A construction of dual box

Serge Ovsienko

Communicated by Yu. A. Drozd

Dedicated to the memory of V. M. Usenko

Abstract. Let R be a quasi-hereditary algebra, $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes $\mathcal{A}=\mathcal{A}_{\Delta}$ and \mathcal{A}_{∇}. These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \mathcal{B} such that $\mathcal{B}-$ mo is equivalent to $\mathcal{F}(\nabla)$.

Introduction

Throughout this paper, \mathbb{k} is an algebraically closed field, all algebras and categories are defined over \mathbb{k} and the word "module" means "left module". Also we follow the notation from [6].

In the fundamental paper [2] a quasi-hereditary algebra R has been characterized by two homologically dual subcategories $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ in its module category R - mod. In [8] was observed, that these categories define an involution (Ringel duality) on the classes of Morita equivalence of quasi-hereditary algebras. On other hand, in [6] using the construction of [1] has been developed an alternative approach to the theory of quasihereditary algebras. Following [6], a finite dimensional algebra R is quasihereditary if and only if it is Morita equivalent to the Butler-Burt algebra ([1]) of some directed box \mathcal{A}. Moreover, in this case the category $\mathcal{F}(\Delta)$ is equivalent to $\mathcal{A}-\bmod$ as an exact category. This construction allows to extend many notions and theorems from the case of quasi-hereditary algebras to wider classes of algebras. In particular, in some restrictions on

2000 Mathematics Subject Classification: 16E30,16E35.
Key words and phrases: box, derived category, differential graded category.
the box \mathcal{A}, in [6] was constructed a generalization of the Ringel duality. It leads to the notion of a dual box \mathcal{A}_{∇} of a finite dimensional normal box $\mathcal{A}=(A, V)$ with a free kernel \bar{V}^{1} as a box with the following property: the category $\mathcal{F}(\nabla)$ is equivalent to the category of representation $\mathcal{A}_{\nabla}-\bmod$ as an exact category.

In this paper, starting from the box \mathcal{A}, such that $\mathcal{A}-\bmod$ is equivalent to the category $\mathcal{F}(\Delta)$, we give an explicit construction of the box \mathcal{B}, such that $\mathcal{B}-\bmod$ is equivalent to the category $\mathcal{F}(\nabla)$.

The plan of the paper is the following. We assume the box \mathcal{A} is given by its differential graded category (DGC) $\overline{\mathcal{U}}=(A[\bar{V}], \partial)$. In the section 1 we construct DGC \mathcal{V}, which defines a completed box \mathcal{B}. The rest of the paper is devoted to the construction of an equivalence $\mathcal{B}-\bmod$ and $\mathcal{F}(\nabla)$ (Theorem 1). In the section 2 we introduce a category $N(\mathcal{B})$, which turns out to be equivalent to $\mathcal{B}-\bmod (L e m m a 1)$. In section 3 we construct equivalent to $\mathcal{F}(\nabla)$ subcategory $\mathcal{N}\left(\mathrm{P}^{\bullet}\right)$ in the homotopic category $\mathrm{K}^{-}(\mathcal{A})$ of complexes over $\mathcal{A}-\bmod$. At last (Lemma 5 and Lemma 4) we construct an equivalence of the categories $N(\mathcal{B})$ and $\mathcal{N}\left(\mathrm{P}^{\bullet}\right)$.

1. Main construction

Let $\mathcal{A}=(A, V)$ be a finite dimensional normal box with a free kernel \bar{V}, $\mathbb{L}=\mathbb{L}_{A}$ the category formed by all scalar morphisms in $A, \overline{\mathcal{U}}=A[\bar{V}]$ be the corresponding DGC with the differential $\partial: \overline{\mathcal{U}} \rightarrow \overline{\mathcal{U}}$. The canonical embedding $\imath: \mathbb{L} \hookrightarrow A$ induces the following A-bimodule morphisms:

$$
\begin{align*}
& m_{A}: A \otimes_{\mathbb{L}} A \rightarrow A ; m_{l}: A \otimes_{\mathbb{L}} \bar{V} \rightarrow \bar{V}, m_{r}: \bar{V} \otimes_{\mathbb{L}} A \rightarrow \bar{V} \tag{1}\\
& m_{L}: A \otimes_{\mathbb{L}}\left(\bar{V} \otimes_{A} \bar{V}\right) \rightarrow \bar{V} \otimes_{A} \bar{V}, m_{R}:\left(\bar{V} \otimes_{A} \bar{V}\right) \otimes_{\mathbb{L}} A \rightarrow \bar{V} \tag{2}\\
& m_{\bar{V}}: \bar{V} \otimes_{\mathbb{L}} \bar{V} \rightarrow \bar{V} \otimes_{A} \bar{V} \tag{3}
\end{align*}
$$

Besides denote the restriction of ∂ on A and \bar{V} by $\partial_{0}: A \rightarrow \bar{V}$ and $\partial_{1}: \bar{V} \rightarrow \bar{V} \otimes_{A} \bar{V}$. For finite dimensional \mathbb{L}-bimodules X, Y denote by $p_{X, Y}$ the canonical \mathbb{L}-bimodule isomorphism $p_{X, Y}: \mathbb{D}\left(X \otimes_{\mathbb{L}} Y\right) \simeq$ $\mathbb{D}(Y) \otimes_{\mathbb{L}} \mathbb{D}(X)$, where \mathbb{D} is the functor of duality over \mathbb{k}. Set

$$
N=\left\{N_{i}\right\}_{i \in \mathbb{Z}}, N_{1}=\mathbb{D} A, N_{0}=\mathbb{D} \bar{V}, N_{-1}=\mathbb{D}\left(\bar{V} \otimes_{A} \bar{V}\right) ; N_{i}=0, i \neq 0, \pm 1
$$

Proposition 1. Let $T=\widehat{\mathbb{L}[N]}$. The \mathbb{L}-bimodule morphisms

$$
\begin{align*}
& \left.d_{T}\right|_{N_{1}}=p_{A A} \mathbb{D} m_{A},\left.d_{T}\right|_{N_{0}}=-p_{A \bar{V}} \mathbb{D} m_{l}+p_{\bar{V} A} \mathbb{D} m_{r}+\mathbb{D} \partial_{0} \tag{4}\\
& \left.d_{T}\right|_{N_{-1}}=p_{A \bar{V} \otimes \bar{V}} \mathbb{D} m_{L}+p_{\bar{V} \otimes \bar{V} A} \mathbb{D} m_{R}+p_{\bar{V} \bar{V}} \mathbb{D} m_{\bar{V}}+\mathbb{D} \partial_{1} \tag{5}
\end{align*}
$$

defines on T the structure of completed DGC.

