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Abstract. Let R be a quasi-hereditary algebra, F(∆) and
F(∇) its categories of good and cogood modules correspondingly.
In [6] these categories were characterized as the categories of repre-
sentations of some boxes A = A∆ and A∇. These last are the box
theory counterparts of Ringel duality ([8]). We present an implicit
construction of the box B such that B−mo is equivalent to F(∇).

Introduction

Throughout this paper, k is an algebraically closed field, all algebras and
categories are defined over k and the word “module” means “left module”.
Also we follow the notation from [6].

In the fundamental paper [2] a quasi-hereditary algebra R has been
characterized by two homologically dual subcategories F(∆) and F(∇) in
its module category R − mod. In [8] was observed, that these categories
define an involution (Ringel duality) on the classes of Morita equivalence
of quasi-hereditary algebras. On other hand, in [6] using the construction
of [1] has been developed an alternative approach to the theory of quasi-
hereditary algebras. Following [6], a finite dimensional algebra R is quasi-
hereditary if and only if it is Morita equivalent to the Butler-Burt algebra
([1]) of some directed box A. Moreover, in this case the category F(∆)
is equivalent to A − mod as an exact category. This construction allows
to extend many notions and theorems from the case of quasi-hereditary
algebras to wider classes of algebras. In particular, in some restrictions on
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the box A, in [6] was constructed a generalization of the Ringel duality.
It leads to the notion of a dual box A∇ of a finite dimensional normal box
A = (A, V ) with a free kernel V̄ 1 as a box with the following property: the
category F(∇) is equivalent to the category of representation A∇ − mod
as an exact category.

In this paper, starting from the box A, such that A−mod is equivalent
to the category F(∆), we give an explicit construction of the box B, such
that B − mod is equivalent to the category F(∇).

The plan of the paper is the following. We assume the box A is given
by its differential graded category (DGC) Ū = (A[V̄ ], ∂). In the section 1
we construct DGC V, which defines a completed box B. The rest of the
paper is devoted to the construction of an equivalence B−mod and F(∇)
(Theorem 1). In the section 2 we introduce a category N(B), which turns
out to be equivalent to B − mod (Lemma 1). In section 3 we construct
equivalent to F(∇) subcategory N(P•) in the homotopic category K−(A)
of complexes over A−mod. At last (Lemma 5 and Lemma 4) we construct
an equivalence of the categories N(B) and N(P•).

1. Main construction

Let A = (A, V ) be a finite dimensional normal box with a free kernel V̄ ,
L = LA the category formed by all scalar morphisms in A, Ū = A[V̄ ] be
the corresponding DGC with the differential ∂ : Ū → Ū. The canonical
embedding ı : L →֒ A induces the following A-bimodule morphisms:

mA : A ⊗L A → A; ml : A ⊗L V̄ → V̄ , mr : V̄ ⊗L A → V̄ ; (1)

mL : A ⊗L (V̄ ⊗A V̄ ) → V̄ ⊗A V̄ , mR : (V̄ ⊗A V̄ ) ⊗L A → V̄ ; (2)

mV̄ : V̄ ⊗L V̄ → V̄ ⊗A V̄ . (3)

Besides denote the restriction of ∂ on A and V̄ by ∂0 : A → V̄ and
∂1 : V̄ → V̄ ⊗A V̄ . For finite dimensional L-bimodules X, Y denote
by pX,Y the canonical L-bimodule isomorphism pX,Y : D(X ⊗L Y ) ≃
D(Y ) ⊗L D(X), where D is the functor of duality over k. Set

N = {Ni}i∈Z, N1 = DA, N0 = DV̄ , N−1 = D(V̄ ⊗A V̄ ); Ni = 0, i 6= 0,±1.

Proposition 1. Let T = L̂[N ]. The L-bimodule morphisms

dT |N1
= pAADmA, dT |N0

= −pA V̄ Dml + pV̄ ADmr + D∂0, (4)

dT |N−1
= pA V̄ ⊗V̄ DmL + pV̄ ⊗V̄ ADmR + pV̄ V̄ DmV̄ + D∂1 (5)

defines on T the structure of completed DGC.

