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ABSTRACT. Let $ be some class of groups. A formation §
is called a minimal 7-closed w-composition non-$)-formation [1] if
T ;(_ H but §1 C H for all proper 7-closed w-composition subfor-
mations §1 of §. In this paper we describe the minimal 7-closed
w-composition non-$-formations, where § is a 2-multiply local for-
mation and 7 is a subgroup functor such that for any group G all
subgroups from 7(G) are subnormal in G.

Introduction

Throughout this paper all groups considered are finite. A non-empty set
of formations O is called a full lattice of formations [2] if the intersection
of any set of formations from © again belongs to © and in © there is a
formation § such that $§ C § for all $ € ©. Formations belonging to ©
are called ©-formations. Let §) be some class of groups. Recall that a
©-formation § is called a minimal non-$)-O-formation (L.A. Shemetkov
[1]) or $He-critical formation (A.N. Skiba [3]) if § £ $ but F1 C § for all
proper O-subformations §1 of §.

The minimal non-$-O-formations, where © is the set of all saturated
formations have been described in work [4]. This result have been applied
in research of local formations with given subformations (see for more in
details Chapter 4 in [5]). In the book [2| analogue of this result in the
class of 7-closed saturated formations have been obtained. In the work
[6] the minimal w-saturated non-)-formations, where $ is a 2-multiply
local formation have been described. In [7] the minimal w-saturated
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non-9H-formations, where $ is an any formation of classical type have
been described. In the work [9] the structure of the minimal non-$-0-
formations, where © is a class of all w-composition formations has been
described.

In this paper we describe the minimal 7-closed w-composition non-$-
formations, where § is a 2-multiply local formation and 7 is a subgroup
functor such that for any group G all subgroups from 7(G) are subnormal
in G.

1. Preliminaries

We use standard terminology [10], [11]. In addition we shall need some
definitions and notations from the work of L. A.Shemetkov and A.N. Skiba
[8] and the concept of subgroup functor given by A.N.Skiba [2].

Let £ be an arbitrary non-empty class of abelian simple groups and
w = 7(£). Every function

fiw U{w’} — {formations of groups}

is called an w-composition satellite.

We use CP(G) to denote the intersection of all centralizers of abelian
chief p-factors of the group G (we write CP(G) = G if G has no such
chief factors). Let R(G) denote the radical of G (i.e. R(G) is the largest
normal soluble subgroup of G).

Let X be a set of groups. We use Com(X) to denote the class of
all abelian simple groups A such that A ~ H/K for some composition
factor H/K of some group G € X. Also, we write Com(G) for the set
Com({G}).

For an arbitrary w-composition satellite f we put following [8|

CE,(f) ={G | G/(R(G) N Ou(G)) € f(«') and G/CP(G) € f(p) for all
p € 1(Com(G)) Nw}.

If the formation § is such that § = CF,(f) for some w-composition
satellite f, then we say that § is an w-composition formation and f is an
w-composition satellite of that formation [8]. A w-composition satellite f
of a w-composition formation § is called an inner w-composition satellite
of Fif f(a) CF forallacwU{w}.

Recall that a Skiba subgroup functor 7 [2] associates with every group
G a system of its subgroups 7(G) such that the following conditions hold:

1) G € 7(G) for any group G;

2) for any epimorphism ¢ : A — B and for any groups H € 7(A)
and T € 7(B) we have H? € 7(B) and T¥ ' € 7(A).
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We write 71 < 7 if and only if 71 (G) C m(G).

If for all groups H and G, where H € 7(G) we have 7(H) C 7(G),
then they say that 7 is a closed subgroup functor.

Let 7 be the intersection of all closed functors 7; such that 7 < ;.
The functor 7T is called the closure of 7.

In this paper we consider the only subgroup functors 7 such that for
any group G the set 7(G) consists of some subnormal subgroups of G.

A formation § is called 7-closed if 7(G) C § for any group G € §. A
satellite f is called 7-valued if all values of f are 7-closed formations.

We denote by ¢, form(X) the intersection of all 7-closed w-compo-
sition formations containing the set of groups X. Then ¢ form(X) is
called the 7-closed w-composition formation generated by X. If X =
{G} for some group G, then instead of ¢/, form(G) we write ¢, formG.
Formations of this kind are called one-generated 7-closed w-composition
formations.

Let {f; | i € I} be the set of w-composition satellites. Then (. f;
is a satellite such that ((,c; fi)(a) = ey fi(a) for all a € wU {w'}.

