Algebra and Discrete Mathematics Number 2. **(2006).** pp. 77 – 86 (c) Journal "Algebra and Discrete Mathematics"

A construction of dual box

Serge Ovsienko

Communicated by Yu. A. Drozd

Dedicated to the memory of V. M. Usenko

ABSTRACT. Let **R** be a quasi-hereditary algebra, $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes $\mathcal{A} = \mathcal{A}_{\Delta}$ and \mathcal{A}_{∇} . These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \mathcal{B} such that \mathcal{B} – mo is equivalent to $\mathcal{F}(\nabla)$.

Introduction

Throughout this paper, k is an algebraically closed field, all algebras and categories are defined over k and the word "module" means "left module". Also we follow the notation from [6].

In the fundamental paper [2] a quasi-hereditary algebra R has been characterized by two homologically dual subcategories $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ in its module category \mathbb{R} – mod. In [8] was observed, that these categories define an involution (*Ringel duality*) on the classes of Morita equivalence of quasi-hereditary algebras. On other hand, in [6] using the construction of [1] has been developed an alternative approach to the theory of quasihereditary algebras. Following [6], a finite dimensional algebra R is quasihereditary if and only if it is Morita equivalent to the Butler-Burt algebra ([1]) of some directed box \mathcal{A} . Moreover, in this case the category $\mathcal{F}(\Delta)$ is equivalent to \mathcal{A} – mod as an exact category. This construction allows to extend many notions and theorems from the case of quasi-hereditary algebras to wider classes of algebras. In particular, in some restrictions on

²⁰⁰⁰ Mathematics Subject Classification: 16E30,16E35.

Key words and phrases: box, derived category, differential graded category.

the box \mathcal{A} , in [6] was constructed a generalization of the Ringel duality. It leads to the notion of a dual box \mathcal{A}_{∇} of a finite dimensional normal box $\mathcal{A} = (\mathcal{A}, V)$ with a free kernel \bar{V}^1 as a box with the following property: the category $\mathcal{F}(\nabla)$ is equivalent to the category of representation \mathcal{A}_{∇} – mod as an exact category.

In this paper, starting from the box \mathcal{A} , such that \mathcal{A} -mod is equivalent to the category $\mathcal{F}(\Delta)$, we give an explicit construction of the box \mathcal{B} , such that \mathcal{B} -mod is equivalent to the category $\mathcal{F}(\nabla)$.

The plan of the paper is the following. We assume the box \mathcal{A} is given by its differential graded category (DGC) $\overline{\mathcal{U}} = (\mathcal{A}[\overline{V}], \partial)$. In the section 1 we construct DGC \mathcal{V} , which defines a completed box \mathcal{B} . The rest of the paper is devoted to the construction of an equivalence $\mathcal{B} - \text{mod}$ and $\mathcal{F}(\nabla)$ (Theorem 1). In the section 2 we introduce a category $\mathcal{N}(\mathcal{B})$, which turns out to be equivalent to $\mathcal{B} - \text{mod}$ (Lemma 1). In section 3 we construct equivalent to $\mathcal{F}(\nabla)$ subcategory $\mathcal{N}(\mathbf{P}^{\bullet})$ in the homotopic category $\mathbf{K}^{-}(\mathcal{A})$ of complexes over $\mathcal{A} - \text{mod}$. At last (Lemma 5 and Lemma 4) we construct an equivalence of the categories $\mathcal{N}(\mathcal{B})$ and $\mathcal{N}(\mathbf{P}^{\bullet})$.

1. Main construction

Let $\mathcal{A} = (A, V)$ be a finite dimensional normal box with a free kernel \bar{V} , $\mathbb{L} = \mathbb{L}_A$ the category formed by all scalar morphisms in A, $\bar{\mathcal{U}} = A[\bar{V}]$ be the corresponding DGC with the differential $\partial : \bar{\mathcal{U}} \to \bar{\mathcal{U}}$. The canonical embedding $i : \mathbb{L} \hookrightarrow A$ induces the following A-bimodule morphisms:

$$m_A: A \otimes_{\mathbb{L}} A \to A; m_l: A \otimes_{\mathbb{L}} \bar{V} \to \bar{V}, m_r: \bar{V} \otimes_{\mathbb{L}} A \to \bar{V};$$
(1)

$$m_L : A \otimes_{\mathbb{L}} (\bar{V} \otimes_A \bar{V}) \to \bar{V} \otimes_A \bar{V}, m_R : (\bar{V} \otimes_A \bar{V}) \otimes_{\mathbb{L}} A \to \bar{V}; \quad (2)$$

$$m_{\bar{V}}: \bar{V} \otimes_{\mathbb{L}} \bar{V} \to \bar{V} \otimes_A \bar{V}. \tag{3}$$

Besides denote the restriction of ∂ on A and \overline{V} by $\partial_0 : A \to \overline{V}$ and $\partial_1 : \overline{V} \to \overline{V} \otimes_A \overline{V}$. For finite dimensional \mathbb{L} -bimodules X, Y denote by $p_{X,Y}$ the canonical \mathbb{L} -bimodule isomorphism $p_{X,Y} : \mathbb{D}(X \otimes_{\mathbb{L}} Y) \simeq \mathbb{D}(Y) \otimes_{\mathbb{L}} \mathbb{D}(X)$, where \mathbb{D} is the functor of duality over \Bbbk . Set

$$N = \{N_i\}_{i \in \mathbb{Z}}, N_1 = \mathbb{D}A, N_0 = \mathbb{D}\bar{V}, \ N_{-1} = \mathbb{D}(\bar{V} \otimes_A \bar{V}); \ N_i = 0, i \neq 0, \pm 1$$

