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Abstract. Answering a question of D. Dikranjan and I. Pro-

tasov we prove that each infinite Abelian group contains a weakly

P-small subset that is not P-small.

We recall the basic definitions. A subset A of an Abelian group G is
called

• large if there exists a finite subset F ⊂ G such that F + A = G;

• small if for every finite subset F ⊂ G the subset G\(F +A) is large;

• small in sense of Prodanov (briefly, P-small) if there exists an in-
finite subset B of G such that (b + A)∩ (b′ + A) = ∅ for all distinct
b, b′ ∈ B;

• weakly P-small if for every natural number n there exists a subset
Bn ⊂ G of size |Bn| = n such that (b + A) ∩ (b′ + A) = ∅ for all
distinct b, b′ ∈ Bn.

Obviously, each P-small subset is weakly P-small. By Theorem 4.2
of [3], every P-small subset of an Abelian group G is small. Looking at
the proof of this theorem one can notice that it gives a little bit more,
namely

Proposition 1. Each weakly P-small subset of an Abelian group is small.
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Therefore for a subset of an Abelian group we get implications

(P-small) ⇒ (weakly P-small) ⇒ (small).

A small subset need not be weakly P-small. The simplest example is
the set A = {an : n ∈ ω} of Z where a0 = 0 and an+1 = an +n for n ≥ 1,
see Example 4.15 of [3]. In fact, each countable group contains a small
subset which is not P-small [4].

In [1] D.Dikranjan and I.Protasov posed the following question: Is

each weakly P-small set P-small? We answer this question in negative.

Main Theorem. Each infinite Abelian group G contains a weakly P-

small subset A ⊂ G which is not P-small.

Proof of the Main Theorem relies on the existence of a subset B = −B
of G with the following properties:

(1) for every n ∈ N there is a subset Bn of size |Bn| = n such that
Bn − Bn ⊂ B;

(2) B∞ − B∞ 6⊂ B for any infinite subset B∞;

(3) F + B 6= G for any subset F ⊂ G of size |F | < |G|.

By |A| we denote the cardinality of a set A.

Assuming for a moment that such a set B exists we shall construct a
weak P-small set A ⊂ G which is not P-small.

Let B◦ = B \ {0}. We shall construct a subset A such that (A +
B◦)

⋂
A = ∅ and G\B◦ ⊂ A − A, and then show that A satisfies the

conclusion of the theorem.

Let κ = |G\B◦| and G\B◦ = {gα : α < κ} be an enumeration of
G\B◦ by ordinals α < κ.

By induction, we define a sequence (aα) in G such that for any ordinal
α < κ

aα /∈
⋃

β<α

(aβ + B) ∪ (aβ + gβ + B) ∪ (aβ − gα + B) ∪ (aβ + gβ − gα + B).

We start with a0 = 0.

Assuming that for some α the points aβ , β < α, have been con-
structed, pick any point aα ∈ G with

aα /∈
⋃

β<α

(aβ + B) ∪ (aβ + gβ + B) ∪ (aβ − gα + B) ∪ (aβ + gβ − gα + B).

Such a point aα exists because of the property (3) of the set B.
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Finally, put A =
⋃

α<κ{aα, aα + gα}. It is easily seen that G\B◦ ⊂
A − A. From the definition of aα it follows that (A + B◦)

⋂
A = ∅.

It remains to show that A is weakly P-small not P-small.
It follows from (A + B◦) ∩ A = ∅ and property (2) of the set B

that for every natural number n there exists a subset Bn of size n such
that (b − b

′

+ A) ∩ A = ∅ for all distinct b, b
′

∈ Bn. Thus the family
{b + A : b ∈ Bn} is disjoint. So A is weakly P-small.

Let us show that A is not P-small. According to the property (1)
for every infinite B∞ there are b, b

′

∈ B∞ such that b − b
′

/∈ B. Then
b−b

′

∈ G\B◦ ⊂ A−A and b+A
⋂

b
′

+A 6= ∅ which completes the proof.
It remains to construct a subset B of G with properties (1)—(3).
For this we recall some facts from the theory of Abelian groups. From

now on talking about groups we shall have in mind Abelian groups.
Obviously, if a group G contains an element g of infinite order, then

there is a subgroup B of G which is isomorphic to the group of integer
numbers Z. Otherwise, if each element of G has finite order, then G is
called a periodic group. By [2,Theorem 8.4], each periodic group G can
be presented as the direct sum G = ⊕pAp of p-groups Ap. Next, we
note that if Ap contains an element of infinite height then there exists a
subgroup B of Ap isomorphic to the quasicyclic group

Z(p∞) = {z ∈ C : zpk

= 1 for some k ∈ N}.

