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Abstract. We investigate the geometrical properties of the

universal covering Â of a bimodule problem A.

Introduction

The paper deals with a study within the framework of the representation
theory of bimodule problems ([6], [10]). The class Qr of bimodule prob-
lems over k[[t]] introduced in [10] is considered. Any bimodule problem
A ∈ Qr is endowed with the standard multiplicative basis. It allows us
to associate a two-dimensional cell complex L with the problem A and
to construct the Poincare groupoid and the universal covering bimodule
problem Â of A ([10], [11]). To investigate the representation type of Â
we use the geometrical technique of diagrams, contracting closed walks
and quadratic form theory ([1]). The geometrical part of this technique
has originally been developed as part of the geometrical group theory
([3], [4]). It turns out that some geometrical properties of L imply some
properties of the bimodule problem A, in particular of its Tits quadratic
form. It gives us a geometrical proof of a criterion of absence of minimal
non-simply connected subproblems in A.
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18 Bimodule problems and cell complexes

1. Basic notions

1.1. Bimodule problem and bigraph

We refer to [10], [11] for a detailed exposition. Let us fix an algebraically
closed field k. We say that a pair A = (C,M) is a k-bimodule problem,
if C is a k-category and M is a C-bimodule. Besides, let us assume that
C is local, and that both C and M are locally finite dimensional. For a
bimodule problem A = (C,M) the greatest ideal I ⊂ Rad C such that
IM = MI = 0 is called the annihilator of M and is denoted by AnnCM.

Let us consider the category C2 = k[[t]] ⊕ k[[t]] such that Ob C2 =
{1, 2}, C2(1, 1) = k[[t]]·11, C2(2, 2) = k[[t]]·12, C2(1, 2) = 0 and C2(2, 1) =
0, where k[[t]] is the power series ring in one variable over k. For integers
n1 > 0, n2 > 0, n > 0 let us consider the bimodule Mn1,n,n2

over
the category C2 such that Mn1,n,n2

(1, 2) is the vector space over the
field k with a basis v1, . . . , vn, and Mn1,n,n2

(1, 1) = Mn1,n,n2
(2, 1) =

Mn1,n,n2
(2, 2) = 0, and for any i = 1, 2, . . . , n

vi(11t) =

{
vi+n1

, if i+ n1 6 n,
0 otherwise,

(t12)vi =

{
vi+n2

, if i+ n2 6 n,
0 otherwise.

The bimodule problem An1,n,n2
= (C2/(AnnC2

Mn1,n,n2
),Mn1,n,n2

),
where n1 = 1 or n2 = 1, is called the standard uniserial bimodule problem
and is depicted by the oriented marked graph (diagram) �������� n

n1 n2

//��������. In

the case when n = 0 we set n1 = n2 = 0 and depict the correspondent
bimodule problem A0,0,0 by two disjoint vertices.

Let Cm be the category such that Ob Cm = {1, . . . , m}, Cm(i, j) = 0,
i 6= j, Cm(i, i) = k[[t]]·1i, i, j ∈ Ob Cm. Consider the bimodule problem
A = (C,M), where M is a Cm-bimodule and C = Cm/AnnCm

M, such
that for any i, j ∈ Ob C, i 6= j, the restriction Ai,j of bimodule problem
A to these objects is equivalent to the standard uniserial bimodule prob-
lem An1,n,n2

. Such a bimodule problem can be decoded by the oriented
marked graph ∆(A) = (∆0,∆1), where the set of vertices is ∆0 = Ob C,
and for any i, j ∈ ∆0, i 6= j, the full subbigraph on these vertices is
precisely the oriented marked graph for Ai,j. So given Ai,j ∼ An1,n,n2

we have ∆1(i, j) = {ai,j} if n > 0, where ai,j is an unique arrow from
i to j, and ∆1(i, j) = ∅ if n = 0. We say that an arrow ai,j ∈ ∆1 has
weight w(ai,j) = n ∈ Z if Ai,j ∼ An1,n,n2

for some integers n1, n2.
Let us denote by Qr the class of such bimodule problems A that have

