Algebra and Discrete Mathematics Number 3. **(2006).** pp. 30 – 35 © Journal "Algebra and Discrete Mathematics"

Weakly P-small not P-small subsets in Abelian groups

T. Banakh, N. Lyaskovska

Communicated by M. Ya. Komarnytskyj

ABSTRACT. Answering a question of D. Dikranjan and I. Protasov we prove that each infinite Abelian group contains a weakly P-small subset that is not P-small.

We recall the basic definitions. A subset A of an Abelian group G is called

- *large* if there exists a finite subset $F \subset G$ such that F + A = G;
- small if for every finite subset $F \subset G$ the subset $G \setminus (F + A)$ is large;
- small in sense of Prodanov (briefly, P-small) if there exists an infinite subset B of G such that $(b+A) \cap (b'+A) = \emptyset$ for all distinct $b, b' \in B$;
- weakly *P*-small if for every natural number *n* there exists a subset $B_n \subset G$ of size $|B_n| = n$ such that $(b + A) \cap (b' + A) = \emptyset$ for all distinct $b, b' \in B_n$.

Obviously, each P-small subset is weakly P-small. By Theorem 4.2 of [3], every P-small subset of an Abelian group G is small. Looking at the proof of this theorem one can notice that it gives a little bit more, namely

Proposition 1. Each weakly P-small subset of an Abelian group is small.

²⁰⁰⁰ Mathematics Subject Classification: 20K99, 05D05. Key words and phrases: group, P-small sets.

Therefore for a subset of an Abelian group we get implications

 $(P-small) \Rightarrow (weakly P-small) \Rightarrow (small).$

A small subset need not be weakly P-small. The simplest example is the set $A = \{a_n : n \in \omega\}$ of \mathbb{Z} where $a_0 = 0$ and $a_{n+1} = a_n + n$ for $n \ge 1$, see Example 4.15 of [3]. In fact, each countable group contains a small subset which is not P-small [4].

In [1] D.Dikranjan and I.Protasov posed the following question: *Is* each weakly *P*-small set *P*-small? We answer this question in negative.

Main Theorem. Each infinite Abelian group G contains a weakly P-small subset $A \subset G$ which is not P-small.

Proof of the Main Theorem relies on the existence of a subset B = -B of G with the following properties:

- (1) for every $n \in \mathbb{N}$ there is a subset B_n of size $|B_n| = n$ such that $B_n B_n \subset B$;
- (2) $B_{\infty} B_{\infty} \not\subset B$ for any infinite subset B_{∞} ;
- (3) $F + B \neq G$ for any subset $F \subset G$ of size |F| < |G|.

By |A| we denote the cardinality of a set A.

Assuming for a moment that such a set B exists we shall construct a weak P-small set $A \subset G$ which is not P-small.

Let $B^{\circ} = B \setminus \{0\}$. We shall construct a subset A such that $(A + B^{\circ}) \bigcap A = \emptyset$ and $G \setminus B^{\circ} \subset A - A$, and then show that A satisfies the conclusion of the theorem.

Let $\kappa = |G \setminus B^{\circ}|$ and $G \setminus B^{\circ} = \{g_{\alpha} : \alpha < \kappa\}$ be an enumeration of $G \setminus B^{\circ}$ by ordinals $\alpha < \kappa$.

By induction, we define a sequence (a_{α}) in G such that for any ordinal $\alpha < \kappa$

$$a_{\alpha} \notin \bigcup_{\beta < \alpha} (a_{\beta} + B) \cup (a_{\beta} + g_{\beta} + B) \cup (a_{\beta} - g_{\alpha} + B) \cup (a_{\beta} + g_{\beta} - g_{\alpha} + B).$$

We start with $a_0 = 0$.

Assuming that for some α the points $a_{\beta}, \beta < \alpha$, have been constructed, pick any point $a_{\alpha} \in G$ with

$$a_{\alpha} \notin \bigcup_{\beta < \alpha} (a_{\beta} + B) \cup (a_{\beta} + g_{\beta} + B) \cup (a_{\beta} - g_{\alpha} + B) \cup (a_{\beta} + g_{\beta} - g_{\alpha} + B).$$

Such a point a_{α} exists because of the property (3) of the set B.

