# Weakly P-small not P-small subsets in Abelian groups 

T. Banakh, N. Lyaskovska

Communicated by M. Ya. Komarnytskyj


#### Abstract

Answering a question of D. Dikranjan and I. Protasov we prove that each infinite Abelian group contains a weakly P -small subset that is not P -small.


We recall the basic definitions. A subset $A$ of an Abelian group $G$ is called

- large if there exists a finite subset $F \subset G$ such that $F+A=G$;
- small if for every finite subset $F \subset G$ the subset $G \backslash(F+A)$ is large;
- small in sense of Prodanov (briefly, $P$-small) if there exists an infinite subset $B$ of $G$ such that $(b+A) \cap\left(b^{\prime}+A\right)=\emptyset$ for all distinct $b, b^{\prime} \in B ;$
- weakly $P$-small if for every natural number $n$ there exists a subset $B_{n} \subset G$ of size $\left|B_{n}\right|=n$ such that $(b+A) \cap\left(b^{\prime}+A\right)=\emptyset$ for all distinct $b, b^{\prime} \in B_{n}$.

Obviously, each P-small subset is weakly P-small. By Theorem 4.2 of [3], every P-small subset of an Abelian group $G$ is small. Looking at the proof of this theorem one can notice that it gives a little bit more, namely

Proposition 1. Each weakly P-small subset of an Abelian group is small.
2000 Mathematics Subject Classification: 20K99, 05D05.
Key words and phrases: group, $P$-small sets.

Therefore for a subset of an Abelian group we get implications

$$
(\mathrm{P}-\text { small }) \Rightarrow(\text { weakly P-small }) \Rightarrow(\text { small })
$$

A small subset need not be weakly P -small. The simplest example is the set $A=\left\{a_{n}: n \in \omega\right\}$ of $\mathbb{Z}$ where $a_{0}=0$ and $a_{n+1}=a_{n}+n$ for $n \geq 1$, see Example 4.15 of [3]. In fact, each countable group contains a small subset which is not P-small [4].

In [1] D.Dikranjan and I.Protasov posed the following question: Is each weakly $P$-small set $P$-small? We answer this question in negative.

Main Theorem. Each infinite Abelian group $G$ contains a weakly Psmall subset $A \subset G$ which is not $P$-small.

Proof of the Main Theorem relies on the existence of a subset $B=-B$ of $G$ with the following properties:
(1) for every $n \in \mathbb{N}$ there is a subset $B_{n}$ of size $\left|B_{n}\right|=n$ such that $B_{n}-B_{n} \subset B ;$
(2) $B_{\infty}-B_{\infty} \not \subset B$ for any infinite subset $B_{\infty}$;
(3) $F+B \neq G$ for any subset $F \subset G$ of size $|F|<|G|$.

By $|A|$ we denote the cardinality of a set $A$.
Assuming for a moment that such a set $B$ exists we shall construct a weak P-small set $A \subset G$ which is not P-small.

Let $B^{\circ}=B \backslash\{0\}$. We shall construct a subset $A$ such that $(A+$ $\left.B^{\circ}\right) \bigcap A=\emptyset$ and $G \backslash B^{\circ} \subset A-A$, and then show that $A$ satisfies the conclusion of the theorem.

Let $\kappa=\left|G \backslash B^{\circ}\right|$ and $G \backslash B^{\circ}=\left\{g_{\alpha}: \alpha<\kappa\right\}$ be an enumeration of $G \backslash B^{\circ}$ by ordinals $\alpha<\kappa$.

By induction, we define a sequence $\left(a_{\alpha}\right)$ in $G$ such that for any ordinal $\alpha<\kappa$
$a_{\alpha} \notin \bigcup_{\beta<\alpha}\left(a_{\beta}+B\right) \cup\left(a_{\beta}+g_{\beta}+B\right) \cup\left(a_{\beta}-g_{\alpha}+B\right) \cup\left(a_{\beta}+g_{\beta}-g_{\alpha}+B\right)$.
We start with $a_{0}=0$.
Assuming that for some $\alpha$ the points $a_{\beta}, \beta<\alpha$, have been constructed, pick any point $a_{\alpha} \in G$ with
$a_{\alpha} \notin \bigcup_{\beta<\alpha}\left(a_{\beta}+B\right) \cup\left(a_{\beta}+g_{\beta}+B\right) \cup\left(a_{\beta}-g_{\alpha}+B\right) \cup\left(a_{\beta}+g_{\beta}-g_{\alpha}+B\right)$.
Such a point $a_{\alpha}$ exists because of the property (3) of the set $B$.

Finally, put $A=\bigcup_{\alpha<\kappa}\left\{a_{\alpha}, a_{\alpha}+g_{\alpha}\right\}$. It is easily seen that $G \backslash B^{\circ} \subset$ $A-A$. From the definition of $a_{\alpha}$ it follows that $\left(A+B^{\circ}\right) \bigcap A=\emptyset$.