a connected tree-like graph ∆(A).
A bigraph Γ = (Γ0,Γ1 = Γ0

1 ∪ Γ1
1, s, e) consists of a set of vertices Γ0,

sets of solid and dotted arrows Γ0
1 and Γ1

1 (Γ0
1 ∩ Γ1

1 = ∅) and a pair of
maps s, e : Γ1 → Γ0 that take an arrow x to its starting vertex s(x) and
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its ending vertex e(x) respectively. Let us denote the sets of all arrows
x, solid arrows x and dotted arrows x, satisfying s(x) = i and e(x) = j,
by Γ1(i, j), Γ0

1(i, j) and Γ1
1(i, j) respectively.

The bigraph Γ′ = (Γ′
0,Γ

′
1, s

′, e′) is called the subbigraph of the bigraph
Γ = (Γ0,Γ1, s, e) if Γ′

0 ⊂ Γ0, Γ′
1 ⊂ Γ1, s|Γ′ = s′ and e|Γ′ = e′. A

subbigraph Γ′ of Γ is called full if Γ′
1(i, j) = Γ1(i, j) for all i, j ∈ Γ′

0.
Every subbigraph Γ′ ⊂ Γ is contained in the unique full subbigraph Γ′′ ⊂
Γ such that Γ′

0 = Γ′′
0.

A solid path σ on Γ is defined as a sequence σ = a1 . . . ak of solid
arrows a1, . . . , ak ∈ Γ0

1 such that e(ai) = s(ai+1) for i = 1, . . . , k − 1,
k ∈ N. Let s(σ) = s(a1), e(σ) = e(ak). Given some a ∈ Γ0

1 let us denote
by a−1 the opposite arrow such that s(a−1) = e(a) and e(a−1) = s(a).
Let Γ̃0

1 = Γ0
1 ∪{a−1 | a ∈ Γ0

1}. A solid walk σ on Γ is a path σ = a1 . . . ak
with a1, . . . , ak ∈ Γ̃0

1. A solid walk σ is called closed if s(σ) = e(σ).

A basis of a bimodule problem A = (C,M) is a bigraph Γ (= Γ(A))
such that Γ0 = Ob C, Γ0

1(i, j) is a basis in M(i, j), Γ1
1(i, j) is a basis

in C(i, j) for i 6= j, and Γ1
1(i, i) is a basis in Rad C(i, i), i, j ∈ Γ0.

Note that Γ0
1(i, j) 6= ∅ if and only if ∆1(i, j) 6= ∅. Then we can define

the identification maps λ : Γ0(A) → ∆0(A) and λ : Γ0
1(A) → ∆1(A) by

setting λ(i) = i and λ(x) = ai,j for any x ∈ Γ0
1(i, j), i, j ∈ Γ0 = ∆0.

A basis Γ is called multiplicative provided the composition of any two
composable arrows is either 0 or an arrow in Γ. Any bimodule problem
A ∈ Qr is endowed with the standard multiplicative basis Γ ([10]).

Let us denote by RepA the category of representations of A ([10]).

1.2. Cell complex over the bimodule problem

We will use the following definition of a cell complex (see [7], chapter
5). Let X be a topological space. Also let N0 = N ∪ {0} and let Ld =
{Cd

α ⊂ X | α ∈ Jd}, where Jd is an index set, be a family of sets from
X, d ∈ N0. Let us denote

⊔
d∈N0

Ld by L. We will call the set L6d =
⊔
t6d

Lt

the d-skeleton of L, d ∈ N0, and Xd =
⋃
α∈Jt

t6d

Ct
α. For any Cd

α ∈ L the set

Cd
α
•

= Cd
α ∩X

d−1 is called the boundary of Cd
α. The set Cd

α
◦

= Cd
α \Cd

α
•

is called the interior of Cd
α.