[^0]Proof. The Leibniz rule and continuity allows to extend d to the \mathbb{L} bimodule map $d: T \rightarrow T$. It leaves to prove $d^{2}(N)=0$.

The structure of DGC on $\overline{\mathcal{U}}$ gives the DGC structure on $\check{\mathcal{U}}, \check{\mathcal{U}}=$ $\overline{\mathcal{U}} / \sum_{i \geq 3} \overline{\mathcal{U}}_{i}$. We will identify $\check{\mathcal{U}}$ with the sum $\overline{\mathcal{U}}_{0} \oplus \overline{\mathcal{U}}_{1} \oplus \overline{\mathcal{U}}_{2}$ of the components of degree 1 and 2 of $\overline{\mathcal{U}}$. In turn, the DGC structure on $\check{\mathcal{U}}$ defines the structure of an $A(\infty)$-category over \mathbb{L} on $\check{U}([4])$. More precisely, \check{U} is endowed with a family of multiplications $\left(m_{1}, m_{2}, \ldots\right), m_{i}: M^{\otimes_{\mathbb{L}} i} \rightarrow M$ of degree $+1, m_{1}=d\left(=d_{\check{u}}\right), m_{2}\left(u_{1} \otimes u_{2}\right)=(-1)^{\operatorname{deg} u_{1}} u_{1} u_{2}, m_{i}=0$ for $i \geq 3$. The multiplications $m_{i}, i \geq 1$ should satisfy certain axioms. These axioms can be united by so called bar-construction, which endows the tensor cocategory $\mathcal{T}^{+}=\bigoplus_{i=1}^{\infty} s(\check{U})^{\otimes_{\mathbb{L}} i}$ with a \mathbb{L}-linear codifferential $\delta: \mathfrak{T}^{+} \rightarrow \mathfrak{T}^{+}$, where s is the grading shift (see [4] for details). Then applying the functor of \mathbb{k}-duality \mathbb{D} we obtain on the completed precategory (i.e. category without units) $T^{+}=\prod_{i=1}^{\infty} \mathbb{D}(s(\check{U}))^{\otimes_{\mathbb{L}} i}$ the differential $\mathbb{D}(d): T^{+} \rightarrow T^{+}$, coinciding with the differential d_{T}, given by (4) and (5). Then the condition $d_{T}^{2}=0$ is just the dual to the condition $d^{2}=0$.

Following [6], [7] T defines the positively graded DGC $\mathcal{V}=T / I$, where I is the differential ideal, generated by N_{-1}. As a category \mathcal{V} is freely generated over $B=T_{0} /\left(T_{0} \cap I\right)$ by N_{1}. The corresponding completed box $\mathcal{B}=(B, W)$ is by construction normal and weakly triangular.

The main theorem of this paper is the following.
Theorem 1. $\mathcal{B}-\bmod$ is equivalent to $\mathcal{F}(\nabla)$.
We do not prove here the uniqueness of \mathcal{A}_{∇}, since the proof uses techniques of $A(\infty)$-categories. This fact is closely related with the question of uniqueness of a minimal exact Borel subalgebra in a class of Morita equivalence of quasi-hereditary algebras (see [5], [6]). Another issue is the generalization of Ringel duality, which needs finite dimensionality of \mathcal{A}_{∇}. The last condition often can be checked using the presented construction of \mathcal{B}. In particular, if \mathcal{A} is directed, then \mathcal{B} is directed as well.

2. A realization of representations category

Every $M \in \mathcal{B}-\bmod$ is an object of $\mathbb{L}[\mathbb{D} \bar{V}]-\bmod$, hence it can be considered as a left \mathbb{L}-module $M=\{M(\mathrm{i}) \mid \mathrm{i} \in \mathrm{Ob} A\}$. The structure of a $\mathbb{L}[\mathbb{D} \bar{V}]$-module on \mathbb{L}-module M is given by a \mathbb{L}-bimodule map s_{M} : $\mathbb{D} \bar{V} \rightarrow \operatorname{Hom}_{\mathbb{k}}(M, M)$. Since

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{L}-\mathbb{L}}\left(\mathbb{D} \bar{V}, \operatorname{Hom}_{\mathbb{k}}(M, M)\right) \simeq \operatorname{Hom}_{\mathbb{L}}\left(M, \bar{V} \otimes_{\mathbb{L}} M\right), \tag{6}
\end{equation*}
$$

s_{M} is uniquely defined by a \mathbb{L}-module homomorphism $c_{M}: M \rightarrow \bar{V} \otimes_{\mathbb{L}} M$.
The $\mathbb{L}[\mathbb{D} \bar{V}]$-module M is a B-module only if it vanishes on the relations, defined by $\left.d_{\mathbb{L}[N]}\right|_{N_{-1}}$, i.e. by (5),

$$
s_{M} \mathbb{D} \partial+m_{\mathbb{L}}\left(s_{M} \otimes s_{M}\right) p_{\bar{V} \mathbb{D} \bar{V}} \mathbb{D} m_{\bar{V}}=0
$$