1The proof of the uniqueness of A∇ will be published elsewhere.
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Proof. The Leibniz rule and continuity allows to extend d to the L-
bimodule map d : T → T . It leaves to prove d2(N) = 0.

The structure of DGC on Ū gives the DGC structure on Ǔ, Ǔ =
Ū/

∑
i≥3 Ūi. We will identify Ǔ with the sum Ū0 ⊕ Ū1 ⊕ Ū2 of the com-

ponents of degree 1 and 2 of Ū. In turn, the DGC structure on Ǔ defines
the structure of an A(∞)-category over L on Ǔ ([4]). More precisely, Ǔ is
endowed with a family of multiplications (m1, m2, . . . ), mi : M⊗Li → M
of degree +1, m1 = d (= d

Ǔ
), m2(u1 ⊗ u2) = (−1)deg u1u1u2, mi = 0

for i ≥ 3. The multiplications mi, i ≥ 1 should satisfy certain axioms.
These axioms can be united by so called bar-construction, which endows

the tensor cocategory T+ =
∞⊕

i=1

s(Ǔ)⊗Li with a L-linear codifferential

δ : T+ → T+, where s is the grading shift (see [4] for details). Then
applying the functor of k-duality D we obtain on the completed precat-

egory (i.e. category without units) T+ =
∞∏

i=1

D(s(Ǔ))⊗Li the differential

D(d) : T+ → T+, coinciding with the differential dT , given by (4) and (5).
Then the condition d2

T = 0 is just the dual to the condition d2 = 0.

Following [6], [7] T defines the positively graded DGC V = T/I, where
I is the differential ideal, generated by N−1. As a category V is freely
generated over B = T0/(T0 ∩ I) by N1. The corresponding completed
box B = (B, W ) is by construction normal and weakly triangular.

The main theorem of this paper is the following.

Theorem 1. B − mod is equivalent to F(∇).

We do not prove here the uniqueness of A∇, since the proof uses tech-
niques of A(∞)-categories. This fact is closely related with the question
of uniqueness of a minimal exact Borel subalgebra in a class of Morita
equivalence of quasi-hereditary algebras (see [5], [6]). Another issue is the
generalization of Ringel duality, which needs finite dimensionality of A∇.
The last condition often can be checked using the presented construction
of B. In particular, if A is directed, then B is directed as well.

2. A realization of representations category

Every M ∈ B − mod is an object of L[DV̄ ] − mod, hence it can be
considered as a left L-module M = {M(i)|i ∈ ObA}. The structure
of a L[DV̄ ]-module on L-module M is given by a L-bimodule map sM :
DV̄ → Homk(M, M). Since

HomL−L(DV̄ , Homk(M, M)) ≃ HomL(M, V̄ ⊗L M), (6)
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sM is uniquely defined by a L-module homomorphism cM : M → V̄ ⊗LM .
The L[DV̄ ]-module M is a B-module only if it vanishes on the rela-

tions, defined by dL[N ]|N−1
, i.e. by (5),

sMD∂ + mL(sM ⊗ sM )pV̄ DV̄ DmV̄ = 0.

Using the isomorphism (6), we can rewrite this condition as

(∂ ⊗ 1M )cM + (mV̄ ⊗ 1M )(1V̄ ⊗ cM )cM = 0. (7)

In this assumption M possesses a structure of B-module if and only if
in M exists a full flag (a composition series over L) {Mi | i = 0, . . . , n =
n(M)} in M , such that sM (DV̄ )(Mi) ⊂ Mi−1, equivalently

cM (Mi) ⊂ V̄ ⊗ Mi−1, i = 1, . . . , n. (8)

Let M, N ∈ B − mod. Then any morphism f : M → N is defined by
sf ∈ HomL−L(DA, Homk(M, N)), which, following the definition (4) of
dT |N0

, should satisfy the relation ([7], ?)

m
(
(sf ⊗ sM )(pV̄ A)Dmr − (sN ⊗ sf )(pA V̄ )Dml

)
+ sMD∂ = 0, (9)

where m is the morpisms composition in the category of L-modules.
As above, by the canonical isomorphism