The family L is called the cell complex on X provided:

1. X =
⋃

Cd
α∈L

Cd
α;

2. Cd
α
◦
∩ Cd′

β

◦
6= ∅ implies that d = d′, α = β;
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3. for any Cd
α ∈ L there exists a surjective map of pairs

fdα : (Dd, Sd−1) → (Cd
α,C

d
α

•
)

such that fdα induces a homeomorphism IntDd → Cd
α
◦
, where Dd

is the d-dimensional disk in Rd, IntDd is its interior and the sphere
Sd−1 is its boundary.

A set Cd
α is called the d-cell or the d-dimensional cell. The map fdα is

called the characteristic mapping of the cell Cd
α.

A cell complex L is called a d-complex or a complex of dimension
d = dim L if Lk = ∅ for all k > d but Ld 6= ∅. The cell complex
structure L on X induces the structure of cell complexes L6k = L6k(X)
on Xk, k ∈ N0.

If X, Y are topological spaces with cell complex structures L(X),
L(Y ) respectively, then a continuous map f : X → Y is called a cellular
map, provided it maps the k-th skeleton L(X)6k to the k-th skeleton
L(Y )6k for all 0 6 k 6 dimL.

The cell Cd′

α′ is called the face of the cell Cd
α if Cd′

α′

◦
⊂ Cd

α. The cell
spaces under consideration satisfy the condition of a CW-complex (see [7],
chapter 5). Namely, every cell has a finite number of faces and the space
is endowed with a weak topology. We consider here only the so called
combinatorial cellular maps (see [5]), i. e. for any cell C of L(X) the map
f induces a homeomorphism of C◦ onto C

′◦ for some cell C′ ∈ L(Y ).

Given a complex L and some C0 ∈ L0 let us denote by LC0 the
subcomplex of L that contains C0 and all the cells C ∈ L such that
C0 ∈ C•. The complex LC0 is called the star of the 0-cell C0 in L.

For n > 0 define the cycle C(n) of length n as the 1-complex with
C(n)0 = {1, . . . , n}, C(n)1 = {x1, . . . , xn}, C(n)k = ∅ for k > 2, such
that xi

• = {i, i + 1} if i < n and xn
• = {n, 1}.

Let the bigraph Γ be a multiplicaive basis of the bimodule problem
A. Let us define the 2-complex L(A). Let us set L0 = Γ0 × {D0},
L1 = Γ0

1 × {D1}, and let us denote by C0
i = (i, D0) ∈ L0 for any i ∈ Γ0

and C1
a = (a,D1) ∈ L1 for any a ∈ Γ0

1. Then C1
a
•

= {C0
s(a),C

0
e(a)} for each

a ∈ Γ0
1. The characteristic mappings are now defined in a straightforward

fashion. The 1-dimensional complex L61(A) we have obtained is the 1-
skeleton of L(A). As a topological space, L61(A) is homeomorphic to
the subbigraph in Γ formed by the solid arrows.

The structure of 2-cells is defined by multiplication in A. The 2-cell
on A corresponds to the family (a, b, c, d, ϕ) for the first three cases below
and to the family (a, b, c, d, ϕ, ψ) for the fourth case:



V. Babych, N. Golovashchuk 21

j(/).*-+,

ϕ

���
�
�

ff c
NNNNNN

1) C2
a,b,c,d,ϕ: i(/).*-+,

b 88pppppp

a ''OOOOOO k(/).*-+, ϕb = a, ϕc = d;

l(/).*-+,ww d

oooooo

j(/).*-+,

ϕ

���
�
� c

&&NNNNNN

2) C2
a,b,c,d,ϕ: i(/).*-+,

b 88pppppp

a ''OOOOOO k(/).*-+, ϕb = a, dϕ = c;

l(/).*-+, d

77oooooo

j(/).*-+,

ϕ

���
�
� c

&&NNNNNN

3) C2
a,b,c,d,ϕ: i(/).*-+,xx

b pppppp
gg
a OOOOOO k(/).*-+, aϕ = b, dϕ = c;

l(/).*-+, d

77oooooo

j(/).*-+,

ϕ

���
�
�

ff c
MMMMMM ϕb = a, ϕc = d;

