} \mathfrak{N}_p, & \text{if } a = p \in \omega; \\ \mathfrak{N}, & \text{if } a = \omega'. \end{cases}$$

Necessity. By Theorem 2.1 and Remark 1, $\mathfrak{F} = c^{\tau}_{\omega} form G$, where G is a monolithic $\overline{\tau}$ -minimal non- \mathfrak{N} -group and $R = G^{\mathfrak{N}} \notin \Phi(G)$ is the socle of G and either $\pi = \pi(Com(R)) \cap \omega = \emptyset$ or $\pi \neq \emptyset$ and G = [R]M, where $R = O_p(G) = F_p(G)$ for same $p \in \pi$ and M is a monolithic $\overline{\tau}$ -minimal non-H(p)-group and $Q = M^{H(p)}$ is the socle of M, where $p \notin \pi(Com(Q))$ and $Q \notin \Phi(M)$.

By Lemma 1.4,

$$f(p) = \tau form(G/C^p(G)) = \tau form(G/R) = \tau formM.$$

It means that $\tau form M$ is a minimal τ -closed non- \mathfrak{N}_p -formation. Since $G/R \simeq M \in \mathfrak{N}$ and \mathfrak{N} is hereditary, $\tau form M \subseteq \mathfrak{N}$. Thus by Theorem 2.4 [11], $\tau form M = form M = sform M$. Let H be a group of minimal order in $sform M \setminus \mathfrak{N}_p$. If $sform H \subset sform M$, then $sform H \subseteq \mathfrak{N}_p$. A contradiction. Therefore sform H = sform M. By the choice of the group H, it is a minimal non- \mathfrak{N}_p -group. Thus all its Sylow subgroups are p-groups. It means that H is p-group. A contradiction. Therefore H is a group of prime order q, where $q \neq p$. Thus $sform H = sform Z_q$ is a hereditary formation generated by the group of prime order q. Since $M \in sform Z_q$, M is a group of exponent q. Since G = [R]M and $R = C_G(R)$, M is a irreducible abelian group of automorphisms for R. Therefore M is a cyclic group. But the order and the exponent of the cyclic group M are the same. Thus we have |M| = q. So G is a group Schmidt.

Sufficiency. Let condition of the corollary be satisfied and R be an abelian p-group. Hence G be a Schmidt group. From the description of the Schmidt groups it follows that G = [R]M, where $R = C_G(R)$ is a minimal normal p-subgroup of G and |M| = q, where q is a prime. It means that M is a minimal non- \mathfrak{N}_p -group and Q = M is the socle of M. In this case $\Phi(M) = 1$. Thus by Theorem 2.1, the corollary is proved. \Box

References

- Shemetov L.A., Screens of gratduated formations, Proc. VI All-Union Symposium on the theory of groups, Kiev, Nauk. Dumka, 1980.
- [2] Skiba A.N., Algebra of formations, Minsk, Belaruskaja Navuka, 1997.
- [3] Skiba A.N., On critical formations, Vesti Akad. Navuk BSSR, N.4, 1980, pp.27-33.
- [4] Skiba A.N., On critical formations, In the book: "Infinite groups and related algebraic structures", Kiev, 1993, pp.258-268
- [5] Shemetkov L.A., Skiba A.N., Formation of algebraic systems. Moscow, Nauka, 1989.
- [6] Rizhik V.N., On criticals of p-local formations, Problems in Algebra, 11, 1997, pp.104-106.
- [7] Safonova I.N., On minimal ω-local non-5-formations, Vesti Akad. Navuk Belarus., Ser. fiz.-mat. navuk, N.2, 1999, pp.23-27.
- [8] Skiba A.N., Shemetkov L.A., Multiply *L*-composition formations of finite groups, Ukrainsk. Math. Zh., 52(6), 2000, pp.783-797.
- Bliznets I.V., Critical ω-composition formation, Vesti Akad. Navuk Belarus., Ser. fiz.-mat. navuk, N.4, 2002, pp.115-117.
- [10] Doerk K., Hawkes T., *Finite soluble grousp*, Walter de gruyter, Berlin/New York, 1992.
- [11] Shemetkov L.A., Formation of finite groups, Moscow, Nauka, 1978.
- [12] Skiba A.N., Shemetkov L.A, On minimal composition screen of a composition formation, Problems in Algebra, N.11, 1992, pp.39-43.

CONTACT INFORMATION

L. I. Belous	Gomel State University of F.Skorina, Be-
	larus, 246019, Gomel, Sovetskaya Str., 104
	E-Mail: LudaB@rambler.ru

V. M. Sel'kin Gomel State University of F.Skorina, Belarus, 246019, Gomel, Sovetskaya Str., 104 *E-Mail:* vsel'kin@gsu.unibel.by

Received by the editors: 06.05.2006 and in final form 10.04.2007.