HomL−L(DA, Homk(M, N)) ≃ HomL(M, A ⊗L N) (10)

sf corresponds to the L-module morphism cf : M → A ⊗L N and the
condition (9) can be rewritten as
(
−(ml⊗1N )(1A⊗cN )+(∂⊗1N )

)
cf +(mr⊗1N )(1V̄ ⊗cf )cM = 0. (11)

Assume morphisms f : M → N and g : N → S are given by cor-
responding sf , sg as above. Then by the definition (4) of dT |N1

the L-
bimodule morphism sgf , corresponding to the composition gf : M → S
is just the composition

sgf = m(sg ⊗ sf )pAADmA. (12)

If the morphism f, g from B − mod are presented as cf ∈
HomL(M, A ⊗L N) and cg ∈ HomL(N, A ⊗L S), then the equality
(12) can be rewritten as

cg f = (mA ⊗ 1S)(1A ⊗ cg)cf . (13)

Let N(B) be a category, which objects are the triples (M, {Mi}, cM ),
where M ∈ L−mod, {Mi} is a full flag in M and a morphism cM , satisfies
(7), (8). The morphisms in N(B) are defined as above by cf satisfying
the condition (11) and the composition of morphisms is defined by (13).
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Lemma 1. The categories B − mod and N(B) are equivalent.

Proof. Define the functor c : B − mod → N(B) as follows. If M ∈
ObB − mod, then for R = RadB gives us the following strictly descent
chain of L-submodules

M ⊃ RM ⊃ R2M ⊃ · · · ⊃ RnM = 0 (14)

for some n ≥ 1. Then we set c(M) = (M |L, cM , {Mi}), where cM is
defined above and {Mi} is a refinement of the chain (14). Note, that the
isoclass of c(M) in N(B) does not depend on the choice of refinement.
If f : M → N is a morphism from B − mod, then we set c(f) = cf .
The isomorphisms (6) and (10) above show that c is a full and faithful
functor. Using the same isomorphisms (6) and (10) one can define the
quasi-inverse to c functor s : N(B) → B − mod.

3. Category of cogood modules

Sometimes we will abuse notations and will skip i ∈ Z in the notation
like ∂i

M in the differential of the complex M• etc.
Let ObA = {1, . . . , n} be the set of objects of A. Recall, that the

category F(∇) is an extension closure of the set of costandard modules
{∇1, . . . ,∇n}, ([2]). We construct some categories of complexes over A

equivalent to F(∇). Let R be the right Butler-Burt algebra of A, F : A−
mod → R − mod the Burt-Butler functor and D(F ) : D(A) → D(R) the
induced derived functor ([6]). For any i ∈ ObA in [6] is constructed a KΩ-
injective complex I•i ∈ D−(A), such that D(F )(I•i) ≃ ∇i, in particular
D(F ) induced an equivalence between the triangular subcategories in
D(A) and D(R), generated by all I•i and ∇i correspondingly, i ∈ ObA.

For us will be more convenient instead of the subcategory in D(A),
generated by I•i consider the isomorphic subcategory, generated by P•

i, i ∈
ObA ([6], Section 2). Denote P• = ⊕i∈Ob AP•

i. Recall, that P• is a
positive complex and Pi = V̄ i, i ≥ 0 (V̄ 0 = A) and ∂P(ωi)(x) = −∂(x),
∂P(ϕ)(x) = ϕx, provided the right side is defined.

Let C(P•) be a minimal full extension closed subcategory in D(A)
containing P•

i ∈ C(P•) for any i ∈ ObA, i.e. for any triangle

X• i
−→ Y • p

−−→ Z• → X•[1] (15)

from X•, Z• ∈ C(P•) follows Y • ∈ C(P•). By construction the categories
F(∇) and C(P•) are equivalent. Since P•

i are KΩ-projective, the category
C(P•) consists of KΩ-projective complexes, that allows us to calculate in
this category the morphisms in K(A) instead of D(A).
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Next we consider the category N′(P•), which objects are M• ∈ C(P•)
endowed with a filtration of the objects from N′(P•)

0 = M•
0 ⊂ M•

1 ⊂ · · · ⊂ M•
n−1 ⊂ M•

n = M•, (16)

such that M•
i ≃ Cone(ei) for some ei : P•

ii
[−1] → M•

i−1, i = 1, . . . , n, ii ∈
ObA (we assume zero complex also belongs to N′(P•). The morphisms
in N′(P•) does not depend on the filtration and are the same as in C(P•).
The number n = l(M•) we call the length of M•. Due to normality A

this number is correctly defined.