4) C2
a,b,c,d,ϕ,ψ: i(/).*-+,

b 88qqqqqq

a ''OOOOOO
ψ

//______ k(/).*-+, cψ = b; dψ = a,

l(/).*-+,ww d

oooooo

where a, b, c, d ∈ Γ0
1, ϕ,ψ ∈ Γ1

1. Namely, L2 = {(a, b, c, d, ϕ,D2) | ϕb =
a, ϕc = d}∪{(a, b, c, d, ϕ,D2) | ϕb = a, dϕ = c}∪{(a, b, c, d, ϕ,D2) | aϕ =
b, dϕ = c}∪{(a, b, c, d, ϕ, ψ) | ϕb = a, ϕc = d, cψ = b, dψ = a}. The labels
on the arrows and the vertices denote the images of the identification map,
restricted to the boundary of corresponding cell. We denote the 2-cells
by C2

a,b,c,d,ϕ for the first three cases and C2
a,b,c,d,ϕ,ψ for the last one.

Note that the cells defined in the cases 1)-4) above are endowed with
an extra structure, namely, the inner oriented paths of these cells corre-
spond to the dotted arrows ϕ,ψ ∈ Γ1

1.

Let σ = a1 . . . an be a closed walk on Γ. Then a contracting diagram
for σ is defined as a structure of the 2-complex L = L(σ) on a contractible
subspace X ⊂ R2 with the following properties.

1. The interior C1◦ belongs to at most two 2-cells in L for any C1 ∈ L1.
2. There is a cellular map ıX : C(n) → L, n > 0, such that a unique

unbounded connected component of R2\Im ıX coincides with R2\X
and the pre-image ı−1

X (C1◦) of the interior of C1 belongs to at most
two 1-cells in C(n) for any C1 ∈ L1.

3. There is a marking cellular map ℓ : L → L(A), such that ℓıX(xi) =
ai for all i = 1, . . . , n.

In this case the 1-complex B = ıX(C(n)) is called the outer boundary of
the contractible 2-complex L. Note that a contracting diagram for σ is
by no means unique.
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Given L(σ) we divide L0 = outL ∪ innL into two disjoint subsets of
the boundary 0-cells, i. e. the ones belonging to B(σ), and the inner ones.
Two different 2-cells C2

1,C
2
2 ∈ L2 are called neighbour if the intersection

C2
1
•
∩ C2

2
•

contains at least one 1-cell.
A contracting diagram L(σ) is called minimal if every other contract-

ing diagram for the same closed walk σ contains either at least as many
2-cells or, if the number of 2-cells is the same, at least as many inner
vertices.

We assume σ to be a reduced solid closed walk, in the sense that
it does not contain any subwalks of the form aa−1, a−1a, a ∈ Γ0

1, and
without self intersections. The contracting diagram L(σ) is called reduced
provided ℓ(C2

1) 6= ℓ(C2
2) for any neighbour cells C2

1,C
2
2 ∈ L2. A minimal

contracting diagram is reduced.

1.3. Quadratic form and universal covering

An integer unit quadratic form in n variables is a polynomial

q(X) =
n∑

i=1

X2
i +

∑

16i<j6n

qijXiXj , qij ∈ Z, X = (X1, . . . , Xn).

A root x ∈ Zn of the equation q(X) = 1 is called a positive root of q(X)
if x > 0, i. e. x 6= 0 and all xi > 0. Let us denote by E+

q ⊂ Zn the set of
all positive roots of q(X). The standard basis vectors e1, . . . , en of Zn are
called the simple roots of q(X). Let us denote by ( , )q the symmetrical
bilinear form associated with q(X). The linear map wi : Qn → Qn,
x 7→ wi(x) = x− (x, ei)qei, is called the i-th reflection map.

A quadratic form q(X) is called weakly positive if q(x) > 0 for all
x ∈ Qn, x > 0. q(X) is weakly positive if and only if |E+

q | <∞ (see [1]).
The quadratic form (Tits form) of a bimodule problem A with a basis

Γ is defined by

χA(X) =
∑

i∈Γ0

X2
i +

∑

i,j∈Γ0

(|Γ1
1(i, j)| − |Γ0

1(i, j)|)XiXj.