Proposition 1. Let $T = \widehat{\mathbb{L}[N]}$. The L-bimodule morphisms

$$d_T|_{N_1} = p_{AA} \mathbb{D}m_A, \ d_T|_{N_0} = -p_{A\bar{V}} \mathbb{D}m_l + p_{\bar{V}A} \mathbb{D}m_r + \mathbb{D}\partial_0, \qquad (4)$$

$$d_T|_{N_{-1}} = p_A \,_{\bar{V} \otimes \bar{V}} \mathbb{D}m_L + p_{\bar{V} \otimes \bar{V} A} \mathbb{D}m_R + p_{\bar{V} \bar{V}} \mathbb{D}m_{\bar{V}} + \mathbb{D}\partial_1 \tag{5}$$

defines on T the structure of completed DGC.

¹The proof of the uniqueness of \mathcal{A}_{∇} will be published elsewhere.

Proof. The Leibniz rule and continuity allows to extend d to the Lbimodule map $d: T \to T$. It leaves to prove $d^2(N) = 0$.

The structure of DGC on $\bar{\mathcal{U}}$ gives the DGC structure on $\check{\mathcal{U}}$, $\check{\mathcal{U}} = \bar{\mathcal{U}} / \sum_{i \geq 3} \bar{\mathcal{U}}_i$. We will identify $\check{\mathcal{U}}$ with the sum $\bar{\mathcal{U}}_0 \oplus \bar{\mathcal{U}}_1 \oplus \bar{\mathcal{U}}_2$ of the components of degree 1 and 2 of $\bar{\mathcal{U}}$. In turn, the DGC structure on $\check{\mathcal{U}}$ defines the structure of an $A(\infty)$ -category over \mathbb{L} on $\check{\mathcal{U}}$ ([4]). More precisely, $\check{\mathcal{U}}$ is endowed with a family of multiplications $(m_1, m_2, \ldots), m_i : M^{\otimes_{\mathbb{L}} i} \to M$ of degree +1, $m_1 = d (= d_{\check{\mathcal{U}}}), m_2(u_1 \otimes u_2) = (-1)^{\deg u_1} u_1 u_2, m_i = 0$ for $i \geq 3$. The multiplications $m_i, i \geq 1$ should satisfy certain axioms. These axioms can be united by so called bar-construction, which endows the tensor cocategory $\mathfrak{T}^+ = \bigoplus_{i=1}^{\infty} s(\check{\mathcal{U}})^{\otimes_{\mathbb{L}} i}$ with a \mathbb{L} -linear codifferential $\delta : \mathfrak{T}^+ \to \mathfrak{T}^+$, where s is the grading shift (see [4] for details). Then applying the functor of \mathbb{k} -duality \mathbb{D} we obtain on the completed precategory (i.e. category without units) $T^+ = \prod_{i=1}^{\infty} \mathbb{D}(s(\check{\mathcal{U}}))^{\otimes_{\mathbb{L}} i}$ the differential $\mathbb{D}(d) : T^+ \to T^+$, coinciding with the differential d_T , given by (4) and (5). Then the condition $d_T^2 = 0$ is just the dual to the condition $d^2 = 0$.

Following [6], [7] T defines the positively graded DGC $\mathcal{V} = T/I$, where I is the differential ideal, generated by N_{-1} . As a category \mathcal{V} is freely generated over $B = T_0/(T_0 \cap I)$ by N_1 . The corresponding completed box $\mathcal{B} = (B, W)$ is by construction normal and weakly triangular.

The main theorem of this paper is the following.

Theorem 1. \mathcal{B} – mod is equivalent to $\mathcal{F}(\nabla)$.

We do not prove here the uniqueness of \mathcal{A}_{∇} , since the proof uses techniques of $A(\infty)$ -categories. This fact is closely related with the question of uniqueness of a minimal exact Borel subalgebra in a class of Morita equivalence of quasi-hereditary algebras (see [5], [6]). Another issue is the generalization of Ringel duality, which needs finite dimensionality of \mathcal{A}_{∇} . The last condition often can be checked using the presented construction of \mathcal{B} . In particular, if \mathcal{A} is directed, then \mathcal{B} is directed as well.

2. A realization of representations category

Every $M \in \mathcal{B}$ – mod is an object of $\mathbb{L}[\mathbb{D}\bar{V}]$ – mod, hence it can be considered as a left \mathbb{L} -module $M = \{M(\mathbf{i}) | \mathbf{i} \in \mathrm{Ob} A\}$. The structure of a $\mathbb{L}[\mathbb{D}\bar{V}]$ -module on \mathbb{L} -module M is given by a \mathbb{L} -bimodule map $s_M :$ $\mathbb{D}\bar{V} \to \mathrm{Hom}_{\mathbb{k}}(M, M)$. Since

$$\operatorname{Hom}_{\mathbb{L}-\mathbb{L}}(\mathbb{D}\overline{V}, \operatorname{Hom}_{\mathbb{k}}(M, M)) \simeq \operatorname{Hom}_{\mathbb{L}}(M, \overline{V} \otimes_{\mathbb{L}} M), \tag{6}$$

 s_M is uniquely defined by a \mathbb{L} -module homomorphism $c_M: M \to \overline{V} \otimes_{\mathbb{L}} M$.