Lemma 2. If N•
1

f1
−→ N•

2
f2
−→ N•

3 is a sequence in Com(A), h is a homo-
topy between f2f1 and 0, then it defines the morphisms

g1 = g1(f1, f2, h) : Cone(f1) → N•
3 , gi

1 =
(

hi+1 f i
2

)
; (17)

g2 = g2(f1, f2, h) : N•
1 [1] → Cone(f2), g

i
2 =

(
−f i+1

1

hi+1

)
(18)

such that

f1[1] : N•
1 [1]

g2[1]
−−−−→ Cone(f2)

p
−→ N2[1], (19)

f2 : N•
2

i
−→ Cone(f1)

g1
−−→ N•

3 , (20)

where i and p are the canonical homomorphism.
In opposite, if g1 (g2) satisfies (19) ((20)), then g1 (g2) has a form (17)

((18)). If K(A)(N•
1 [1], N•

3 ) = 0, then g1 and g2 are defined uniquely up to
homotopy. Besides, there exists a canonical isomorphisms Φ : Cone(g1) ≃
Cone(g2).

Proof. Immediately is checked, that g1 and g2 are homomorphisms of
complexes, satisfying (19) and (20) and the opposite statement.

In the complexes Cone(g1) and Cone(g2[−1]) the i-th component
equals N i+2

1 ⊕ N i+1
2 ⊕ N i

3 and i-th differential has a matrix




∂i+2

N1
0 0

−f i+2

1
−∂i+1

N2
0

hi+2 f i+1

2
∂i

N3


 ,

that gives us the isomorphism Ψ.
We prove the uniqueness statement for g1, the case of g2 is treated

analogously. Consider the triangle

· · · → N•
1

f1
−−→ N•

2
i

−→ Cone(f1) −→ N•
1 [1] → . . . .
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Applying K(A)( , N•
3 ) we obtain the exact sequence

0 = K(A)(N•
1 [1], N•

3 ) → K(A)(Cone(f1), N
•
3 ) →

→ K(A)(N•
2 , N•

3 ) → K(A)(N•
1 , N•

3 ).

Since the second arrow is mono, it gives us the uniqueness of g1.

Proposition 2. The category N′(P•) is equivalent to C(P•).

Proof. To prove the equivalence there is enough to check, that every
object M• from C(P•) is isomorphic to an object N• from N′(P•). We
prove it by induction on l(M•). The base l(M•) = 1 is obvious.

For the induction step from n to n+1 assume M• = Cone(K•[−1]
f
−→

L•), K•, L• are nonzero complexes in N′(P•), l(M•) = n + 1. By induc-
tion we can assume K• = Cone(f1) for some f1 : P•

i[−1] → N•. Applying
KA( , L•) to the exact triangle

· · · → P•
i[−2]

f1
−−→ N•[−1]

f2
−−→ K•[−1] → P•

i[−1] → . . .

we obtain the sequence

K(A)(K•[−1], L•)
π
−→ K(A)(N•[−1], L•)

σ
−→ K(A)(P•

i[−2], L•). (21)

Since σπ(f) = 0 it gives us the sequence

P•
i[−2]

f1[−1]
−−−−−→ N•[−1]

f2
−−→ L•

and the homotopy h between f2f1 and 0, such that g1 = g1(f1, f2, h) = f .
By Lemma 2 holds M• ≃ Cone(g2), g2 = g2(f1, f2, h), g2 : P•

i[−1] →
Cone(f2). By induction Cone(f2) is isomorphic to some M•

1 ∈ N′(P•),
hence M• ≃ Cone(P•

i → M•
1 ) belongs to N′(P•).