Otherwise, when each element of a countable p-group Ap has finite height,
then by [2,Theorem 17.3] Ap is the direct sum of cyclic groups

Ap = ⊕〈gi〉.

Hence we get that each group G contains a subgroup H isomorphic to
Z, Z(p∞) for some prime p or to the direct sum of cyclic groups ⊕i∈ω〈gi〉.

It is easy to see that each subset B with the properties (1)-(3) in
a subgroup H ⊂ G has these properties in the whole group G. So the
problem reduces to constructing a set B in the groups Z, Z(p∞) and
⊕i〈gi〉. This will be done separately in the following three lemmas.

Lemma 1. The group Z contains a subset B with the properties (1)–(3).

Proof. We start with the definition of the subsets Bn for all n. We put
Bn = {dn · i : 1 ≤ i ≤ n} where d0 = 1 and dn = 3ndn−1. Then the set

B =

∞⋃

n=1

(Bn − Bn)

satisfies condition (1).
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Next, we show that for any infinite subset B∞ of Z there are b, b
′

∈ B∞

such that b − b
′

/∈ B. Suppose, contrary to our claim, that there is an
infinite subset B∞ satisfying B∞ − B∞ ⊂ B. Let b0 belong to B∞ and
b0 6= 0. Then

B∞ − b0 ⊂ B∞ − B∞ ⊂ B =

∞⋃

n=1

(Bn − Bn).

The infinity of the set B∞ − b0 and the finity of the sets Bn −Bn ensure
the existence of points b, b

′

∈ B∞\{b0} such that b − b0 = bn ∈ Bn −
Bn; b

′

− b0 = bm ∈ Bm − Bm, where n 6= m. Hence b − b
′

= bn − bm.
And if bn − bm /∈ B then b − b

′

/∈ B. This will contradict the inclusion
B∞−B∞ ⊂ B. So it is enough to prove that bn−bm /∈ B for any non-zero
bn ∈ Bn − Bn and bm ∈ Bm − Bm.

Without loss of generality we can assume that n > m.

Recall that

B =
∞⋃

n=1

(Bn − Bn) =
∞⋃

n=1

{i · dn : |i| < n}.

The choice of the sequence (dn) ensures that dn > 2(n − 1)dn−1 for all
n > 1.

It is clear that

dn > jdm + ldk

for all m, k < n and |j| < m, |l| < k. This inequality implies

idn 6= jdm + ldk

for all i 6= 0, m, k < n and |j| < m, |l| < k.

Therefore bn − bm = idn − jdm /∈ Bk −Bk = {ldk : |l| < k} and hence
the set B has the property (2).

Next we show that B has property (3). We have to prove that F +B 6=
Z for any finite subset F ⊂ Z.

Find k ∈ Z with F ⊂ [−k, k] and n ∈ N such that dn > 3k. Then there
exists x such that dn + k < x < 2dn − k. It follows from the definition of
the set B that x /∈ F + B and hence F + B 6= G.

Lemma 2. The quasicyclic group Z(p∞) contains a set B with properties

(1)—(3).
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Proof. As in the proof of Lemma 1 we start with the definition of the
subsets Bn. Let

Bn = {eiϕ : ϕ =
2π

pdn+j
, 1 ≤ j ≤ n}

where d1 = 1 and we chose dn so that the following inequality holds:

2π

pdn

< min
k,l<n

{|ϕk − ϕl| : eiϕl ∈ Bl − Bl, e
iϕk ∈ Bk − Bk, ϕk 6= ϕl}.

Next we put

B =

∞⋃

n=1

(Bn − Bn).

It is clear that B has property (1). Analogously as in Lemma 1, one
can prove that B has property (2). So it remains to show that B is
satisfies property (3).

This follows from the fact that the space Z(p∞) considered as a subset
of the circle has no isolated point while any finite shift F + B of B has
only finitely many non-isolated points.

Lemma 3. The infinite direct sum G = ⊕〈gi〉 of cyclic groups contains

a set B with properties (1)—(3).

Proof. First of all we define subsets Bn for all n. We can think of the
cyclic groups 〈gi〉 as subgroups of the group G. We put

Bn = {gi :
n(n − 1)

2
+ 1 ≤ i ≤

n(n − 1)

2
+ n}

and

B =

∞⋃

n=1

(Bn − Bn).

It is easy to check that the set B has properties (1)–(3).
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