Now let {fi | i € I} be the set of all w-composition 7-valued satellites
of the formation §. By Lemma 2 [8], f = (,c; fi is a w-composition
satellites of §. The satellite f is called the minimal w-composition 7-
valued satellite of §.

Let f be the minimal w-composition 7-valued satellite of §. And let
F' be a satellite such that

Fla) = {‘ﬁpf(p), %fa =pEuw;
3, if a=uw'.

Then F' is a w-composition satellite of the formation § [8] and it is
called the canonical w-composition satellite of §.

Let f and h be two w-composition satellites of the formation §. Then
we write f < h if for all @ € wU {w'} we have f(a) C h(a).

Lemma 1.1. /8, 1]. Let G be a group, p be a prime. Assume that
N < G and that for every composition factor H/K of the subgroup N we
have p # |H/K|. Then CP(G/N) = CP(G)/N.

Lemma 1.2. [12, 2]. Let p be a prime, Op(G) =1 and T = Z,1 G =
[K]G, where K is the base group of T. Then K = CP(T).

Lemma 1.3. /8, 4]. Let§ = CF,(f) andp € w. IfG/O,(G) € FNf(p),
then G € §.

Lemma 1.4. /8, 5. Let § be an arbitrary non-empty set of groups and
X C 9, where 9 is a T-closed formation. Let § = ¢ from(X) and m =
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m(Com(X)). Then § has the minimal T-valued w-composition satellite f
and f has the following values:

(1) f(w') = tform(G/(O,(G) N R(G))|G € %).

(2) f(p) = tiorm(G/CP(G)|G € %), for allp € T Nw.

(3) f(p) = @, for allp € w\ .
(4) If § = CF,(h) and h be the T-valued satellite, then

f(p) = rform(A | A € h(p) N§, Op(4) =1)
forallp e mNw and
f(W) =7form(A| A€ h(W)NF and R(A) N O,(A) =1).

Lemma 1.5. /8, 6]. Let f; be the minimal w-composition satellite of the
formation §;, 1 = 1,2. Then §1 C Fo if and only if f1 < fo.

Lemma 1.6. [2, 2.1.5]. Let A be a monolithic group and R ¢ ®(A) is
the socle of G. Then the formation § = 7formA is a T-irreducible and
M = 7form(XU{A/R}) is the unique mazimal T-closed subformation of
S, where X is the set of all proper T-subgroups of A.

2. Main results

A formation § is called a 2-multiply local if it has a local satellite f such
that all non-empty values of f are local formations.

Theorem 2.1. Let f be the minimal T-valued w-composition satellite of
the formation § and let H be the canonical w-composition satellite of a
2-multiply local formation $. A formation § is a minimal T-closed w-
composition non-$-formation if and only if § = ¢, formG where G is a
monolithic T-minimal non-9-group and R = G¥ = Soc(G) is the socle of
G, where R ¢ ®(G) and either 7 = 7(Com(R)) Nw = & or m # & and
G satisfies one of the following conditions:

1) G = R is a group of prime order p ¢ w($);

2) G = [RIM, where R = Oy(G) = F,(G) for same p € m and M is a
monolithic T-minimal non-H (p)-group and Q = M ®) = Soc(M) is the
socle of M, where p & m(Com(Q)) and Q € ®(M).

Proof. Necessity. Let G be a group of minimal order in F\$. Then G
is a monolithic 7-minimal non-H-group and R = G # 1 is the socle
of G. Let § # ¢ formG. Then ¢ formG C § and so G € $. This
contradiction shows that § = ¢, formG. Since by hypothesis $) is a local
formation, then by Theorem 4.3 [11], § is a saturated formation and so

R ¢ ®(G).
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Let 7 = 7(Com(R)) Nw = @. In this case the condition of the
theorem is carried out.

Let’s consider the case m # @ and p € 7.

Assume that G = Cg(R). Let R # G. Assume that H(p) = @.
Consequently p ¢ 7($) and so Z, ¢ §. Then M, ¢ §H. Consequently
N, = § and G is a p-group. So G/R € $ and G/R is a p-group. If
G/R # 1, then p € w($). This contradiction shows that G = R = Z,
and § # ¢ formG = M,. Thus G satisfies Condition 1). Assume that
H(p) # @ and so 1 = G/Cg(R) € H(p). Hence G € $. A contradiction.