For M• ∈ N′(P•) define inductively a L-submodule M in M0 as fol-
lows: if M• = P•

i, then we set M = k · 1i and if M = Cone(e) for
e ∈ Com(A)(P•

i, N
•), i ∈ ObA, N• ∈ N(P•), then set M = k · 1i ⊕ N .

By the construction M is endowed with the canonical full L-flag {Mi}, i =
0, . . . ,dimk M . Note, that there exists the canonical isomorphism of
graded L-bimodules M• ≃ P• ⊗L top(M•).

Denote for M•, N• by ComA(A)(M•, N•) the space of morphisms
f : M• → N•, such that f i : M i → N i, i ∈ Z belongs to A − mod. Such
morphisms form a subcategory ComA(A) in Com(A).

Lemma 3. Let M•, N• ∈ N′(P•), f ∈ K(M•, N•). Then there exists
a unique f ∈ ComA(A)(M•, N•), such that f is homotopic to f . In
particular, the subcategory in N′(P•) of M•, such that in the definition
of N′(P•) all ei ∈ ComA(A), is equivalent to F(∇). Besides, f is uniquely
defined by f0.
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Proof. We prove the statement by induction on the length. The base of
induction is M• = P•

i. Following Theorem 1, [6], the homotopy class of
f : P•

i → N• is uniquely defined by nf ∈ Ker ∂0
N and the condition f(V̄ ) =

0 for all i defines the unique representative f of f in ComA(A)(P•
i, N

•).

Let e ∈ ComA(A)(P•
i[−1], L•) be a morphism, such that M• =

Cone(e), L• ∈ N′(P•). The long exact sequence in K(A) obtained by
applying D(A)( , N•) to the corresponding triangle gives

· · · → 0 → K(A)(P•
i, N

•)
π

−−→ K(A)(Cone(e), N•)
σ

−−→

K(A)(L•, N•)
δ

−−→ K(A)(P•
i[−1], N•) → . . . .

The morphism δ maps any g ∈ ComA(A)(L•, N•) in ge : P•
i[−1] →

N•. The class of g belongs to Im σ if and only if ge is contractible. Recall
a description of the layer σ−1(g). If t ∈ σ−1(g), then we can construct
t by Lemma 2 using the contracting homotopy h = h(t). Assume t′ ∈
K(A)(Cone(e), N•). Then t′ ∈ σ−1(g) if and only if σ(t′) = g and {(ti −
t′i)| i ∈ Z} is a homomorphism P•

i → N•. Since any homomorphism of
complexes f : P•

i → N• is defined by f0(ωi)(1i) and f(V̄ ), changing t to
t′ we can assume h(V̄ ) = 0. By induction ComA(A)(P•

i, N
•) is a set of

representatives of all homotopy classes from K(A)(P•
i, N

•). Then adding
K(A)(P•

i, N
•) to h we obtain all representatives of the homotopy class

σ−1(g). Besides, since π is a monomorphism, t is homotopic to t′, if and
only if t = t′, hence all classes are non-homotopic. By induction assume,
that e and g belongs to ComA(A). Then by Lemma 2

f : Cone(e) → N•, fi =
(
hi+1 gi

)

will belong to ComA(A). If f0 = 0, then by induction g = 0. Then
{hi+1}i∈Z is a homomorphism P• → N•, such that h0 = 0, hence h = 0
and f = 0.

Denote by N(P•) the subcategory in N′(P•), which objects for the
definition (16) all ei-th belongs to ComA(A) and for M•, N• ∈ ObN(P•)

N(P•)(M•, N•) = ComA(A)(M•, N•) ∩ N
′(P•)(M•, N•). (22)

By Lemma 3 the category N(P•) is equivalent to N′(P•).