It remains to show that $A$ is weakly P -small not P -small.
It follows from $\left(A+B^{\circ}\right) \cap A=\emptyset$ and property (2) of the set $B$ that for every natural number $n$ there exists a subset $B_{n}$ of size $n$ such that $\left(b-b^{\prime}+A\right) \cap A=\emptyset$ for all distinct $b, b^{\prime} \in B_{n}$. Thus the family $\left\{b+A: b \in B_{n}\right\}$ is disjoint. So $A$ is weakly P-small.

Let us show that $A$ is not P-small. According to the property (1) for every infinite $B_{\infty}$ there are $b, b^{\prime} \in B_{\infty}$ such that $b-b^{\prime} \notin B$. Then $b-b^{\prime} \in G \backslash B^{\circ} \subset A-A$ and $b+A \bigcap b^{\prime}+A \neq \emptyset$ which completes the proof.

It remains to construct a subset $B$ of $G$ with properties (1)-(3).
For this we recall some facts from the theory of Abelian groups. From now on talking about groups we shall have in mind Abelian groups.

Obviously, if a group $G$ contains an element $g$ of infinite order, then there is a subgroup $B$ of $G$ which is isomorphic to the group of integer numbers $\mathbb{Z}$. Otherwise, if each element of $G$ has finite order, then $G$ is called a periodic group. By [2,Theorem 8.4], each periodic group $G$ can be presented as the direct sum $G=\oplus_{p} A_{p}$ of $p$-groups $A_{p}$. Next, we note that if $A_{p}$ contains an element of infinite height then there exists a subgroup $B$ of $A_{p}$ isomorphic to the quasicyclic group

$$
\mathbb{Z}\left(p^{\infty}\right)=\left\{z \in \mathbb{C}: z^{p^{k}}=1 \text { for some } k \in \mathbb{N}\right\}
$$

Otherwise, when each element of a countable p-group $A_{p}$ has finite height, then by [2,Theorem 17.3] $A_{p}$ is the direct sum of cyclic groups

$$
A_{p}=\oplus\left\langle g_{i}\right\rangle
$$

Hence we get that each group $G$ contains a subgroup $H$ isomorphic to $\mathbb{Z}, \mathbb{Z}\left(p^{\infty}\right)$ for some prime $p$ or to the direct sum of cyclic groups $\oplus_{i \in \omega}\left\langle g_{i}\right\rangle$.

It is easy to see that each subset $B$ with the properties (1)-(3) in a subgroup $H \subset G$ has these properties in the whole group $G$. So the problem reduces to constructing a set $B$ in the groups $\mathbb{Z}, \mathbb{Z}\left(p^{\infty}\right)$ and $\oplus_{i}\left\langle g_{i}\right\rangle$. This will be done separately in the following three lemmas.

Lemma 1. The group $\mathbb{Z}$ contains a subset $B$ with the properties (1)-(3).
Proof. We start with the definition of the subsets $B_{n}$ for all $n$. We put $B_{n}=\left\{d_{n} \cdot i: 1 \leq i \leq n\right\}$ where $d_{0}=1$ and $d_{n}=3 n d_{n-1}$. Then the set

$$
B=\bigcup_{n=1}^{\infty}\left(B_{n}-B_{n}\right)
$$

satisfies condition (1).

Next, we show that for any infinite subset $B_{\infty}$ of $\mathbb{Z}$ there are $b, b^{\prime} \in B_{\infty}$ such that $b-b^{\prime} \notin B$. Suppose, contrary to our claim, that there is an infinite subset $B_{\infty}$ satisfying $B_{\infty}-B_{\infty} \subset B$. Let $b_{0}$ belong to $B_{\infty}$ and $b_{0} \neq 0$. Then

$$
B_{\infty}-b_{0} \subset B_{\infty}-B_{\infty} \subset B=\bigcup_{n=1}^{\infty}\left(B_{n}-B_{n}\right)
$$

The infinity of the set $B_{\infty}-b_{0}$ and the finity of the sets $B_{n}-B_{n}$ ensure the existence of points $b, b^{\prime} \in B_{\infty} \backslash\left\{b_{0}\right\}$ such that $b-b_{0}=b_{n} \in B_{n}-$ $B_{n} ; b^{\prime}-b_{0}=b_{m} \in B_{m}-B_{m}$, where $n \neq m$. Hence $b-b^{\prime}=b_{n}-b_{m}$. And if $b_{n}-b_{m} \notin B$ then $b-b^{\prime} \notin B$. This will contradict the inclusion $B_{\infty}-B_{\infty} \subset B$. So it is enough to prove that $b_{n}-b_{m} \notin B$ for any non-zero $b_{n} \in B_{n}-B_{n}$ and $b_{m} \in B_{m}-B_{m}$.