Let G # Cg(R), where R is an abelian p-group. Let’s consider
the group T' = [R]M, where M = G/Cg(R). Let C = Cg(R). Then
C =CnNRM = R(CnNM). Evidently that (C N M) is a normal sub-
group of G. But G is a monolithic group, then C N M = 1 and so
R = Cg(R) = O,(G) = F,(G). It is not difficult to see that R = CP(G)
and Op(G/CP(GQ)) = Op(G/Op(G)) = Op(M) =1 and so by Lemma 1.2,
CP(T) = R. Consequently by Lemma 1.3, sT" € §. Evidently that
|T'| < |G|. Now we suppose that |T'| < |G|. Then T € $ and so

T/CP(T)~T/R~M ~G/Cg(R) ~G/R € H(p).

But G/Op(G) = G/R € $ and so G € $H by Lemma 1.3. This contra-
diction shows that T' ¢ §). Consequently 7' € §\$. Thus in view of the
choice of G we have |T| = |G| and § = [, formT. It is clear that R = T,
By Lemma 1.4,

f(p) =71form(T/CP(T)) = 1form(T/R) = 7form(G/Cg(R)) =
Tform(G/R) = T formM.

Let M € H(p). Consequently G € M,H (p) = H(p). A contradiction.
Hence M ¢ H(p) and so 7 formM ¢ H(p).

Let 9 be a proper 7-closed subformation of f(p). Assume that 9 ¢
H(p) and A be a group of minimal order in 9\ H (p). Since H(p) =
N, H (p), then Oy(A) = 1. By Lemma 18.8 [5], exists a simple and faithful
F,[A]-module P over Fj,. Let F' = [P]A. Then P = Cp(P) = Oy(F) =
CP(F) and so

F/O,(F)~F/P~AecMcC f(p) C f(p)NF.

By Lemma 1.3, F' € §. Hence ¢, formF C §. If ¢ formF = §, then by
Lemma 1.4,

f(p) =1form(F/CP(F)) =7 form(F/P) =1 form(A) C9M C f(p).
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This contradiction shows that ¢, formF C §. Then ¢, formF C § and
so F € $. Hence F/CP(F) ~ A € H(p). A contradiction. Hence
M C H(p). Thus f(p) is a minimal 7-closed non-H (p)-formation.

Let M; be a group of minimal order in 7 formM\H (p). Then M; is
a monolithic 7-minimal non-H (p)-group with the socle @ = MIH P/ and
TformM = T formM;.

Assume that Q@ C ®(M;). Let ¢t be the minimal 1-multiply local
satellite of $. By Theorem 8.3 [5], ¢ is an inner satellite of §. Therefore
t(p) € H(p). Applying Theorem 8.3 [5] again and Consequence 8.6 [5] we
see that H(p) = 9,t(p) is a local formation, as it is the product of two
local formations M, and ¢(p) (see Consequence 7.14 [5]). By Theorem 4.3
[11], $ is a saturated formation. Since M1/Q € H(p), then My /®(M;) €
H(p). Consequently My € H(p). This contradiction shows that @ ¢
O(M).

Assume that p € 7(Com(Q)). Since M;/Q € H(p), then M; €
Ny,H(p) = H(p). This contradiction shows that @ is not a p-group.
Hence O,(M;) = 1. Thus there exists a simple and faithful F,[M;]-
module Ry over Fj,. Let G1 = [R1]M;. Hence Ry = Cq, (R1) = O,(G1) =
CP(G1) = Fp(Gh) is a minimal normal p-subgroup of G and so

G1/0p(G1) ~ G1/R1 ~ My € TformM = f(p) C f(p)NT.

By Lemma 1.3, G; € §.
Let 91 = ¢, formG; and h; be the minimal 7-valued w-composition
satellite of $)1. By Lemma 1.4,

hi(p) = 7 form(G1/CP(G1)) = 7 form(G1/R1) = 7 form(My).
If 91 C F, then H1 C 9. Therefore by Lemma 1.5, h; < H, consequently,
M, ~ G1/R; € H(p).
This contradiction shows that $1 = §. Thus
§ = ¢, formGy = ¢, formG.

Now we shall show that (G satisfies the hypothesis of the theorem.
In fact we have only to prove that R; = G?.

Indeed, if My € 9, then Gl/Rl = Gl/Cp(Gl) ~ M € H(p) This
contradiction shows that G; ¢ $. Consequently G{j =R;.

Let M; ¢ $). Consequently ¢/ formM; = §. By Lemma 1.4,

f(p) = mform(M,/CP(My)) = 7 form(My).
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But @ is not a p-group, so @ C CP(Mjy). So 7 form(M;/CP(M;)) C
7 form(M;/Q). Therefore T formM; C 7 form(M;/Q). By Lemma 1.6,
M =7 form(X U {M;/Q}) is the unique maximal 7-closed subformation
of T formM;, where X is the set of all proper 7-subgroups of M;. Hence
M C 7formM;. This contradiction shows that M; ¢ $. Therefore
Jer)

Sufficiency. Let G be a group from the theorem. It is clear that
59

Let 7 = @. In this case O,(G) N R(G) = 1. By Lemma 1.4,

f(W) =T1form(G/(O,N R(G)) = 7form(G).
Since G ¢ $, then
fW)=71form(G) € $H=H().