Using the isomorphism (6), we can rewrite this condition as

$$
\begin{equation*}
\left(\partial \otimes \mathbb{1}_{M}\right) c_{M}+\left(m_{\bar{V}} \otimes \mathbb{1}_{M}\right)\left(\mathbb{1}_{\bar{V}} \otimes c_{M}\right) c_{M}=0 \tag{7}
\end{equation*}
$$

In this assumption M possesses a structure of B-module if and only if in M exists a full flag (a composition series over \mathbb{L}) $\left\{M_{i} \mid i=0, \ldots, n=\right.$ $n(M)\}$ in M, such that $s_{M}(\mathbb{D} \bar{V})\left(M_{i}\right) \subset M_{i-1}$, equivalently

$$
\begin{equation*}
c_{M}\left(M_{i}\right) \subset \bar{V} \otimes M_{i-1}, i=1, \ldots, n \tag{8}
\end{equation*}
$$

Let $M, N \in \mathcal{B}-\bmod$. Then any morphism $f: M \rightarrow N$ is defined by $s_{f} \in \operatorname{Hom}_{\mathbb{L}-\mathbb{L}}\left(\mathbb{D} A, \operatorname{Hom}_{\mathbb{k}}(M, N)\right)$, which, following the definition (4) of $\left.d_{T}\right|_{N_{0}}$, should satisfy the relation ([7], ?)

$$
\begin{equation*}
m\left(\left(s_{f} \otimes s_{M}\right)\left(p_{\bar{V} A}\right) \mathbb{D} m_{r}-\left(s_{N} \otimes s_{f}\right)\left(p_{A \bar{V}}\right) \mathbb{D} m_{l}\right)+s_{M} \mathbb{D} \partial=0 \tag{9}
\end{equation*}
$$

where m is the morpisms composition in the category of \mathbb{L}-modules.
As above, by the canonical isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{L}-\mathbb{L}}\left(\mathbb{D} A, \operatorname{Hom}_{\mathbb{k}}(M, N)\right) \simeq \operatorname{Hom}_{\mathbb{L}}\left(M, A \otimes_{\mathbb{L}} N\right) \tag{10}
\end{equation*}
$$

s_{f} corresponds to the \mathbb{L}-module morphism $c_{f}: M \rightarrow A \otimes_{\mathbb{L}} N$ and the condition (9) can be rewritten as

$$
\begin{equation*}
\left(-\left(m_{l} \otimes \mathbb{1}_{N}\right)\left(\mathbb{1}_{A} \otimes c_{N}\right)+\left(\partial \otimes \mathbb{1}_{N}\right)\right) c_{f}+\left(m_{r} \otimes \mathbb{1}_{N}\right)\left(\mathbb{1}_{\bar{V}} \otimes c_{f}\right) c_{M}=0 \tag{11}
\end{equation*}
$$

Assume morphisms $f: M \rightarrow N$ and $g: N \rightarrow S$ are given by corresponding s_{f}, s_{g} as above. Then by the definition (4) of $\left.d_{T}\right|_{N_{1}}$ the \mathbb{L} bimodule morphism $s_{g f}$, corresponding to the composition $g f: M \rightarrow S$ is just the composition

$$
\begin{equation*}
s_{g f}=m\left(s_{g} \otimes s_{f}\right) p_{A A} \mathbb{D} m_{A} \tag{12}
\end{equation*}
$$

If the morphism f, g from $\mathcal{B}-\bmod$ are presented as $c_{f} \in$ $\operatorname{Hom}_{\mathbb{L}}\left(M, A \otimes_{\mathbb{L}} N\right)$ and $c_{g} \in \operatorname{Hom}_{\mathbb{L}}\left(N, A \otimes_{\mathbb{L}} S\right)$, then the equality (12) can be rewritten as

$$
\begin{equation*}
c_{g f}=\left(m_{A} \otimes \mathbb{1}_{S}\right)\left(\mathbb{1}_{A} \otimes c_{g}\right) c_{f} \tag{13}
\end{equation*}
$$

Let $N(\mathcal{B})$ be a category, which objects are the triples $\left(M,\left\{M_{i}\right\}, c_{M}\right)$, where $M \in \mathbb{L}-\bmod ,\left\{M_{i}\right\}$ is a full flag in M and a morphism c_{M}, satisfies (7), (8). The morphisms in $N(\mathcal{B})$ are defined as above by c_{f} satisfying the condition (11) and the composition of morphisms is defined by (13).

Lemma 1. The categories $\mathcal{B}-\bmod$ and $N(\mathcal{B})$ are equivalent.
Proof. Define the functor $c: \mathcal{B}-\bmod \rightarrow N(\mathcal{B})$ as follows. If $M \in$ $\operatorname{ObB}-\bmod$, then for $R=\operatorname{Rad} B$ gives us the following strictly descent chain of L-submodules

$$
\begin{equation*}
M \supset R M \supset R^{2} M \supset \cdots \supset R^{n} M=0 \tag{14}
\end{equation*}
$$

for some $n \geq 1$. Then we set $c(M)=\left(\left.M\right|_{\mathbb{L}}, c_{M},\left\{M_{i}\right\}\right)$, where c_{M} is defined above and $\left\{M_{i}\right\}$ is a refinement of the chain (14). Note, that the isoclass of $c(M)$ in $N(\mathcal{B})$ does not depend on the choice of refinement. If $f: M \rightarrow N$ is a morphism from $\mathcal{B}-\bmod$, then we set $c(f)=c_{f}$. The isomorphisms (6) and (10) above show that c is a full and faithful functor. Using the same isomorphisms (6) and (10) one can define the quasi-inverse to c functor $s: N(\mathcal{B}) \rightarrow \mathcal{B}-\bmod$.

3. Category of cogood modules

Sometimes we will abuse notations and will skip $i \in \mathbb{Z}$ in the notation like ∂_{M}^{i} in the differential of the complex M^{\bullet} etc.