The $\mathbb{L}[\mathbb{D}\overline{V}]$ -module M is a B-module only if it vanishes on the relations, defined by $d_{\mathbb{L}[N]}|_{N_{-1}}$, i.e. by (5),

$$s_M \mathbb{D}\partial + m_{\mathbb{L}}(s_M \otimes s_M) p_{\bar{V} \mathbb{D}\bar{V}} \mathbb{D}m_{\bar{V}} = 0.$$

Using the isomorphism (6), we can rewrite this condition as

$$(\partial \otimes \mathbf{1}_M)c_M + (m_{\bar{V}} \otimes \mathbf{1}_M)(\mathbf{1}_{\bar{V}} \otimes c_M)c_M = 0.$$
(7)

In this assumption M possesses a structure of B-module if and only if in M exists a full flag (a composition series over \mathbb{L}) $\{M_i | i = 0, \ldots, n = n(M)\}$ in M, such that $s_M(\mathbb{D}\overline{V})(M_i) \subset M_{i-1}$, equivalently

$$c_M(M_i) \subset \overline{V} \otimes M_{i-1}, i = 1, \dots, n.$$
(8)

Let $M, N \in \mathcal{B} - \text{mod.}$ Then any morphism $f : M \to N$ is defined by $s_f \in \text{Hom}_{\mathbb{L}-\mathbb{L}}(\mathbb{D}A, \text{Hom}_{\mathbb{k}}(M, N))$, which, following the definition (4) of $d_T|_{N_0}$, should satisfy the relation ([7], ?)

$$m((s_f \otimes s_M)(p_{\bar{V}A})\mathbb{D}m_r - (s_N \otimes s_f)(p_{A\bar{V}})\mathbb{D}m_l) + s_M\mathbb{D}\partial = 0, \quad (9)$$

where m is the morphisms composition in the category of \mathbb{L} -modules.

As above, by the canonical isomorphism

$$\operatorname{Hom}_{\mathbb{L}-\mathbb{L}}(\mathbb{D}A, \operatorname{Hom}_{\Bbbk}(M, N)) \simeq \operatorname{Hom}_{\mathbb{L}}(M, A \otimes_{\mathbb{L}} N)$$
(10)

 s_f corresponds to the L-module morphism $c_f : M \to A \otimes_{\mathbb{L}} N$ and the condition (9) can be rewritten as

$$\left(-(m_l \otimes \mathbf{1}_N)(\mathbf{1}_A \otimes c_N) + (\partial \otimes \mathbf{1}_N)\right)c_f + (m_r \otimes \mathbf{1}_N)(\mathbf{1}_{\bar{V}} \otimes c_f)c_M = 0.$$
(11)

Assume morphisms $f: M \to N$ and $g: N \to S$ are given by corresponding s_f , s_g as above. Then by the definition (4) of $d_T|_{N_1}$ the \mathbb{L} -bimodule morphism s_{gf} , corresponding to the composition $gf: M \to S$ is just the composition

$$s_{gf} = m(s_g \otimes s_f) p_{AA} \mathbb{D} m_A.$$
(12)

If the morphism f, g from \mathcal{B} – mod are presented as $c_f \in \text{Hom}_{\mathbb{L}}(M, A \otimes_{\mathbb{L}} N)$ and $c_g \in \text{Hom}_{\mathbb{L}}(N, A \otimes_{\mathbb{L}} S)$, then the equality (12) can be rewritten as

$$c_{gf} = (m_A \otimes \mathbb{1}_S)(\mathbb{1}_A \otimes c_g)c_f.$$
(13)

Let $N(\mathcal{B})$ be a category, which objects are the triples $(M, \{M_i\}, c_M)$, where $M \in \mathbb{L}-\text{mod}, \{M_i\}$ is a full flag in M and a morphism c_M , satisfies (7), (8). The morphisms in $N(\mathcal{B})$ are defined as above by c_f satisfying the condition (11) and the composition of morphisms is defined by (13). **Lemma 1.** The categories $\mathcal{B} - \text{mod}$ and $N(\mathcal{B})$ are equivalent.

Proof. Define the functor $c : \mathcal{B} - \text{mod} \to N(\mathcal{B})$ as follows. If $M \in \text{Ob } \mathcal{B} - \text{mod}$, then for R = Rad B gives us the following strictly descent chain of *L*-submodules

$$M \supset RM \supset R^2M \supset \dots \supset R^nM = 0 \tag{14}$$

for some $n \geq 1$. Then we set $c(M) = (M|_{\mathbb{L}}, c_M, \{M_i\})$, where c_M is defined above and $\{M_i\}$ is a refinement of the chain (14). Note, that the isoclass of c(M) in $N(\mathcal{B})$ does not depend on the choice of refinement. If $f: M \to N$ is a morphism from \mathcal{B} – mod, then we set $c(f) = c_f$. The isomorphisms (6) and (10) above show that c is a full and faithful functor. Using the same isomorphisms (6) and (10) one can define the quasi-inverse to c functor $s: N(\mathcal{B}) \to \mathcal{B}$ – mod.

3. Category of cogood modules

Sometimes we will abuse notations and will skip $i \in \mathbb{Z}$ in the notation like ∂_M^i in the differential of the complex M^{\bullet} etc.