By Lemma 1.6, 7form(X U {G/R}) is the unique maximal 7-closed
subformation of f(w’) = 7formG, where X is the set of all proper 7-
subgroups of the group G. Since by hypothesis, all proper 7-subgroups
of G are contained in §, then

Tform(XU{G/R}) C = H().

Hence all proper 7-closed subformations of f(w’) are contained in H (w').

So f(w') is a minimal 7-closed non-H (w')-formation.

Let 9 be a proper 7-closed w-composition subformation of § and m
be the minimal 7-valued w-composition satellite of 9. By Lemma 1.5,
m < f. We shall show that m < H.

Since

f(W) = 7form(G) £ m(w') = M,

consequently m(w’) C f(w'). Hence m(w') C H(w'). Besides, since
G/R € $, then G/R/CYG/R) € H(q) for all ¢ € wU n(Com(G/R)).
By Lemma 1.1, CY(G)/R = C%G/R) for all ¢ € w. Consequently
G/C1G) € H(q). Hence

m(q) € fq) = 7form(G/CY(G)) € H(q)-

Consequently m < H and so by Lemma 1.5, 9t C §. Thus § is a minimal
T-closed w-composition non-$-formation.

Let w # @ and p € 7.

If the group G satisfies Condition 1), then obviously, § is a minimal
T-closed w-composition non-$)-formation.
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Let G satisfies Condition 2). By Lemma 1.4,
f(p) = 7form(G/CP(G)) = T form(G/R) = 7 form(M).

But M is a monolithic 7-minimal non-H (p)-group, then M ¢ H(p) and
so £(p) ¢ H(p).

Let X be the set of all proper 7-subgroups of M. Therefore X C H(p).
But M/Q = M/M"®) ¢ H(p). Hence

Tform(XU{M/Q}) C H(p).

By Lemma 1.6, 7 form(XU{M/Q}) is the unique maximal 7-closed sub-
formation of f(p) = 7 form(M). Therefore all proper 7-closed subforma-
tions of f(p) are contained in H (p).

Consequently f(p) is a minimal 7-closed non-H (p)-formation, where
p € m. We shall show that in this case the formation § is a minimal
T-closed w-composition non-$)-formation.

Let 90t be a proper 7-closed w-composition subformation of § and m
be the minimal 7-valued w-composition satellite of 9. By Lemma 1.5,
m < f. We shall show that m < H. Assume that m(p) = f(p). Then
G/CP(G) = G/R = G/O,(G) € m(p). Using now Lemma 1.3 we see
that G € 99t and so

§=c formG CMC 3.

This contradiction shows that m(p) C f(p) and so from above we know
that m(p) C H(p). By Lemma 1.1, C%(G)/R = C%(G/R) for all prime
q # pand (R(G)NO,(G))/R = R(G/R)NO,(G/R). And since G/R € 9,
then f(w') € H(W') and f(q) C H(q) for all ¢ € w\{p}. But m < f and
hence m(p) C H(p) for all p € {w'} Uw. By Lemma 1.5, m < H.
Consequently 99T C $. Thus § is a minimal 7-closed w-composition non-
$H-formation. O

Remark 1. If in Theorem 2.1 the formation $) is those, that 9t C §,
then G cannot be a group of prime order.

Remark 2. If § is a 7-closed formation, then every minimal non-$)-group
is a 7-minimal non-$)-group.

Let’s note that in the case when 7 is a trivial subgroup functor (i.e.
7(G) = G for any group G) we obtain the following corollary:

Corollary 1. Let f be the minimal w-composition satellite of the forma-
tion § and let H be the canonical w-composition satellite of a 2-multiply
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local formation $). A formation § is a minimal w-composition non--
formation if and only if § = c, formG, where G is a monolithic group
and R = G = Soc(G) is the socle of G, where R ¢ ®(G) and either
m=m(Com(R)) Nw =& orm # & and G satisfies one of the following
conditions:

1) G = R is a group of prime order p ¢ w($);

2) G = [R|M, where R = O,(G) = F,(G) for same p € m and M is
a monolithic group and Q = MHT®) = Soc(M) is the socle of M, where
p & w(Com(Q)) and Q ¢ B(M).