Let $\operatorname{Ob} A=\{1, \ldots, \mathrm{n}\}$ be the set of objects of A. Recall, that the category $\mathcal{F}(\nabla)$ is an extension closure of the set of costandard modules $\left\{\nabla_{1}, \ldots, \nabla_{\mathrm{n}}\right\},([2])$. We construct some categories of complexes over \mathcal{A} equivalent to $\mathcal{F}(\nabla)$. Let R be the right Butler-Burt algebra of $\mathcal{A}, F: \mathcal{A}-$ $\bmod \rightarrow \mathrm{R}-\bmod$ the Burt-Butler functor and $D(F): D(\mathcal{A}) \rightarrow D(\mathrm{R})$ the induced derived functor $([6])$. For any $\mathrm{i} \in \mathrm{Ob} A$ in $[6]$ is constructed a $K_{\Omega^{-}}$ injective complex $\mathrm{I}_{\mathrm{i}}^{\bullet} \in D^{-}(\mathcal{A})$, such that $D(F)\left(\mathrm{I}_{\mathrm{i}}^{\bullet}\right) \simeq \nabla_{\mathrm{i}}$, in particular $D(F)$ induced an equivalence between the triangular subcategories in $D(\mathcal{A})$ and $D(\mathrm{R})$, generated by all $\mathrm{I}_{\mathrm{i}}^{\bullet}$ and ∇_{i} correspondingly, $\mathrm{i} \in \mathrm{Ob} A$.

For us will be more convenient instead of the subcategory in $D(\mathcal{A})$, generated by $\mathrm{I}_{\mathrm{i}}^{\bullet}$ consider the isomorphic subcategory, generated by $\mathrm{P}_{\mathrm{i}}^{\bullet}, \mathrm{i} \in$ $\operatorname{Ob} A\left([6]\right.$, Section 2). Denote $\mathrm{P}^{\bullet}=\oplus_{\mathrm{i} \in \mathrm{Ob} A} \mathrm{P}_{\mathrm{i}}^{\bullet}$. Recall, that P^{\bullet} is a positive complex and $\mathrm{P}^{i}=\bar{V}^{i}, i \geq 0\left(\bar{V}^{0}=A\right)$ and $\partial_{\mathrm{P}}\left(\omega_{\mathrm{i}}\right)(x)=-\partial(x)$, $\partial_{\mathrm{P}}(\varphi)(x)=\varphi x$, provided the right side is defined.

Let $\mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ be a minimal full extension closed subcategory in $D(\mathcal{A})$ containing $\mathrm{P}_{\mathrm{i}}^{\bullet} \in \mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ for any $\mathrm{i} \in \mathrm{Ob} A$, i.e. for any triangle

$$
\begin{equation*}
X^{\bullet} \xrightarrow{i} Y^{\bullet} \xrightarrow{p} Z^{\bullet} \rightarrow X^{\bullet}[1] \tag{15}
\end{equation*}
$$

from $X^{\bullet}, Z^{\bullet} \in \mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ follows $Y^{\bullet} \in \mathcal{C}\left(\mathrm{P}^{\bullet}\right)$. By construction the categories $\mathcal{F}(\nabla)$ and $\mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ are equivalent. Since $\mathrm{P}_{\mathrm{i}}^{\bullet}$ are K_{Ω}-projective, the category $\mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ consists of K_{Ω}-projective complexes, that allows us to calculate in this category the morphisms in $\mathrm{K}(\mathcal{A})$ instead of $D(\mathcal{A})$.

Next we consider the category $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$, which objects are $M^{\bullet} \in \mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ endowed with a filtration of the objects from $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$

$$
\begin{equation*}
0=M_{0}^{\bullet} \subset M_{1}^{\bullet} \subset \cdots \subset M_{n-1}^{\bullet} \subset M_{n}^{\bullet}=M^{\bullet} \tag{16}
\end{equation*}
$$

such that $M_{i}^{\bullet} \simeq \operatorname{Cone}\left(e_{i}\right)$ for some $e_{i}: \mathrm{P}_{\mathbf{i}_{i}}^{\bullet}[-1] \rightarrow M_{i-1}^{\bullet}, i=1, \ldots, n, \mathrm{i}_{i} \in$ $\mathrm{Ob} A$ (we assume zero complex also belongs to $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$. The morphisms in $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$ does not depend on the filtration and are the same as in $\mathcal{C}\left(\mathrm{P}^{\bullet}\right)$. The number $n=l\left(M^{\bullet}\right)$ we call the length of M^{\bullet}. Due to normality \mathcal{A} this number is correctly defined.

Lemma 2. If $N_{1}^{\bullet} \xrightarrow{f_{1}} N_{2}^{\bullet} \xrightarrow{f_{2}} N_{3}^{\bullet}$ is a sequence in $\operatorname{Com}(\mathcal{A}), h$ is a homotopy between $f_{2} f_{1}$ and 0 , then it defines the morphisms

$$
\begin{align*}
& g_{1}=g_{1}\left(f_{1}, f_{2}, h\right): \operatorname{Cone}\left(f_{1}\right) \rightarrow N_{3}^{\bullet}, g_{1}^{i}=\left(\begin{array}{cc}
h^{i+1} & f_{2}^{i}
\end{array}\right) \tag{17}\\
& g_{2}=g_{2}\left(f_{1}, f_{2}, h\right): N_{1}^{\bullet}[1] \rightarrow \operatorname{Cone}\left(f_{2}\right), g_{2}^{i}=\binom{-f_{1}^{i+1}}{h^{i+1}} \tag{18}
\end{align*}
$$

such that

$$
\begin{align*}
& f_{1}[1]: N_{1}^{\bullet}[1] \xrightarrow{g_{2}[1]} \operatorname{Cone}\left(f_{2}\right) \xrightarrow{p} N_{2}[1], \tag{19}\\
& f_{2}: N_{2}^{\bullet} \xrightarrow{i} \operatorname{Cone}\left(f_{1}\right) \xrightarrow{g_{1}} N_{3}^{\bullet} \tag{20}
\end{align*}
$$

where i and p are the canonical homomorphism.
In opposite, if $g_{1}\left(g_{2}\right)$ satisfies (19) $((20))$, then $g_{1}\left(g_{2}\right)$ has a form (17) $((18))$. If $\mathrm{K}(\mathcal{A})\left(N_{1}^{\bullet}[1], N_{3}^{\bullet}\right)=0$, then g_{1} and g_{2} are defined uniquely up to homotopy. Besides, there exists a canonical isomorphisms Φ : $\operatorname{Cone}\left(g_{1}\right) \simeq$ Cone (g_{2}).