Let $\operatorname{Ob} A = \{1, \ldots, n\}$ be the set of objects of A. Recall, that the category $\mathcal{F}(\nabla)$ is an extension closure of the set of costandard modules $\{\nabla_1, \ldots, \nabla_n\}$, ([2]). We construct some categories of complexes over \mathcal{A} equivalent to $\mathcal{F}(\nabla)$. Let \mathbb{R} be the right Butler-Burt algebra of $\mathcal{A}, F : \mathcal{A} - \operatorname{mod} \to \mathbb{R} - \operatorname{mod}$ the Burt-Butler functor and $D(F) : D(\mathcal{A}) \to D(\mathbb{R})$ the induced derived functor ([6]). For any $\mathbf{i} \in \operatorname{Ob} \mathcal{A}$ in [6] is constructed a K_{Ω} -injective complex $\mathbf{I}^{\bullet}_{\mathbf{i}} \in D^{-}(\mathcal{A})$, such that $D(F)(\mathbf{I}^{\bullet}_{\mathbf{i}}) \simeq \nabla_{\mathbf{i}}$, in particular D(F) induced an equivalence between the triangular subcategories in $D(\mathcal{A})$ and $D(\mathbb{R})$, generated by all $\mathbf{I}^{\bullet}_{\mathbf{i}}$ and $\nabla_{\mathbf{i}}$ correspondingly, $\mathbf{i} \in \operatorname{Ob} \mathcal{A}$.

For us will be more convenient instead of the subcategory in $D(\mathcal{A})$, generated by $I_{\mathbf{i}}^{\bullet}$ consider the isomorphic subcategory, generated by $P_{\mathbf{i}}^{\bullet}$, $\mathbf{i} \in$ Ob A ([6], Section 2). Denote $P^{\bullet} = \bigoplus_{\mathbf{i} \in Ob A} P_{\mathbf{i}}^{\bullet}$. Recall, that P^{\bullet} is a positive complex and $P^{i} = \overline{V}^{i}$, $i \geq 0$ ($\overline{V}^{0} = A$) and $\partial_{P}(\omega_{\mathbf{i}})(x) = -\partial(x)$, $\partial_{P}(\varphi)(x) = \varphi x$, provided the right side is defined.

Let $\mathcal{C}(\mathbf{P}^{\bullet})$ be a minimal full extension closed subcategory in $D(\mathcal{A})$ containing $\mathbf{P}_{\mathbf{i}}^{\bullet} \in \mathcal{C}(\mathbf{P}^{\bullet})$ for any $\mathbf{i} \in \mathrm{Ob}\, A$, i.e. for any triangle

$$X^{\bullet} \xrightarrow{i} Y^{\bullet} \xrightarrow{p} Z^{\bullet} \to X^{\bullet}[1]$$
(15)

from $X^{\bullet}, Z^{\bullet} \in \mathcal{C}(\mathcal{P}^{\bullet})$ follows $Y^{\bullet} \in \mathcal{C}(\mathcal{P}^{\bullet})$. By construction the categories $\mathcal{F}(\nabla)$ and $\mathcal{C}(\mathcal{P}^{\bullet})$ are equivalent. Since $\mathcal{P}_{i}^{\bullet}$ are K_{Ω} -projective, the category $\mathcal{C}(\mathcal{P}^{\bullet})$ consists of K_{Ω} -projective complexes, that allows us to calculate in this category the morphisms in $\mathcal{K}(\mathcal{A})$ instead of $D(\mathcal{A})$.

Next we consider the category $\mathcal{N}'(\mathbf{P}^{\bullet})$, which objects are $M^{\bullet} \in \mathcal{C}(\mathbf{P}^{\bullet})$ endowed with a filtration of the objects from $\mathcal{N}'(\mathbf{P}^{\bullet})$

$$0 = M_0^{\bullet} \subset M_1^{\bullet} \subset \dots \subset M_{n-1}^{\bullet} \subset M_n^{\bullet} = M^{\bullet},$$
(16)

such that $M_i^{\bullet} \simeq \operatorname{Cone}(e_i)$ for some $e_i : \operatorname{P}_{\mathbf{i}_i}^{\bullet}[-1] \to M_{i-1}^{\bullet}, i = 1, \ldots, n, \mathbf{i}_i \in \operatorname{Ob} A$ (we assume zero complex also belongs to $\mathcal{N}'(\operatorname{P}^{\bullet})$. The morphisms in $\mathcal{N}'(\operatorname{P}^{\bullet})$ does not depend on the filtration and are the same as in $\mathcal{C}(\operatorname{P}^{\bullet})$. The number $n = l(M^{\bullet})$ we call the length of M^{\bullet} . Due to normality \mathcal{A} this number is correctly defined.

Lemma 2. If $N_1^{\bullet} \xrightarrow{f_1} N_2^{\bullet} \xrightarrow{f_2} N_3^{\bullet}$ is a sequence in Com(\mathcal{A}), h is a homotopy between f_2f_1 and 0, then it defines the morphisms

$$g_1 = g_1(f_1, f_2, h) : \operatorname{Cone}(f_1) \to N_3^{\bullet}, g_1^i = (h^{i+1} f_2^i);$$
 (17)

$$g_2 = g_2(f_1, f_2, h) : N_1^{\bullet}[1] \to \text{Cone}(f_2), g_2^i = \begin{pmatrix} -f_1^{i+1} \\ h^{i+1} \end{pmatrix}$$
(18)

such that

$$f_1[1]: N_1^{\bullet}[1] \xrightarrow{g_2[1]} \operatorname{Cone}(f_2) \xrightarrow{p} N_2[1], \tag{19}$$

$$f_2: N_2^{\bullet} \xrightarrow{i} \operatorname{Cone}(f_1) \xrightarrow{g_1} N_3^{\bullet},$$
 (20)

where i and p are the canonical homomorphism.