If χA(X) is not weakly positive, then A is of a strictly unbounded
type [2], [6].

Let A ∈ Qr. We can construct, in a standard way, the universal
covering bimodule problem Â and the covering morphism π : Â → A
associated with the multiplicative basis Γ of the bimodule problem A (see
[10]). There always exists a basis Γ̂ = Γ̂(Â) of Â such that π(Γ̂) = Γ.
This basis Γ̂ does not contain any loops or parallel arrows. Let us denote
by χ̂ = χ

Â
the Tits form of the covering bimodule problem Â.
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Now let us introduce the identification map λ̂ : Γ̂0
1(Â) → ∆1(A) as

the composition λ̂ = λπ. For any x ∈ Γ̂0
1(Â) the element λ̂(x) is called

the label of x.
The bimodule problem A is called simply connected with respect to

the basis Γ if Â = A.
The bimodule problem A is called absolutely simply connected with

respect to the basis Γ if for any indecomposable representation M ∈
RepA the subproblem AsuppM is simply connected with respect to the
correspondent subbasis of Γ.

If AnnC M 6= 0 then the bimodule problem A is not simply con-
nected. The bimodule problem A = (C,M) is called trivially non simply
connected provided AnnC M 6= 0 and A′ = (C/AnnC M,M) is an ab-
solutely simply connected bimodule problem, and A is called minimal
trivially non simply connected if in addition to the above each proper
sincere subproblem of A is absolutely simply connected.

Let A = (C,M) be a bimodule problem with a basis Γ and a weakly
positive Tits form χ. A vertex i ∈ Γ0 is called special for a root x ∈ E+

χ

if xi = 1 and wi(x) = x− ei. A root x ∈ E+
χ is called special if x has two

special vertices i, j ∈ Γ0, i 6= j, and wk(x) = x for any k ∈ Γ0\{i, j}.
If x ∈ E+

χ is the smallest non-special root, then x has at least 3 special
vertices. It follows immediately that a minimal trivially non simply con-
nected bimodule problem A with |Γ0| > 3 has some vertices i, j ∈ Γ0

such that (AnnC M)|Γ0\{i} = 0 and (AnnC M)|Γ0\{j} = 0. Moreover,
each sincere positive root of χ is special with the special vertices i, j.

Theorem 1 ([10]). For the bimodule problem A ∈ Qr containing as a
subproblem one of the bimodule problems

(G1) �������� 2
2 2

�������� (G2) �������� 2
2

�������� 4 �������� (G3) �������� 3
2

�������� 2 ��������

(G4) �������� 3
2

�������� 2 �������� (G5) �������� 4
2

�������� �������� (G6) �������� 2 �������� 2 �������� 4 ��������

(G7) �������� 2 �������� 3 �������� 2 �������� (G8) �������� 3 �������� 2 �������� 3 ��������

(G9) �������� 4
2

�������� �������� �������� (G10) �������� �������� 2 �������� 2 �������� 3 ��������

(G11) �������� �������� 3 �������� 2 �������� 2 �������� (G12) �������� 2 �������� 2 �������� 2 �������� 2 ��������

(G13) ��������

�������� 2 �������� 2 ��������
ppppp
NNN

NN

��������

(G14) ��������

�������� 2 ��������
2 2 ��������

(G15) ��������

�������� 3 �������� �������� 2 ��������

the quadratic Tits form χ̂ of the universal covering Â with respect to the
standard multiplicative basis is not weakly positive.
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We exclude from further considerations the bimodule problems that
contain critical bimodule problems from the list above.

2. Contracting diagram

Let Â be the universal covering for a bimodule problem A ∈ Qr associated
with multiplicative basis Γ, π : Â → A be the covering morphism, and
let Γ̂ be a multiplicative basis of Â such that π(Γ̂) = Γ. Let us denote
by the L(Â) = (L0,L1,L2) the 2-dimensional cell complex over Â.