Finally, put $A = \bigcup_{\alpha < \kappa} \{a_{\alpha}, a_{\alpha} + g_{\alpha}\}$. It is easily seen that $G \setminus B^{\circ} \subset A - A$. From the definition of a_{α} it follows that $(A + B^{\circ}) \cap A = \emptyset$.

It remains to show that A is weakly P-small not P-small.

It follows from $(A + B^{\circ}) \cap A = \emptyset$ and property (2) of the set B that for every natural number n there exists a subset B_n of size n such that $(b - b' + A) \cap A = \emptyset$ for all distinct $b, b' \in B_n$. Thus the family $\{b + A : b \in B_n\}$ is disjoint. So A is weakly P-small.

Let us show that A is not P-small. According to the property (1) for every infinite B_{∞} there are $b, b' \in B_{\infty}$ such that $b - b' \notin B$. Then $b-b' \in G \setminus B^{\circ} \subset A - A$ and $b+A \cap b' + A \neq \emptyset$ which completes the proof.

It remains to construct a subset B of G with properties (1)–(3).

For this we recall some facts from the theory of Abelian groups. From now on talking about groups we shall have in mind Abelian groups.

Obviously, if a group G contains an element g of infinite order, then there is a subgroup B of G which is isomorphic to the group of integer numbers \mathbb{Z} . Otherwise, if each element of G has finite order, then G is called a *periodic* group. By [2,Theorem 8.4], each periodic group G can be presented as the direct sum $G = \bigoplus_p A_p$ of p-groups A_p . Next, we note that if A_p contains an element of infinite height then there exists a subgroup B of A_p isomorphic to the quasicyclic group

$$\mathbb{Z}(p^{\infty}) = \{ z \in \mathbb{C} : z^{p^k} = 1 \text{ for some } k \in \mathbb{N} \}.$$

Otherwise, when each element of a countable p-group A_p has finite height, then by [2,Theorem 17.3] A_p is the direct sum of cyclic groups

$$A_p = \oplus \langle g_i \rangle.$$

Hence we get that each group G contains a subgroup H isomorphic to \mathbb{Z} , $\mathbb{Z}(p^{\infty})$ for some prime p or to the direct sum of cyclic groups $\bigoplus_{i \in \omega} \langle g_i \rangle$.

It is easy to see that each subset B with the properties (1)-(3) in a subgroup $H \subset G$ has these properties in the whole group G. So the problem reduces to constructing a set B in the groups \mathbb{Z} , $\mathbb{Z}(p^{\infty})$ and $\oplus_i \langle g_i \rangle$. This will be done separately in the following three lemmas.

Lemma 1. The group \mathbb{Z} contains a subset B with the properties (1)–(3).

Proof. We start with the definition of the subsets B_n for all n. We put $B_n = \{d_n \cdot i : 1 \le i \le n\}$ where $d_0 = 1$ and $d_n = 3nd_{n-1}$. Then the set

$$B = \bigcup_{n=1}^{\infty} (B_n - B_n)$$

satisfies condition (1).

Next, we show that for any infinite subset B_{∞} of \mathbb{Z} there are $b, b' \in B_{\infty}$ such that $b - b' \notin B$. Suppose, contrary to our claim, that there is an infinite subset B_{∞} satisfying $B_{\infty} - B_{\infty} \subset B$. Let b_0 belong to B_{∞} and $b_0 \neq 0$. Then

$$B_{\infty} - b_0 \subset B_{\infty} - B_{\infty} \subset B = \bigcup_{n=1}^{\infty} (B_n - B_n).$$

The infinity of the set $B_{\infty} - b_0$ and the finity of the sets $B_n - B_n$ ensure the existence of points $b, b' \in B_{\infty} \setminus \{b_0\}$ such that $b - b_0 = b_n \in B_n - B_n$; $b' - b_0 = b_m \in B_m - B_m$, where $n \neq m$. Hence $b - b' = b_n - b_m$. And if $b_n - b_m \notin B$ then $b - b' \notin B$. This will contradict the inclusion $B_{\infty} - B_{\infty} \subset B$. So it is enough to prove that $b_n - b_m \notin B$ for any non-zero $b_n \in B_n - B_n$ and $b_m \in B_m - B_m$.