In opposite, if $g_1(g_2)$ satisfies (19) ((20)), then $g_1(g_2)$ has a form (17) ((18)). If $K(\mathcal{A})(N_1^{\bullet}[1], N_3^{\bullet}) = 0$, then g_1 and g_2 are defined uniquely up to homotopy. Besides, there exists a canonical isomorphisms $\Phi : \operatorname{Cone}(g_1) \simeq \operatorname{Cone}(g_2)$.

Proof. Immediately is checked, that g_1 and g_2 are homomorphisms of complexes, satisfying (19) and (20) and the opposite statement.

In the complexes $\operatorname{Cone}(g_1)$ and $\operatorname{Cone}(g_2[-1])$ the *i*-th component equals $N_1^{i+2} \oplus N_2^{i+1} \oplus N_3^i$ and *i*-th differential has a matrix

$$\begin{bmatrix} \partial_{N_1}^{i+2} & 0 & 0 \\ -f_1^{i+2} & -\partial_{N_2}^{i+1} & 0 \\ h^{i+2} & f_2^{i+1} & \partial_{N_3}^i \end{bmatrix},$$

that gives us the isomorphism Ψ .

We prove the uniqueness statement for g_1 , the case of g_2 is treated analogously. Consider the triangle

$$\cdots \to N_1^{\bullet} \xrightarrow{f_1} N_2^{\bullet} \xrightarrow{i} \operatorname{Cone}(f_1) \to N_1^{\bullet}[1] \to \ldots$$

Applying $\mathcal{K}(\mathcal{A})(_, N_3^{\bullet})$ we obtain the exact sequence

$$0 = \mathcal{K}(\mathcal{A})(N_1^{\bullet}[1], N_3^{\bullet}) \to \mathcal{K}(\mathcal{A})(\operatorname{Cone}(f_1), N_3^{\bullet}) \to \mathcal{K}(\mathcal{A})(N_2^{\bullet}, N_3^{\bullet}) \to \mathcal{K}(\mathcal{A})(N_1^{\bullet}, N_3^{\bullet}).$$

Since the second arrow is mono, it gives us the uniqueness of g_1 .

Proposition 2. The category $\mathcal{N}'(\mathbb{P}^{\bullet})$ is equivalent to $\mathcal{C}(\mathbb{P}^{\bullet})$.

Proof. To prove the equivalence there is enough to check, that every object M^{\bullet} from $\mathcal{C}(\mathbb{P}^{\bullet})$ is isomorphic to an object N^{\bullet} from $\mathcal{N}'(\mathbb{P}^{\bullet})$. We prove it by induction on $l(M^{\bullet})$. The base $l(M^{\bullet}) = 1$ is obvious.

For the induction step from n to n+1 assume $M^{\bullet} = \text{Cone}(K^{\bullet}[-1] \xrightarrow{f} L^{\bullet})$, K^{\bullet}, L^{\bullet} are nonzero complexes in $\mathcal{N}'(\mathbf{P}^{\bullet})$, $l(M^{\bullet}) = n+1$. By induction we can assume $K^{\bullet} = \text{Cone}(f_1)$ for some $f_1 : \mathbf{P}^{\bullet}_{\mathbf{i}}[-1] \to N^{\bullet}$. Applying $K_{\mathcal{A}}(\underline{\ }, L^{\bullet})$ to the exact triangle

$$\cdots \to \mathbf{P}^{\bullet}_{\mathbf{i}}[-2] \xrightarrow{f_1} N^{\bullet}[-1] \xrightarrow{f_2} K^{\bullet}[-1] \to \mathbf{P}^{\bullet}_{\mathbf{i}}[-1] \to \cdots$$

we obtain the sequence

$$\mathbf{K}(\mathcal{A})(K^{\bullet}[-1], L^{\bullet}) \xrightarrow{\pi} \mathbf{K}(\mathcal{A})(N^{\bullet}[-1], L^{\bullet}) \xrightarrow{\sigma} \mathbf{K}(\mathcal{A})(\mathbf{P}_{i}^{\bullet}[-2], L^{\bullet}).$$
(21)

Since $\sigma \pi(f) = 0$ it gives us the sequence

$$\mathbf{P}^{\bullet}_{\mathbf{i}}[-2] \xrightarrow{f_1[-1]} N^{\bullet}[-1] \xrightarrow{f_2} L^{\bullet}$$

and the homotopy h between f_2f_1 and 0, such that $g_1 = g_1(f_1, f_2, h) = f$. By Lemma 2 holds $M^{\bullet} \simeq \operatorname{Cone}(g_2), g_2 = g_2(f_1, f_2, h), g_2 : \operatorname{P}^{\bullet}_{\mathfrak{i}}[-1] \rightarrow \operatorname{Cone}(f_2)$. By induction $\operatorname{Cone}(f_2)$ is isomorphic to some $M_1^{\bullet} \in \mathcal{N}'(\operatorname{P}^{\bullet})$, hence $M^{\bullet} \simeq \operatorname{Cone}(\operatorname{P}^{\bullet}_{\mathfrak{i}} \to M_1^{\bullet})$ belongs to $\mathcal{N}'(\operatorname{P}^{\bullet})$. \Box