Each of the following full subbigraphs of Γ̂ is called a triangle:

(T1) j(/).*-+,
x̂

wwoooooo ŷ

''OOOOOO

i1
8?9>:=;<

τ
//______ i2
8?9>:=;<

(T2) j(/).*-+,77x̂
oooooo gg ŷ

OOOOOO

i1
8?9>:=;<

τ
//______ i2
8?9>:=;<

(T3) i3
8?9>:=;<77α

n
n

n β

''P
P

P

i1
8?9>:=;<

τ
//_______ i2
8?9>:=;<

Here, for the first two cases, λ̂(x̂) = λ̂(ŷ) ∈ ∆1, π(i1) = π(i2), π(τ) ∈
Γ1

1(π(i1), π(i1)), and π(τ)π(x̂) = π(ŷ) or π(ŷ)π(τ) = π(x̂) for (T1)
and (T2) respectively. For the third case π(i1) = π(i2) = π(i3) and
π(β)π(α) = π(τ).

The following structure lemma follows from the construction of Â.

Lemma 1. 1. |Γ̂1(i, j) ∪ Γ̂1(j, i)| 6 1 for all i, j ∈ Γ̂0, i 6= j.
2. Each subbigraph of the form ��������

m _ Q
�������� �������� on Γ̂ is (T1) or (T2).

3. For each subbigraph on Γ̂ of the form �������� //__ �������� oo __ �������� or �������� oo __ �������� //__ ��������

the full completed subbigraph is (T3).
4. There are no oriented cycles on Γ̂.

On the diagrams below we will attach to any solid edge x̂ ∈ Γ̂1 its
label x = λ̂(x̂) ∈ ∆1. Sometimes we will omit the orientation of edges on
the diagrams and assume it to be suitable.

The 2-cell from L2(Â) is a gluing of two triangles of the type (T1) or
(T2) along the common dotted edge. We have the following cases (with
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the suitable orientation of edges) on Γ̂ (and on ∆):

(C1) (C2) (C3)
 '!&"%#$

�
�
� b

OOOOO  '!&"%#$

�
�
� a

OOOOO  '!&"%#$

�
�
� a

OOOOO

Γ̂  '!&"%#$

a ooooo

a OOOOO  '!&"%#$  '!&"%#$

a ooooo

a OOOOO  '!&"%#$  '!&"%#$

a ooooo

a OOOOO ______  '!&"%#$

 '!&"%#$ b

ooooo  '!&"%#$ a

ooooo  '!&"%#$ a

ooooo

∆  '!&"%#$ 2
a

 '!&"%#$ 2

b
 '!&"%#$  '!&"%#$ 3

2 a
 '!&"%#$  '!&"%#$ 3

a
 '!&"%#$

Here and below we write a instead of C1
a, i instead of C0

i etc. The edges
marked with the same label have the same images under the map λ. The
second line of diagrams denotes the underlying graph ∆.

Lemma 2. Let the Tits form χ̂(X) of Â be weakly positive. Then each
solid closed quadrangle on Γ̂ is of a type (C1), (C2) or (C3).

The proof follows from lemma 1 and the weak positivity condition.

Lemma 3. There exists the contracting diagram L(σ̂) for any solid closed
walk σ̂ on Γ̂.

Proof. Since Γ̂ is simply connected, any solid closed walk σ̂ on Γ̂ can be
presented as the triangle contracting diagram [3]. Since the annihilator of
Â is trivial, each triangle of type (T3) is a gluing of three triangles of type
(T1) or (T2). Hence the triangle contracting diagram can be modified in
a straightforward fashion into the contracting diagram L(σ̂) with 2-cells
of the form (C1), (C2), (C3).

Lemma 4. Let L(σ̂) be the minimal reduced contracting diagram of a
solid closed walk σ̂ on Γ̂. Given an inner 0-cell C0

i ∈ innL one of the
following holds:

1. The initial bimodule problem has one of the critical ones (G1), (G3),
(G4), (G6), (G7), (G8), (G10), (G11), (G12), (G13), (G14), (G15)
as a subproblem.