Without loss of generality we can assume that $n>m$.
Recall that

$$
B=\bigcup_{n=1}^{\infty}\left(B_{n}-B_{n}\right)=\bigcup_{n=1}^{\infty}\left\{i \cdot d_{n}:|i|<n\right\}
$$

The choice of the sequence $\left(d_{n}\right)$ ensures that $d_{n}>2(n-1) d_{n-1}$ for all $n>1$.

It is clear that

$$
d_{n}>j d_{m}+l d_{k}
$$

for all $m, k<n$ and $|j|<m,|l|<k$. This inequality implies

$$
i d_{n} \neq j d_{m}+l d_{k}
$$

for all $i \neq 0, m, k<n$ and $|j|<m,|l|<k$.
Therefore $b_{n}-b_{m}=i d_{n}-j d_{m} \notin B_{k}-B_{k}=\left\{l d_{k}:|l|<k\right\}$ and hence the set $B$ has the property (2).

Next we show that $B$ has property (3). We have to prove that $F+B \neq$ $\mathbb{Z}$ for any finite subset $F \subset \mathbb{Z}$.

Find $k \in \mathbb{Z}$ with $F \subset[-k, k]$ and $n \in \mathbb{N}$ such that $d_{n}>3 k$. Then there exists $x$ such that $d_{n}+k<x<2 d_{n}-k$. It follows from the definition of the set $B$ that $x \notin F+B$ and hence $F+B \neq G$.

Lemma 2. The quasicyclic group $\mathbb{Z}\left(p^{\infty}\right)$ contains a set $B$ with properties (1)-(3).

Proof. As in the proof of Lemma 1 we start with the definition of the subsets $B_{n}$. Let

$$
B_{n}=\left\{e^{i \varphi}: \varphi=\frac{2 \pi}{p^{d_{n}+j}}, 1 \leq j \leq n\right\}
$$

where $d_{1}=1$ and we chose $d_{n}$ so that the following inequality holds:

$$
\frac{2 \pi}{p^{d_{n}}}<\min _{k, l<n}\left\{\left|\varphi_{k}-\varphi_{l}\right|: e^{i \varphi_{l}} \in B_{l}-B_{l}, e^{i \varphi_{k}} \in B_{k}-B_{k}, \varphi_{k} \neq \varphi_{l}\right\}
$$

Next we put

$$
B=\bigcup_{n=1}^{\infty}\left(B_{n}-B_{n}\right)
$$

It is clear that $B$ has property (1). Analogously as in Lemma 1 , one can prove that $B$ has property (2). So it remains to show that $B$ is satisfies property (3).

This follows from the fact that the space $\mathbb{Z}\left(p^{\infty}\right)$ considered as a subset of the circle has no isolated point while any finite shift $F+B$ of $B$ has only finitely many non-isolated points.

Lemma 3. The infinite direct sum $G=\oplus\left\langle g_{i}\right\rangle$ of cyclic groups contains a set $B$ with properties (1)-(3).

Proof. First of all we define subsets $B_{n}$ for all $n$. We can think of the cyclic groups $\left\langle g_{i}\right\rangle$ as subgroups of the group $G$. We put

$$
B_{n}=\left\{g_{i}: \frac{n(n-1)}{2}+1 \leq i \leq \frac{n(n-1)}{2}+n\right\}
$$

and

$$
B=\bigcup_{n=1}^{\infty}\left(B_{n}-B_{n}\right)
$$

It is easy to check that the set $B$ has properties (1)-(3).

Acknowledgements. The authors express their sincere thanks to Igor Protasov and Ihor Zarichnyi for valuable and stimulating discussions on the subject of the paper.

## References

[1] D. Dikranjan, I. Protasov, Every infinite group can be generated by P-small subset, General Applied Topology (to appear); available at http://unicyb.kiev.ua/Site-Eng/admin/download/P-small subset.pdf
[2] L. Fuchs, Infinite Abelian groups,V.1, Moscow.: Mir, 1974.
[3] R. Gusso, Large and small sets with respect to homomorphisms and products of groups, Applied General Topology, 3:2 (2002), p.133-143.
[4] O. Protasova, On small and P-small subset of a group, International Conference "Analysis and Related Topics", Lviv, 17-20 November, 2005, p. 85.

## Contact information

T. Banakh, Department of Mathematics, Ivan Franko N. Lyaskovska<br>Lviv National University, Universytetska 1, Lviv, 79000, Ukraine<br>E-Mail: tbanakh@franko.lviv.ua, lyaskovska@yahoo.com

Received by the editors: 21.12.2005 and in final form 22.11.2006.