For $M^{\bullet} \in \mathcal{N}'(\mathcal{P}^{\bullet})$ define inductively a L-submodule M in M^{0} as follows: if $M^{\bullet} = \mathcal{P}_{\mathbf{i}}^{\bullet}$, then we set $M = \mathbb{k} \cdot \mathbf{1}_{\mathbf{i}}$ and if $M = \operatorname{Cone}(e)$ for $e \in \operatorname{Com}(\mathcal{A})(\mathcal{P}_{\mathbf{i}}^{\bullet}, N^{\bullet}), \mathbf{i} \in \operatorname{Ob} \mathcal{A}, N^{\bullet} \in \mathcal{N}(\mathcal{P}^{\bullet})$, then set $M = \mathbb{k} \cdot \mathbf{1}_{\mathbf{i}} \oplus N$. By the construction M is endowed with the canonical full L-flag $\{M_{i}\}, i = 0, \ldots, \dim_{\mathbb{k}} M$. Note, that there exists the canonical isomorphism of graded L-bimodules $M^{\bullet} \simeq \mathcal{P}^{\bullet} \otimes_{\mathbb{L}} \operatorname{top}(M^{\bullet})$.

Denote for M^{\bullet}, N^{\bullet} by $\operatorname{Com}_{A}(\mathcal{A})(M^{\bullet}, N^{\bullet})$ the space of morphisms $f: M^{\bullet} \to N^{\bullet}$, such that $f^{i}: M^{i} \to N^{i}, i \in \mathbb{Z}$ belongs to $A - \operatorname{mod}$. Such morphisms form a subcategory $\operatorname{Com}_{A}(\mathcal{A})$ in $\operatorname{Com}(\mathcal{A})$.

Lemma 3. Let $M^{\bullet}, N^{\bullet} \in \mathcal{N}'(\mathbb{P}^{\bullet}), f \in \mathcal{K}(M^{\bullet}, N^{\bullet})$. Then there exists a unique $f \in \operatorname{Com}_{A}(\mathcal{A})(M^{\bullet}, N^{\bullet})$, such that f is homotopic to f. In particular, the subcategory in $\mathcal{N}'(\mathbb{P}^{\bullet})$ of M^{\bullet} , such that in the definition of $\mathcal{N}'(\mathbb{P}^{\bullet})$ all $e_i \in \operatorname{Com}_{A}(\mathcal{A})$, is equivalent to $\mathcal{F}(\nabla)$. Besides, f is uniquely defined by f^{0} . *Proof.* We prove the statement by induction on the length. The base of induction is $M^{\bullet} = \mathbf{P}_{\mathbf{i}}^{\bullet}$. Following Theorem 1, [6], the homotopy class of $f : \mathbf{P}_{\mathbf{i}}^{\bullet} \to N^{\bullet}$ is uniquely defined by $n_f \in \operatorname{Ker} \partial_N^0$ and the condition $f(\bar{V}) = 0$ for all *i* defines the unique representative f of f in $\operatorname{Com}_A(\mathcal{A})(\mathbf{P}_{\mathbf{i}}^{\bullet}, N^{\bullet})$.

Let $e \in \operatorname{Com}_A(\mathcal{A})(\operatorname{P}^{\bullet}_{\mathbf{i}}[-1], L^{\bullet})$ be a morphism, such that $M^{\bullet} = \operatorname{Cone}(e), L^{\bullet} \in \mathcal{N}'(\operatorname{P}^{\bullet})$. The long exact sequence in $\mathcal{K}(\mathcal{A})$ obtained by applying $D(\mathcal{A})(_, N^{\bullet})$ to the corresponding triangle gives

$$\cdots \to 0 \to \mathcal{K}(\mathcal{A})(\mathcal{P}_{\mathbf{i}}^{\bullet}, N^{\bullet}) \xrightarrow{\pi} \mathcal{K}(\mathcal{A})(\operatorname{Cone}(\mathbf{e}), N^{\bullet}) \xrightarrow{\sigma} \mathcal{K}(\mathcal{A})(L^{\bullet}, N^{\bullet}) \xrightarrow{\delta} \mathcal{K}(\mathcal{A})(\mathcal{P}_{\mathbf{i}}^{\bullet}[-1], N^{\bullet}) \to \dots$$