2. The star LC0
i

is of the following type:

 '!&"%#$
a

jjjjjjj b
TTTTTTTOO

�

�
 '!&"%#$

a

a
SSSSSSS  '!&"%#$

ci(/).*-+,

b kkkkkkk

b '!&"%#$

EE

z
�

�

55kkkk  '!&"%#$

 '!&"%#$b

TTTTTTT c

jjjjjjj

�
�

�
�

�

Γ̂

 '!&"%#$ 3
a i(/).*-+, 2

b
 '!&"%#$ 2

c
 '!&"%#$

∆

(1)
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Proof. If the 1-cell C1
a ∈ L1 is a direct face of C ∈ L2, then the weight

of π(a) is at least 2. Therefore, due to the exception of the problem
(G14), the 0-cell C0

i is a direct face of 1-cells corresponding to the arrows
having at most two different labels. The rest of the proof uses some
combinatorial technique, the associativity condition for multiplication in
A and the minimality assumption.

Note that if the bimodule problem A has a subproblem (1) then it
does not have any additional edge in ∆(A), since otherwise A would have
one of the critical subproblems (G10), (G11), (G9), (G15). Moreover, the
edges a, b, c can not have the greater weight since otherwise A would have
one of the critical problems (G6), (G7), (G8).

3. Main result

Theorem 2. Let the bimodule problem A ∈ Qr contain no critical sub-
problem (G1)–(G15) and let the Tits form χ

Â
(X) of the universal cov-

ering Â be weakly positive. Then Â has no minimal trivially non simply
connected bimodule subproblem.

Proof. The proof is carried out in the following 10 steps.

1. Theorem 2 holds for the subbigraph (1) from lemma 4. The proof
for this case may be given directly. Now we can assume that the minimal
reduced contracting diagram does not contain any inner 0-cell.

2. Suppose there exists a minimal trivially non simply connected bi-
module subproblem ÂS = (ĈS ,M̂S) on S ⊂ Γ̂0. Then there are two

special vertices i, j ∈ S and ϕ ∈ Γ̂1
1(i, j) such that Ann

ĈS
M̂S = {ϕ}

(by statement 1 of lemma 1). Let us consider the absolutely simply

connected bimodule problem Â′
S = (ĈS/Ann

ĈS
M̂S ,M̂S). Let x be the

minimal sincere positive root of χ̂′ = χ
Â′

S

with two special vertices i, j.

3. The vertices i, j are connected with the solid walk ω : i → j on the
bigraph Γ̂S since χ̂′ is a sincere form and the bigraph Γ̂S is connected by
solid edges. Using the fact that the global annihilator Ann

Ĉ
M̂ is trivial

we obtain the existence of a k ∈ Γ̂0 \ S such that the subbigraph Γ̂S∪{k}
contains a triangle of the type either (T1) or (T2) with dotted arrow ϕ.
Hence we obtain the following subbigraph

. . .ω
jjjj

j TTTT
T

 '!&"%#$  '!&"%#$

i(/).*-+,
ϕ

______ j(/).*-+,

k(/).*-+,a

OOOOO
b

ooooo
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where a, b ∈ Γ̂ 0
1 , and either s(a) = s(b) = k or e(a) = e(b) = k.

4. By lemma 3 there exists the minimal contracting diagram L of the
solid closed walk σ̂ = ωbβaα : i → i on Γ̂ for the suitable α, β = ±1. In
addition, among the solid walks ω : i → j on Γ̂S we choose the one with
a minimal contracting diagram L.

Then any 2-cell from L is of the type

i2
8?9>:=;<

ppp
p NNN

N

i1
8?9>:=;< i3

8?9>:=;<

k(/).*-+,

IIIII
uuuuu

with i1, i2, i3 the consecutive vertices of ω and i1, i3 or (and) i2, k
connected with a dotted arrow.