Proof. Immediately is checked, that g_{1} and g_{2} are homomorphisms of complexes, satisfying (19) and (20) and the opposite statement.

In the complexes $\operatorname{Cone}\left(g_{1}\right)$ and $\operatorname{Cone}\left(g_{2}[-1]\right)$ the i-th component equals $N_{1}^{i+2} \oplus N_{2}^{i+1} \oplus N_{3}^{i}$ and i-th differential has a matrix

$$
\left[\begin{array}{ccc}
\partial_{N_{1}}^{i+2} & 0 & 0 \\
-f_{1}^{i+2} & -\partial_{N_{2}}^{i+1} & 0 \\
h^{i+2} & f_{2}^{i+1} & \partial_{N_{3}}^{i}
\end{array}\right]
$$

that gives us the isomorphism Ψ.
We prove the uniqueness statement for g_{1}, the case of g_{2} is treated analogously. Consider the triangle

$$
\cdots \rightarrow N_{1}^{\bullet} \xrightarrow{f_{1}} N_{2}^{\bullet} \xrightarrow{i} \operatorname{Cone}\left(f_{1}\right) \rightarrow N_{1}^{\bullet}[1] \rightarrow \ldots
$$

Applying $\mathrm{K}(\mathcal{A})\left({ }_{-}, N_{3}^{\bullet}\right)$ we obtain the exact sequence

$$
\begin{aligned}
0 & =\mathrm{K}(\mathcal{A})\left(N_{1}^{\bullet}[1], N_{3}^{\bullet}\right) \rightarrow \mathrm{K}(\mathcal{A})\left(\operatorname{Cone}\left(f_{1}\right), N_{3}^{\bullet}\right) \rightarrow \\
& \rightarrow \mathrm{K}(\mathcal{A})\left(N_{2}^{\bullet}, N_{3}^{\bullet}\right) \rightarrow \mathrm{K}(\mathcal{A})\left(N_{1}^{\bullet}, N_{3}^{\bullet}\right)
\end{aligned}
$$

Since the second arrow is mono, it gives us the uniqueness of g_{1}.
Proposition 2. The category $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$ is equivalent to $\mathcal{C}\left(\mathrm{P}^{\bullet}\right)$.
Proof. To prove the equivalence there is enough to check, that every object M^{\bullet} from $\mathcal{C}\left(\mathrm{P}^{\bullet}\right)$ is isomorphic to an object N^{\bullet} from $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$. We prove it by induction on $l\left(M^{\bullet}\right)$. The base $l\left(M^{\bullet}\right)=1$ is obvious.

For the induction step from n to $n+1$ assume $M^{\bullet}=\operatorname{Cone}\left(K^{\bullet}[-1] \xrightarrow{f}\right.$ $\left.L^{\bullet}\right), K^{\bullet}, L^{\bullet}$ are nonzero complexes in $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right), l\left(M^{\bullet}\right)=n+1$. By induction we can assume $K^{\bullet}=\operatorname{Cone}\left(f_{1}\right)$ for some $f_{1}: \mathrm{P}_{\mathrm{i}}^{\bullet}[-1] \rightarrow N^{\bullet}$. Applying $\mathrm{K}_{\mathcal{A}}\left({ }_{-}, L^{\bullet}\right)$ to the exact triangle

$$
\cdots \rightarrow \mathrm{P}_{\mathrm{i}}^{\bullet}[-2] \xrightarrow{f_{1}} N^{\bullet}[-1] \xrightarrow{f_{2}} K^{\bullet}[-1] \rightarrow \mathrm{P}_{\mathrm{i}}^{\bullet}[-1] \rightarrow \ldots
$$

we obtain the sequence

$$
\begin{equation*}
\mathrm{K}(\mathcal{A})\left(K^{\bullet}[-1], L^{\bullet}\right) \xrightarrow{\pi} \mathrm{K}(\mathcal{A})\left(N^{\bullet}[-1], L^{\bullet}\right) \xrightarrow{\sigma} \mathrm{K}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}[-2], L^{\bullet}\right) \tag{21}
\end{equation*}
$$

Since $\sigma \pi(f)=0$ it gives us the sequence

$$
\mathrm{P}_{\mathrm{i}}^{\bullet}[-2] \xrightarrow{f_{1}[-1]} N^{\bullet}[-1] \xrightarrow{f_{2}} L^{\bullet}
$$

and the homotopy h between $f_{2} f_{1}$ and 0 , such that $g_{1}=g_{1}\left(f_{1}, f_{2}, h\right)=f$. By Lemma 2 holds $M^{\bullet} \simeq \operatorname{Cone}\left(g_{2}\right), g_{2}=g_{2}\left(f_{1}, f_{2}, h\right), g_{2}: \mathrm{P}_{\mathrm{i}}^{\bullet}[-1] \rightarrow$ Cone $\left(f_{2}\right)$. By induction $\operatorname{Cone}\left(f_{2}\right)$ is isomorphic to some $M_{1}^{\bullet} \in \mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$, hence $M^{\bullet} \simeq \operatorname{Cone}\left(\mathrm{P}_{\mathrm{i}}^{\bullet} \rightarrow M_{1}^{\bullet}\right)$ belongs to $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$.