The morphism δ maps any $g \in \operatorname{Com}_A(\mathcal{A})(L^{\bullet}, N^{\bullet})$ in $ge : \operatorname{P}_{\mathbf{i}}^{\bullet}[-1] \to N^{\bullet}$. The class of g belongs to $\operatorname{Im} \sigma$ if and only if ge is contractible. Recall a description of the layer $\sigma^{-1}(g)$. If $t \in \sigma^{-1}(g)$, then we can construct t by Lemma 2 using the contracting homotopy $\mathbf{h} = \mathbf{h}(t)$. Assume $t' \in \operatorname{K}(\mathcal{A})(\operatorname{Cone}(e), N^{\bullet})$. Then $t' \in \sigma^{-1}(g)$ if and only if $\sigma(t') = g$ and $\{(t^i - t'^i) | i \in \mathbb{Z}\}$ is a homomorphism $\operatorname{P}_{\mathbf{i}}^{\bullet} \to N^{\bullet}$. Since any homomorphism of complexes $f : \operatorname{P}_{\mathbf{i}}^{\bullet} \to N^{\bullet}$ is defined by $f^0(\omega_{\mathbf{i}})(\mathbf{1}_{\mathbf{i}})$ and $f(\bar{V})$, changing t to t' we can assume $\mathbf{h}(\bar{V}) = 0$. By induction $\operatorname{Com}_A(\mathcal{A})(\operatorname{P}_{\mathbf{i}}^{\bullet}, N^{\bullet})$ is a set of representatives of all homotopy classes from $\operatorname{K}(\mathcal{A})(\operatorname{P}_{\mathbf{i}}^{\bullet}, N^{\bullet})$. Then adding $\operatorname{K}(\mathcal{A})(\operatorname{P}_{\mathbf{i}}^{\bullet}, N^{\bullet})$ to h we obtain all representatives of the homotopy class $\sigma^{-1}(g)$. Besides, since π is a monomorphism, t is homotopic to t', if and only if t = t', hence all classes are non-homotopic. By induction assume, that e and g belongs to $\operatorname{Com}_A(\mathcal{A})$. Then by Lemma 2

$$f: Cone(e) \to N^{\bullet}, f^i = (h^{i+1} g^i)$$

will belong to $\operatorname{Com}_A(\mathcal{A})$. If $f^0 = 0$, then by induction g = 0. Then $\{h^{i+1}\}_{i\in\mathbb{Z}}$ is a homomorphism $P^{\bullet} \to N^{\bullet}$, such that $h^0 = 0$, hence h = 0 and f = 0.

Denote by $\mathcal{N}(\mathbf{P}^{\bullet})$ the subcategory in $\mathcal{N}'(\mathbf{P}^{\bullet})$, which objects for the definition (16) all e_i -th belongs to $\operatorname{Com}_A(\mathcal{A})$ and for $M^{\bullet}, N^{\bullet} \in \operatorname{Ob} \mathcal{N}(\mathbf{P}^{\bullet})$

$$\mathcal{N}(\mathbf{P}^{\bullet})(M^{\bullet}, N^{\bullet}) = \operatorname{Com}_{A}(\mathcal{A})(M^{\bullet}, N^{\bullet}) \cap \mathcal{N}'(\mathbf{P}^{\bullet})(M^{\bullet}, N^{\bullet}).$$
(22)

By Lemma 3 the category $\mathcal{N}(\mathbf{P}^{\bullet})$ is equivalent to $\mathcal{N}'(\mathbf{P}^{\bullet})$.

Lemma 4. Any object $M = (M, c_M, \{M_i\})$ of $N(\mathcal{A})$ defines the complex

 $\mathsf{n}(M) = M^{\bullet} \in \mathcal{N}(\mathbf{P}^{\bullet})$ as follows ($\otimes = \otimes_{\mathbb{L}}$)

$$M^0 \simeq A \otimes M, \ M^i \simeq \underbrace{\bar{V} \otimes_A \cdots \otimes_A \bar{V}}_i \otimes M, \ i \ge 1;$$
 (23)

$$\partial_{M}^{i}(\omega_{\mathbf{j}})(x\otimes m) = -\partial(x)\otimes m + \hat{x}\otimes_{A}c_{M}(m), \hat{x} = (-1)^{i}x, \qquad (24)$$

$$x \in \bar{V}^{\otimes i}(\mathbf{i}, \mathbf{j}), \ m \in M, \text{ where } \partial \text{ is the differential in } \bar{\mathcal{U}},$$

$$\partial_{M}^{i}(v)(x\otimes m) = v \otimes_{A} x \otimes m, v \in \bar{V}(\mathbf{j}, \mathbf{k}), \ \mathbf{i}, \mathbf{j}, \mathbf{k} \in \mathrm{Ob} A.$$

If $M, N \in N(\mathcal{A})$, then any morphism $f \in N(\mathcal{A})(M, N)$ defines unique morphism $\mathbf{f} = \mathbf{n}(f) : \mathbf{n}(M) \to \mathbf{n}(M)$, such that $\mathbf{f}^0|_M = f$, which turns \mathbf{n} into a functor $\mathbf{n} : N(\mathcal{A}) \to \mathcal{N}(\mathbf{P}^{\bullet})$.

Proof. We prove that the defined above ∂_M 's are morphisms from $\mathcal{A} - \text{mod}$, i.e. for any $a \in A$ holds $r = \partial_M(\omega_j a - a\omega_i + \partial(a)) = 0$, [7].

$$r(x \otimes m) = -\partial(ax) \otimes m + ax \otimes_A c_M(x) + a\partial(x) \otimes m$$

 $-ax \otimes_A c_M(m) + \partial(a) \otimes x \otimes m = 0$

by the Leibniz rule. Prove that M^{\bullet} is a complex, i.e. $\partial_M^2 = 0$.