Without loss of generality we can assume that n > m. Recall that

$$B = \bigcup_{n=1}^{\infty} (B_n - B_n) = \bigcup_{n=1}^{\infty} \{i \cdot d_n : |i| < n\}.$$

The choice of the sequence (d_n) ensures that $d_n > 2(n-1)d_{n-1}$ for all n > 1.

It is clear that

$$d_n > jd_m + ld_k$$

for all m, k < n and |j| < m, |l| < k. This inequality implies

$$id_n \neq jd_m + ld_k$$

for all $i \neq 0, m, k < n$ and |j| < m, |l| < k.

Therefore $b_n - b_m = id_n - jd_m \notin B_k - B_k = \{ld_k : |l| < k\}$ and hence the set *B* has the property (2).

Next we show that B has property (3). We have to prove that $F+B \neq \mathbb{Z}$ for any finite subset $F \subset \mathbb{Z}$.

Find $k \in \mathbb{Z}$ with $F \subset [-k, k]$ and $n \in \mathbb{N}$ such that $d_n > 3k$. Then there exists x such that $d_n + k < x < 2d_n - k$. It follows from the definition of the set B that $x \notin F + B$ and hence $F + B \neq G$.

Lemma 2. The quasicyclic group $\mathbb{Z}(p^{\infty})$ contains a set B with properties (1)-(3).

Proof. As in the proof of Lemma 1 we start with the definition of the subsets B_n . Let

$$B_n = \{e^{i\varphi} : \varphi = \frac{2\pi}{p^{d_n+j}}, \ 1 \le j \le n\}$$

where $d_1 = 1$ and we chose d_n so that the following inequality holds:

$$\frac{2\pi}{p^{d_n}} < \min_{k,l < n} \{ |\varphi_k - \varphi_l| : e^{i\varphi_l} \in B_l - B_l, e^{i\varphi_k} \in B_k - B_k, \varphi_k \neq \varphi_l \}.$$

Next we put

$$B = \bigcup_{n=1}^{\infty} (B_n - B_n).$$

It is clear that B has property (1). Analogously as in Lemma 1, one can prove that B has property (2). So it remains to show that B is satisfies property (3).

This follows from the fact that the space $\mathbb{Z}(p^{\infty})$ considered as a subset of the circle has no isolated point while any finite shift F + B of B has only finitely many non-isolated points.

Lemma 3. The infinite direct sum $G = \bigoplus \langle g_i \rangle$ of cyclic groups contains a set B with properties (1)-(3).

Proof. First of all we define subsets B_n for all n. We can think of the cyclic groups $\langle g_i \rangle$ as subgroups of the group G. We put

$$B_n = \{g_i : \frac{n(n-1)}{2} + 1 \le i \le \frac{n(n-1)}{2} + n\}$$

and

$$B = \bigcup_{n=1}^{\infty} (B_n - B_n).$$

It is easy to check that the set B has properties (1)-(3).

Acknowledgements. The authors express their sincere thanks to Igor Protasov and Ihor Zarichnyi for valuable and stimulating discussions on the subject of the paper.

References

 D. Dikranjan, I. Protasov, Every infinite group can be generated by P-small subset, General Applied Topology (to appear); available at http://unicyb.kiev.ua/Site-Eng/admin/download/P-small subset.pdf

- [2] L. Fuchs, Infinite Abelian groups, V.1, Moscow.: Mir, 1974.
- [3] R. Gusso, Large and small sets with respect to homomorphisms and products of groups, Applied General Topology, 3:2 (2002), p.133–143.
- [4] O. Protasova, On small and P-small subset of a group, International Conference "Analysis and Related Topics", Lviv, 17-20 November, 2005, p.85.

CONTACT INFORMATION

T. Banakh,	Department of Mathematics, Ivan Franko
N. Lyaskovska	Lviv National University, Universytetska 1,
	Lviv, 79000, Ukraine
	E-Mail: tbanakh@franko.lviv.ua,
	lyaskovska@yahoo.com

Received by the editors: 21.12.2005 and in final form 22.11.2006.