For $M^{\bullet} \in \mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$ define inductively a \mathbb{L}-submodule M in M^{0} as follows: if $M^{\bullet}=\mathrm{P}_{\mathrm{i}}^{\bullet}$, then we set $M=\mathbb{k} \cdot \mathbb{1}_{\mathrm{i}}$ and if $M=\operatorname{Cone}(e)$ for $e \in \operatorname{Com}(\mathcal{A})\left(\mathrm{P}_{\mathbf{i}}^{\bullet}, N^{\bullet}\right)$, $\mathbf{i} \in \operatorname{Ob} A, N^{\bullet} \in \mathcal{N}\left(\mathrm{P}^{\bullet}\right)$, then set $M=\mathbb{k} \cdot \mathbb{1}_{\mathrm{i}} \oplus N$. By the construction M is endowed with the canonical full \mathbb{L}-flag $\left\{M_{i}\right\}, i=$ $0, \ldots, \operatorname{dim}_{\mathbb{k}} M$. Note, that there exists the canonical isomorphism of graded \mathbb{L}-bimodules $M^{\bullet} \simeq \mathrm{P}^{\bullet} \otimes_{\mathbb{L}} \operatorname{top}\left(M^{\bullet}\right)$.

Denote for M^{\bullet}, N^{\bullet} by $\operatorname{Com}_{A}(\mathcal{A})\left(M^{\bullet}, N^{\bullet}\right)$ the space of morphisms $f: M^{\bullet} \rightarrow N^{\bullet}$, such that $f^{i}: M^{i} \rightarrow N^{i}, i \in \mathbb{Z}$ belongs to $A-\bmod$. Such morphisms form a subcategory $\operatorname{Com}_{A}(\mathcal{A})$ in $\operatorname{Com}(\mathcal{A})$.
Lemma 3. Let $M^{\bullet}, N^{\bullet} \in \mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right), f \in \mathrm{~K}\left(M^{\bullet}, N^{\bullet}\right)$. Then there exists a unique $\mathrm{f} \in \operatorname{Com}_{A}(\mathcal{A})\left(M^{\bullet}, N^{\bullet}\right)$, such that f is homotopic to f. In particular, the subcategory in $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$ of M^{\bullet}, such that in the definition of $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$ all $e_{i} \in \operatorname{Com}_{A}(\mathcal{A})$, is equivalent to $\mathcal{F}(\nabla)$. Besides, f is uniquely defined by f^{0}.

Proof. We prove the statement by induction on the length. The base of induction is $M^{\bullet}=\mathrm{P}_{\mathrm{i}}^{\bullet}$. Following Theorem 1, [6], the homotopy class of $f: \mathrm{P}_{\mathrm{i}}^{\bullet} \rightarrow N^{\bullet}$ is uniquely defined by $n_{f} \in \operatorname{Ker} \partial_{N}^{0}$ and the condition $\mathrm{f}(\bar{V})=$ 0 for all i defines the unique representative f of f in $\operatorname{Com}_{A}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}, N^{\bullet}\right)$.

Let e $\in \operatorname{Com}_{A}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}[-1], L^{\bullet}\right)$ be a morphism, such that $M^{\bullet}=$ Cone(e), $L^{\bullet} \in \mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$. The long exact sequence in $\mathrm{K}(\mathcal{A})$ obtained by applying $D(\mathcal{A})\left(_, N^{\bullet}\right)$ to the corresponding triangle gives

$$
\begin{aligned}
& \cdots \rightarrow 0 \rightarrow \mathrm{~K}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}, N^{\bullet}\right) \xrightarrow{\pi} \mathrm{K}(\mathcal{A})\left(\operatorname{Cone}(\mathrm{e}), N^{\bullet}\right) \xrightarrow{\sigma} \\
& \mathrm{K}(\mathcal{A})\left(L^{\bullet}, N^{\bullet}\right) \xrightarrow{\delta} \mathrm{K}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}[-1], N^{\bullet}\right) \rightarrow \ldots
\end{aligned}
$$

The morphism δ maps any $\mathrm{g} \in \operatorname{Com}_{A}(\mathcal{A})\left(L^{\bullet}, N^{\bullet}\right)$ in ge : $\mathrm{P}_{\mathrm{i}}^{\bullet}[-1] \rightarrow$ N^{\bullet}. The class of g belongs to $\operatorname{Im} \sigma$ if and only if ge is contractible. Recall a description of the layer $\sigma^{-1}(\mathrm{~g})$. If $t \in \sigma^{-1}(\mathrm{~g})$, then we can construct t by Lemma 2 using the contracting homotopy $\mathrm{h}=\mathrm{h}(t)$. Assume $t^{\prime} \in$ $\mathrm{K}(\mathcal{A})\left(\operatorname{Cone}(\mathrm{e}), N^{\bullet}\right)$. Then $t^{\prime} \in \sigma^{-1}(\mathrm{~g})$ if and only if $\sigma\left(t^{\prime}\right)=\mathrm{g}$ and $\left\{\left(t^{i}-\right.\right.$ $\left.\left.t^{\prime i}\right) \mid i \in \mathbb{Z}\right\}$ is a homomorphism $\mathrm{P}_{\mathrm{i}}^{\bullet} \rightarrow N^{\bullet}$. Since any homomorphism of complexes $f: \mathrm{P}_{\mathrm{i}}^{\bullet} \rightarrow N^{\bullet}$ is defined by $f^{0}\left(\omega_{\mathrm{i}}\right)\left(\mathbb{1}_{\mathrm{i}}\right)$ and $f(\bar{V})$, changing t to t^{\prime} we can assume $\mathrm{h}(\bar{V})=0$. By induction $\operatorname{Com}_{A}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}, N^{\bullet}\right)$ is a set of representatives of all homotopy classes from $\mathrm{K}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}, N^{\bullet}\right)$. Then adding $\mathrm{K}(\mathcal{A})\left(\mathrm{P}_{\mathrm{i}}^{\bullet}, N^{\bullet}\right)$ to h we obtain all representatives of the homotopy class $\sigma^{-1}(\mathrm{~g})$. Besides, since π is a monomorphism, t is homotopic to t^{\prime}, if and only if $t=t^{\prime}$, hence all classes are non-homotopic. By induction assume, that e and g belongs to $\operatorname{Com}_{A}(\mathcal{A})$. Then by Lemma 2