$$\begin{aligned} \partial_M^2(\omega_{\mathbf{i}})(x\otimes m) &= \partial_M(\omega_{\mathbf{i}})\partial_M(\omega_{\mathbf{i}})(x\otimes m) = \partial_M(\omega_{\mathbf{i}})(\partial(x)\otimes m + \\ \hat{x}\otimes_A c_M(m)) &= \partial^2(x)\otimes m - \widehat{\partial(x)}\otimes_A c_M(m) - \partial(\hat{x})\otimes_A c_M(m) - \\ x\otimes_A (\partial\otimes \mathbf{1}_M)c_M(m) - x\otimes_A m_V(\mathbf{1}_V\otimes c_M)c_M(m) &= 0 \text{ due to } (7). \\ \partial_M^2(\varphi)(x\otimes m) &= \partial_M(\omega_{\mathbf{i}})\partial_M(\varphi)(x\otimes m) + \partial_M(\varphi)\partial_M(\omega_{\mathbf{j}})(x\otimes m) + \\ \partial_M(\partial(\varphi))(x\otimes m) &= \partial(\varphi x)\otimes m + \widehat{\varphi\otimes_A x}\otimes_A c_M(m) - \\ \varphi\otimes_A \partial(x) + \varphi\otimes_A \hat{x}\otimes_A c_M(m) + \partial(x)\otimes_A x\otimes_A m = 0 \\ \text{ due to Leibniz rule.} \end{aligned}$$

The filtration of M^{\bullet} is defined by M_i^{\bullet} and the e_i -th from definition (16) are defined by the second summand in the definition of ∂_M .

To prove the statement about morphisms define f = n(f) as $f(x \otimes m) = x \otimes_A c_f(m)$. We prove, that n(f) is a morphism of complexes.

$$(\mathrm{f}\partial_M - \partial_M \mathrm{f})(x \otimes m) = \mathrm{f}(-d(x) \otimes m + \hat{x} \otimes_A c_M(m)) - \\ \partial_M(x \otimes_A c_f(m)) = (-d(x) \otimes_A c_f(m) + \hat{x} \otimes_A (\mathbf{1}_A \otimes c_f)c_M) - \\ (-d(x) \otimes_A c_f(m) - \hat{x} \otimes_A (\partial \otimes \mathbf{1}_M)c_M - \hat{x} \otimes_A (\mathbf{1}_A \otimes c_N)c_f(m)) = \\ \hat{x} \otimes_A ((\mathbf{1}_A \otimes c_f)c_M - (\partial \otimes \mathbf{1}_M)c_M - (\mathbf{1}_A \otimes c_N)c_f)(m) = 0$$

due to (11).

Obviously, the image of n is a dense subcategory in $\mathcal{N}(\mathbf{P}^{\bullet})$.

Lemma 5. Let $M^{\bullet}, N^{\bullet} \in \mathcal{N}(\mathbb{P}^{\bullet}), f \in \mathcal{N}(\mathbb{P}^{\bullet})(M^{\bullet}, N^{\bullet})$. Set

$$c(M^{\bullet}) = (M, \{M_i\}, c_M), M_i = \operatorname{top}(M_i^{\bullet}), c_M|_{\operatorname{top}(P_{i_i})} = f_i, \ c(f) = f^0|_M,$$

where M is considered as a \mathbb{L} -submodule in M^0 by $M \simeq \mathbb{L} \otimes_{\mathbb{L}} M \subset A \otimes_{\mathbb{L}} M \simeq M^0$. Then it gives us the functor $c : \mathcal{N}(\mathcal{P}) \to \mathcal{N}(\mathcal{B})$.

Proof. c_M satisfies the condition (7) follows from $f_n^0(\omega_i)(\mathbf{1}_{i_n})\partial_{M_{n-1}}^0 = 0$ is equivalent to (7). The formula for the composition (13) follows from the formula of composition of morphisms of complexes.

Lemmas 4 and 5 gives us the following corollary and Theorem 1.

Corollary 1. $n : N(\mathcal{B}) \to \mathcal{N}(P^{\bullet})$ and $n : \mathcal{N}(P^{\bullet}) \to N(\mathcal{B})$ is mutual quasi-inverse equivalences.

References

- W. B. Burt, M. C. R. Butler: Almost split sequences for Bocses, Canadian Math. Soc., Conference Proceedings, vol.11, 1991, 89–121.
- [2] V. Dlab, C. M. Ringel: The module theoretical approach to quasi-hereditary algebras, London Math. Soc., Lect. Notes Series 168, Cambridge University Press, (1992), 200–224.
- [3] S. I. Gelfand and Yu. I. Manin: Methods of Homological Algebra, Springer Monographs in Math., Springer (2003).
- [4] B. Keller: Introduction to A-infinity algebras and modules and Addendum, Homology, Homotopy and Applications 3 (2001), 1-35.
- [5] Koenig S. Exact Borel subalgebras of quasi-hereditary algebras, I, (with an appendix by Leonard Scott), Mathematische Zeitschrift, 220, (1995), 399–426.
- [6] S. A. Ovsienko: Exact Borel Subalgebras, Ringel Duality and Generalizations of Quasi-Hereditary Algebras, In book : Problems of calculus and algebra, Proceedings of Institute of Mathematics NAN Ukraine, 2005, 2, n. 3, pp. - 210-224.
- [7] S. A. Ovsienko: *Bimodule and matrix problems*, // In book: Computational Methods for Representations of Groups and Algebras, Progress in Mathematics. Birkhaeuser. - 1999. - Vol. 173, pp. 325-357.
- [8] C. M. Ringel: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Mathematische Zeitschrift, 208, (1992) 209– 223.

CONTACT INFORMATION

S. Ovsienko Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Vladimirskaya 64, 252 017 Kyiv, Ukraine *E-Mail:* ovsyenko@univ.kiev.ua

Received by the editors: 05.09.2006 and in final form 29.09.2006.