Lemma 4. Any object M = (M, cM , {Mi}) of N(A) defines the complex
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n(M) = M• ∈ N(P•) as follows (⊗ = ⊗L)

M0 ≃ A ⊗ M, M i ≃ V̄ ⊗A · · · ⊗A V̄︸ ︷︷ ︸
i

⊗M, i ≥ 1; (23)

∂i
M (ωj)(x ⊗ m) = −∂(x) ⊗ m + x̂ ⊗A cM (m), x̂ = (−1)ix, (24)

x ∈ V̄ ⊗ i(i, j), m ∈ M, where ∂ is the differential in Ū,

∂i
M (v)(x ⊗ m) = v ⊗A x ⊗ m, v ∈ V̄ (j, k), i, j, k ∈ ObA.

If M, N ∈ N(A), then any morphism f ∈ N(A)(M, N) defines unique
morphism f = n(f) : n(M) → n(M), such that f0|M = f , which turns n

into a functor n : N(A) → N(P•).

Proof. We prove that the defined above ∂M ’s are morphisms from A −
mod, i.e. for any a ∈ A holds r = ∂M (ωja − aωi + ∂(a)) = 0, [7].

r(x ⊗ m) = −∂(ax) ⊗ m + ax ⊗A cM (x) + a∂(x) ⊗ m

− ax ⊗A cM (m) + ∂(a) ⊗ x ⊗ m = 0

by the Leibniz rule. Prove that M• is a complex, i.e. ∂2
M = 0.

∂2
M (ωi)(x ⊗ m) = ∂M (ωi)∂M (ωi)(x ⊗ m) = ∂M (ωi)(∂(x) ⊗ m+

x̂ ⊗A cM (m)) = ∂2(x) ⊗ m − ∂̂(x) ⊗A cM (m) − ∂(x̂) ⊗A cM (m)−

x ⊗A (∂ ⊗ 1M )cM (m) − x ⊗A mV (1V ⊗ cM )cM (m) = 0 due to (7).

∂2
M (ϕ)(x ⊗ m) = ∂M (ωi)∂M (ϕ)(x ⊗ m) + ∂M (ϕ)∂M (ωj)(x ⊗ m)+

∂M (∂(ϕ))(x ⊗ m) = ∂(ϕx) ⊗ m + ϕ̂ ⊗A x ⊗A cM (m)−

ϕ ⊗A ∂(x) + ϕ ⊗A x̂ ⊗A cM (m) + ∂(x) ⊗A x ⊗A m = 0

due to Leibniz rule.

The filtration of M• is defined by M•
i and the ei-th from definition

(16) are defined by the second summand in the definition of ∂M .
To prove the statement about morphisms define f = n(f) as f(x⊗m) =

x ⊗A cf (m). We prove, that n(f) is a morphism of complexes.

(f∂M − ∂M f)(x ⊗ m) = f(−d(x) ⊗ m + x̂ ⊗A cM (m))−

∂M (x ⊗A cf (m)) =
(
− d(x) ⊗A cf (m) + x̂ ⊗A (1A ⊗ cf )cM

)
−(

− d(x) ⊗A cf (m) − x̂ ⊗A (∂ ⊗ 1M )cM − x̂ ⊗A (1A ⊗ cN )cf (m)
)

=

x̂ ⊗A ((1A ⊗ cf )cM − (∂ ⊗ 1M )cM − (1A ⊗ cN )cf )(m) = 0

due to (11).

Obviously, the image of n is a dense subcategory in N(P•).
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Lemma 5. Let M•, N• ∈ N(P•), f ∈ N(P•)(M•, N•). Set

c(M•) = (M, {Mi}, cM ), Mi = top(M•
i ), cM |top(Pii

) = fi, c(f) = f0|M ,

where M is considered as a L-submodule in M0 by M ≃ L ⊗L M ⊂
A ⊗L M ≃ M0. Then it gives us the functor c : N(P) → N(B).

Proof. cM satisfies the condition (7) follows from f0
n(ωi)(1in

)∂0
Mn−1

= 0
is equivalent to (7). The formula for the composition (13) follows from
the formula of composition of morphisms of complexes.

Lemmas 4 and 5 gives us the following corollary and Theorem 1.

Corollary 1. n : N(B) → N(P•) and n : N(P•) → N(B) is mutual
quasi-inverse equivalences.
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