$$
\mathrm{f}: \text { Cone }(\mathrm{e}) \rightarrow N^{\bullet}, \mathrm{f}^{i}=\left(\begin{array}{ll}
\mathrm{h}^{i+1} & \mathrm{~g}^{i}
\end{array}\right)
$$

will belong to $\operatorname{Com}_{A}(\mathcal{A})$. If $\mathrm{f}^{0}=0$, then by induction $\mathrm{g}=0$. Then $\left\{\mathrm{h}^{i+1}\right\}_{i \in \mathbb{Z}}$ is a homomorphism $\mathrm{P}^{\bullet} \rightarrow N^{\bullet}$, such that $\mathrm{h}^{0}=0$, hence $\mathrm{h}=0$ and $\mathrm{f}=0$.

Denote by $\mathcal{N}\left(\mathrm{P}^{\bullet}\right)$ the subcategory in $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$, which objects for the definition (16) all e_{i}-th belongs to $\operatorname{Com}_{A}(\mathcal{A})$ and for $M^{\bullet}, N^{\bullet} \in \operatorname{Ob} \mathcal{N}\left(\mathrm{P}^{\bullet}\right)$

$$
\begin{equation*}
\mathcal{N}\left(\mathrm{P}^{\bullet}\right)\left(M^{\bullet}, N^{\bullet}\right)=\operatorname{Com}_{A}(\mathcal{A})\left(M^{\bullet}, N^{\bullet}\right) \cap \mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)\left(M^{\bullet}, N^{\bullet}\right) \tag{22}
\end{equation*}
$$

By Lemma 3 the category $\mathcal{N}\left(\mathrm{P}^{\bullet}\right)$ is equivalent to $\mathcal{N}^{\prime}\left(\mathrm{P}^{\bullet}\right)$.

Lemma 4. Any object $M=\left(M, c_{M},\left\{M_{i}\right\}\right)$ of $N(\mathcal{A})$ defines the complex

$$
\begin{align*}
& \mathrm{n}(M)=M^{\bullet} \in \mathcal{N}\left(\mathrm{P}^{\bullet}\right) \text { as follows }\left(\otimes=\otimes_{\mathbb{L}}\right) \\
& \quad M^{0} \simeq A \otimes M, M^{i} \simeq \underbrace{\bar{V} \otimes_{A} \cdots \otimes_{A} \bar{V}}_{i} \otimes M, i \geq 1 \tag{23}\\
& \tag{24}\\
& \partial_{M}^{i}\left(\omega_{\mathrm{j}}\right)(x \otimes m)=-\partial(x) \otimes m+\hat{x} \otimes_{A} c_{M}(m), \hat{x}=(-1)^{i} x \\
& x \in \bar{V}^{\otimes i}(\mathrm{i}, \mathrm{j}), m \in M, \text { where } \partial \text { is the differential in } \overline{\mathcal{U}} \\
& \\
& \partial_{M}^{i}(v)(x \otimes m)=v \otimes_{A} x \otimes m, v \in \bar{V}(\mathrm{j}, \mathrm{k}), \mathrm{i}, \mathrm{j}, \mathrm{k} \in \mathrm{Ob} A
\end{align*}
$$

If $M, N \in N(\mathcal{A})$, then any morphism $f \in N(\mathcal{A})(M, N)$ defines unique morphism $\mathrm{f}=\mathrm{n}(f): \mathrm{n}(M) \rightarrow \mathrm{n}(M)$, such that $\left.\mathrm{f}^{0}\right|_{M}=f$, which turns n into a functor $\mathrm{n}: N(\mathcal{A}) \rightarrow \mathcal{N}\left(\mathrm{P}^{\bullet}\right)$.

Proof. We prove that the defined above ∂_{M} 's are morphisms from $\mathcal{A}-$ \bmod, i.e. for any $a \in A$ holds $r=\partial_{M}\left(\omega_{\mathrm{j}} a-a \omega_{\mathrm{i}}+\partial(a)\right)=0,[7]$.

$$
\begin{aligned}
& r(x \otimes m)=-\partial(a x) \otimes m+a x \otimes_{A} c_{M}(x)+a \partial(x) \otimes m \\
& -a x \otimes_{A} c_{M}(m)+\partial(a) \otimes x \otimes m=0
\end{aligned}
$$

by the Leibniz rule. Prove that M^{\bullet} is a complex, i.e. $\partial_{M}^{2}=0$.

$$
\begin{aligned}
& \partial_{M}^{2}\left(\omega_{\mathrm{i}}\right)(x \otimes m)=\partial_{M}\left(\omega_{\mathrm{i}}\right) \partial_{M}\left(\omega_{\mathrm{i}}\right)(x \otimes m)=\partial_{M}\left(\omega_{\mathrm{i}}\right)(\partial(x) \otimes m+ \\
& \left.\hat{x} \otimes_{A} c_{M}(m)\right)=\partial^{2}(x) \otimes m-\widehat{\partial(x)} \otimes_{A} c_{M}(m)-\partial(\hat{x}) \otimes_{A} c_{M}(m)- \\
& x \otimes_{A}\left(\partial \otimes \mathbb{1}_{M}\right) c_{M}(m)-x \otimes_{A} m_{V}\left(\mathbb{1}_{V} \otimes c_{M}\right) c_{M}(m)=0 \text { due to }(7) \\
& \partial_{M}^{2}(\varphi)(x \otimes m)=\partial_{M}\left(\omega_{\mathrm{i}}\right) \partial_{M}(\varphi)(x \otimes m)+\partial_{M}(\varphi) \partial_{M}\left(\omega_{\mathrm{j}}\right)(x \otimes m)+ \\
& \partial_{M}(\partial(\varphi))(x \otimes m)=\partial(\varphi x) \otimes m+\widehat{\varphi \otimes_{A} x} \otimes_{A} c_{M}(m)- \\
& \varphi \otimes_{A} \partial(x)+\varphi \otimes_{A} \hat{x} \otimes_{A} c_{M}(m)+\partial(x) \otimes_{A} x \otimes_{A} m=0
\end{aligned}
$$

due to Leibniz rule.