5. The cases

i3
8?9>:=;<

tt
tt HH

HH
... i4

8?9>:=;<

vv
vv JJ

JJ

i2
8?9>:=;< //_____ k(/).*-+, oo _____ i5

8?9>:=;<

i1
8?9>:=;<

MMMM
ssss

i6
8?9>:=;<

KKKK rrrr

i3
8?9>:=;<

tt
tt HH

HH
... i4

8?9>:=;<

vv
vv JJ

JJ

i2
8?9>:=;< oo _____ k(/).*-+, //_____ i5

8?9>:=;<

i1
8?9>:=;<

MMMM
ssss

i6
8?9>:=;<

KKKK rrrr

are impossible on L. Indeed, if first case were possible, statement 3
of lemma 1 would imply the existence of a dotted arrow between the
vertices i2 and i5. Then, by the associativity of multiplication, there
would exist a solid edge either between i1, i4 or between i3, i6, which
would contradict the minimality of L. The impossibility of the second
case may be shown in a similar way.

6. The cases

 '!&"%#$

nnn
nn PPP

PP

 '!&"%#$  '!&"%#$

 '!&"%#$

BB�
�

�
�

 '!&"%#$

\\9
9

9
9

k(/).*-+,

OOOOO
ooooo

 '!&"%#$

nnn
nn PPP

PP

 '!&"%#$  '!&"%#$

 '!&"%#$
��

�
�

�
�

 '!&"%#$
��

9
9

9
9

k(/).*-+,

OOOOO
ooooo

are impossible on L for similar reasons.
7. Assume that L contains a cell of the type (C2). Then, excluding

the critical problems (G3), (G4), we obtain that all 2-cells from L are of
the type (C2) or (C3) (with the same label a).

8. Given one of the cases

 '!&"%#$

nnn
nn PPP

PP

 '!&"%#$  '!&"%#$

 '!&"%#$

BB�
�

�
� //_____  '!&"%#$

��

9
9

9
9

k(/).*-+,

OOOOO
ooooo

 '!&"%#$

nnn
nn PPP

PP

 '!&"%#$

��8
8

8
8 //_____  '!&"%#$CC

�
�

�
�

 '!&"%#$  '!&"%#$

k(/).*-+,

OOOOO
ooooo
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and excluding (G3), (G4), (G14), we conclude that at least one of the
pictured 2-cells is of the type (C3).

9. The cell complex L does not have the fragment

l(/).*-+,

i(/).*-+,

t
t

t
t ________ j(/).*-+,

J
J

J
J

k(/).*-+,

QQQQQQQ
mmmmmmm

with l ∈ S, since otherwise, given the root x′ = wjwi(x) ∈ E+

Â′

S

, the l-th

coordinate of wl(x
′) − x′ would be at least 2, thereby contradicting the

weak positivity of χ̂′.

10. We conclude that there exist just two 2-cells from L and at least
one of them is of the type (C3). Therefore we have one of the following
fragments:

 '!&"%#$
a

llllll a
RRRRRR

a

 '!&"%#$

a

��9
9

9
9

9 //______  '!&"%#$

a

BB

�
�

�
�

�

i(/).*-+,

AA�
�

�
� //______ j(/).*-+,

k(/).*-+,a

OOOOO a

ooooo

 '!&"%#$
a

llllll

��;
;

;
; a

RRRRRR

a

 '!&"%#$

a

��9
9

9
9

9 //______  '!&"%#$

a

BB

�
�

�
�

�

i(/).*-+, //______ j(/).*-+,

k(/).*-+,a

OOOOO a

ooooo

which gives the subbigraph �������� 4

2
�������� of ∆.

Thus, excluding (G3), (G5), (G9), we obtain only two such problems,
the proof in these cases being combinatorial and simple.

Corollary 1. Let the bimodule problem A ∈ Qr contain no critical sub-
problem (G1)–(G15) and let the Tits form χ

Â
(X) of the universal cov-

ering Â be weakly positive. Then the bimodule problem Â is absolutely
simply connected.

4. Conclusive remarks

The authors are positive that such a geometrical technique may be effec-
tively used in some classes of bimodule problems endowed with a multi-
plicative basis.
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