In the case when for all groups G the set 7(G) is the set of all sub-
normal subgroups of the group G instead of 7 they write sg,.

Corollary 2. Let f be the minimal sgp-valued w-composition satellite of
the formation § and let H be the canonical w-composition satellite of a
2-multiply local formation $. A formation § is a minimal Sg,-closed w-
composition non-$-formation if and only iof § = 2" formG, where G is
a monolithic non-$-group and R = G = Soc(G) is the socle of G, where
R ¢ ®(G) such that every popper subnormal subgroup of G belongs to
and either m = 1(Com(R)) Nw = @ or m # & and G satisfies one of the
following conditions:

1) G =R is a group of prime order p ¢ 7(9);

2) G = [R|M, where R = Op(G) = F,(G) for same p € m and M is a
monolithic non-H (p)-group and Q = MH®) = Soc(M) is the socle of M,
where p & 7(Com(Q)) and Q € ®(M) such that every popper subnormal
subgroup of M belongs to H (p).

Corollary 3. Let & be the formation of all soluble groups. A formation
$ is a minimal T-closed w-composition non-soluble formation if and only
if § = ¢ formG, where G is a monolithic T-minimal non-soluble group

and R = G® = Soc(G) is the non-abelian socle of G.

Proof. Let H be the canonical w-composition satellite of the formation
S. Hence H(a) = & for all a € wU {w'}.

Necessity. By Theorem 2.1 and Remark 1, § = ¢, formG, where G is
a monolithic 7-minimal non-&-group and R = G® ¢ ®(G) is the socle of
G and either 7 = 7(Com(R)) Nw = @ or m # @ and G = [R|M, where
R = 0,(G) = F,(G) for same p € m and M is a monolithic 7-minimal
non-&-group and @ = M is the socle of M, where Q ¢ ®(M).

Let’s m # @. In this case R is an abelian p-group. But G/R € &
is a soluble group and so G is a soluble group. Then R = G® = 1. A
contradiction. Therefore R is a non-abelian group.

Sufficiency follows from Theorem 2.1. O
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Corollary 4. Let 0 be the formation of all nilpotent groups. A formation
S is a minimal T-closed w-composition non-N-formation if and only if
§ = c. formG, where G is a monolithic T-minimal non-N-group and
R = G™ = Soc(Q) is the socle of G and either 1 = T(Com(R)) Nw = @
orm# & and G is a Schmidt group.

Proof. Let H be the canonical w-composition satellite of the formation
9. Hence
H(a) = {‘ﬁp, ifa=pew;

M, ifa=d.

Necessity. By Theorem 2.1 and Remark 1, § = ¢/, formG, where G is
a monolithic 7-minimal non-9-group and R = G ¢ ®(G) is the socle of
G and either 71 = m(Com(R)) Nw = @ or m # & and G = [R]M, where
R = O,(G) = F,(G) for same p € m and M is a monolithic 7-minimal
non-H (p)-group and Q = M) is the socle of M, where p & 7(Com/(Q))
and Q € ®(M).

By Lemma 1.4,

f(p) =1form(G/CP(G)) = Tform(G/R) = T formM.

It means that 7 formM is a minimal 7-closed non-91,-formation. Since
G/R ~ M € DM and N is hereditary, 7 formM C 9. Thus by Theorem
2.4 [11], TformM = formM = sformM. Let H be a group of minimal
order in sformM\NM,. If sformH C sformM, then sformH C N,
A contradiction. Therefore sformH = sformM. By the choice of the
group H, it is a minimal non-91,-group. Thus all its Sylow subgroups are
p-groups. It means that H is p-group. A contradiction. Therefore H is
a group of prime order ¢, where ¢ # p. Thus sformH = sformZ, is
a hereditary formation generated by the group of prime order ¢. Since
M € sformZ,, M is a group of exponent q. Since G = [R]M and
R = Cg(R), M is a irreducible abelian group of automorphisms for R.
Therefore M is a cyclic group. But the order and the exponent of the
cyclic group M are the same. Thus we have |M| = ¢. So G is a group
Schmidt.

Sufficiency. Let condition of the corollary be satisfied and R be an
abelian p-group. Hence G be a Schmidt group. From the description of
the Schmidt groups it follows that G = [R]M, where R = Cg(R) is a
minimal normal p-subgroup of G and |M| = ¢, where ¢ is a prime. It
means that M is a minimal non-,-group and @) = M is the socle of M.
In this case ®(M) = 1. Thus by Theorem 2.1, the corollary is proved. [
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