The filtration of M^{\bullet} is defined by M_{i}^{\bullet} and the e_{i}-th from definition (16) are defined by the second summand in the definition of ∂_{M}.

To prove the statement about morphisms define $\mathrm{f}=\mathrm{n}(f)$ as $\mathrm{f}(x \otimes m)=$ $x \otimes_{A} c_{f}(m)$. We prove, that $\mathrm{n}(f)$ is a morphism of complexes.

$$
\begin{aligned}
& \left(\mathrm{f} \partial_{M}-\partial_{M} \mathrm{f}\right)(x \otimes m)=\mathrm{f}\left(-d(x) \otimes m+\hat{x} \otimes_{A} c_{M}(m)\right)- \\
& \partial_{M}\left(x \otimes_{A} c_{f}(m)\right)=\left(-d(x) \otimes_{A} c_{f}(m)+\hat{x} \otimes_{A}\left(\mathbb{1}_{A} \otimes c_{f}\right) c_{M}\right)- \\
& \left(-d(x) \otimes_{A} c_{f}(m)-\hat{x} \otimes_{A}\left(\partial \mathbb{1}_{M}\right) c_{M}-\hat{x} \otimes_{A}\left(\mathbb{1}_{A} \otimes c_{N}\right) c_{f}(m)\right)= \\
& \hat{x} \otimes_{A}\left(\left(\mathbb{1}_{A} \otimes c_{f}\right) c_{M}-\left(\partial \otimes \mathbb{1}_{M}\right) c_{M}-\left(\mathbb{1}_{A} \otimes c_{N}\right) c_{f}\right)(m)=0
\end{aligned}
$$

due to (11).
Obviously, the image of n is a dense subcategory in $\mathcal{N}\left(\mathrm{P}^{\bullet}\right)$.

Lemma 5. Let $M^{\bullet}, N^{\bullet} \in \mathcal{N}\left(\mathrm{P}^{\bullet}\right), \mathrm{f} \in \mathcal{N}\left(\mathrm{P}^{\bullet}\right)\left(M^{\bullet}, N^{\bullet}\right)$. Set

$$
c\left(M^{\bullet}\right)=\left(M,\left\{M_{i}\right\}, c_{M}\right), M_{i}=\operatorname{top}\left(M_{i}^{\bullet}\right),\left.c_{M}\right|_{\operatorname{top}\left(\mathrm{P}_{\mathrm{i}_{i}}\right)}=f_{i}, c(\mathrm{f})=\left.\mathrm{f}^{0}\right|_{M}
$$

where M is considered as a \mathbb{L}-submodule in M^{0} by $M \simeq \mathbb{L} \otimes_{\mathbb{L}} M \subset$ $A \otimes_{\mathbb{L}} M \simeq M^{0}$. Then it gives us the functor $c: \mathcal{N}(\mathrm{P}) \rightarrow N(\mathcal{B})$.

Proof. c_{M} satisfies the condition (7) follows from $f_{n}^{0}\left(\omega_{\mathbf{i}}\right)\left(\mathbb{1}_{\mathbf{i}_{n}}\right) \partial_{M_{n-1}}^{0}=0$ is equivalent to (7). The formula for the composition (13) follows from the formula of composition of morphisms of complexes.

Lemmas 4 and 5 gives us the following corollary and Theorem 1.
Corollary 1. $\mathrm{n}: N(\mathcal{B}) \rightarrow \mathcal{N}\left(\mathrm{P}^{\bullet}\right)$ and $\mathrm{n}: \mathcal{N}\left(\mathrm{P}^{\bullet}\right) \rightarrow N(\mathcal{B})$ is mutual quasi-inverse equivalences.

References

[1] W. B. Burt, M. C. R. Butler: Almost split sequences for Bocses, Canadian Math. Soc., Conference Proceedings, vol.11, 1991, 89-121.
[2] V. Dlab, C. M. Ringel: The module theoretical approach to quasi-hereditary algebras, London Math. Soc., Lect. Notes Series 168, Cambridge University Press, (1992), 200-224.
[3] S. I. Gelfand and Yu. I. Manin: Methods of Homological Algebra, Springer Monographs in Math., Springer (2003).
[4] B. Keller: Introduction to A-infinity algebras and modules and Addendum, Homology, Homotopy and Applications 3 (2001), 1-35.
[5] Koenig S. Exact Borel subalgebras of quasi-hereditary algebras, I, (with an appendix by Leonard Scott), Mathematische Zeitschrift, 220, (1995), 399-426.
[6] S. A. Ovsienko: Exact Borel Subalgebras, Ringel Duality and Generalizations of Quasi-Hereditary Algebras, In book : Problems of calculus and algebra, Proceedings of Institute of Mathematics NAN Ukraine, 2005, 2, n. 3, pp. - 210-224.
[7] S. A. Ovsienko: Bimodule and matrix problems, // In book: Computational Methods for Representations of Groups and Algebras, Progress in Mathematics. Birkhaeuser. - 1999. - Vol. 173, pp. 325-357.
[8] C. M. Ringel: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Mathematische Zeitschrift, 208, (1992) 209223.

CONTACT INFORMATION

S. Ovsienko Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Vladimirskaya 64, 252017 Kyiv, Ukraine E-Mail: ovsyenko@univ.kiev.ua

Received by the editors: 05.09.2006 and in final form 29.09.2006.

[^0]: ${ }^{1}$ The proof of the uniqueness of \mathcal{A}_{∇} will be published elsewhere.

