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Abstract. All isolated, completely isolated, and nilpotent

subsemigroups in the semigroup ISn of all injective partial trans-

formations of an n-element set, considered as a semigroup with a

sandwich multiplication are described.

Introduction and main definitions

In the monograph [5] Ljapin proposed some constructions for the semi-
groups, a certain modification of which is the following. Let S be a
semigroup. For a fixed a ∈ S define an operation ∗a via x ∗a y = xay,
x, y ∈ S. Obviously, this multiplication ∗a is associative, therefore the
set S with respect to this operation is the semigroup which is called the
semigroup S with a sandwich operation or the variant of S and is
denoted by (S, ∗a).

The variants of the classical transformation semigroups, ISn, Tn,
PT n, are interesting examples of this construction. In [7], [8], and [9],
criteria of isomorphisms of these variants are detailed, and some of their
properties are described.

Recall, a subsemigroup T of S is called isolated, provided that xk ∈ T
for some k ∈ N implies x ∈ S for all x, y ∈ S; T is called completely iso-
lated, provided that xy ∈ T implies x ∈ T or y ∈ T for all x, y ∈ S. Note
that every completely isolated subsemigroup is isolated, while the con-
trary does not hold true. Isolated and completely isolated subsemigroups
of the variants of Tn are described in [6].

Key words and phrases: Inverse symmetric semigroup, variants of a semi-

group, sandwich semigroup, isolated subsemigroups, nilpotent subsemigroups.
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A semigroup S with a zero 0 is called nilpotent of the nilpotency degree
k ≥ 1, provided that x1x2 · · ·xk = 0 for all x1, x2, . . . , xk ∈ S and there
exist y1, y2, . . . , yk−1 ∈ S such that y1y2 · · · yk−1 6= 0. Denote n(S) = k.
It is known[1], that a finite semigroup S is nilpotent if and only if each
element of S is nilpotent, that is, for each x ∈ S there exist k ∈ N such
that xk = 0 and xk−1 6= 0.

In this paper we describe completely isolated, isolated and nilpotent
subsemigroups of the variants of ISn, the inverse symmetric semigroup
of all partial injective transformations of the set N = {1, 2, . . . , n}.

In particular, in section 1 we study isolated and completely isolated
subsemigroups, and we produce the full description of nilpotent subsemi-
groups of the variants of ISn with respect to a natural zero (a nowhere
defined map) in section 2. In the proofs we use the technique presented
in [4].

For an arbitrary β ∈ ISn denote dom(β) and im(β) the domain and
image of β, respectively. The value |dom(β)| = | im(β)| is called the
range of β and is denoted by rank(β).

It is proved in [8] that semigroups (ISn, ∗α) and (ISn, ∗β) are iso-
morphic if and only if πα = βτ for some permutations π, τ ∈ Sn. Note if
α is a permutation then (ISn, ∗α) is isomorphic to ISn, and the subsemi-
group construction of the latter is studied in details in, for example,[2],
[3]. Therefore, without loss of generality, we may assume that the sand-
wich element α is a non-identity idempotent in ISn.

Now let us fix an idempotent α ∈ ISn. Set (ISn, ∗) = (ISn, ∗α),
dom(α) = A, rank(α) = l, l < n, and let α, as an element of ISn, be
defined on A identically.

Fix some z ∈ N \ A and for arbitrary pairwise different elements
x1, . . . , xk ∈ A define the following partial permutations:

(x1, . . . , xk)(x) =





xi+1, if x = xi, i < k,
x1, if x = xk,
x, if x ∈ N \ {x1, . . . , xk}

and

[x1, . . . , xk](x) =





xi+1, if x = xi, i < k,
z, if x = xk,
x, if x ∈ N \ {x1, . . . , xk, z}.

For any β ∈ (ISn, ∗) we denote β∗s = β ∗ β ∗ · · · ∗ β︸ ︷︷ ︸
s

.

Proposition 1 ([8]). An element ε ∈ ISn is an idempotent in (ISn, ∗)
if and only if ε is an idempotent in ISn and dom(ε) ⊂ A.
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Remark 2. For each x ∈ A denote εx the idempotent of ISn such that
dom(εx) = A \ {x}. Then any idempotent ε 6= α of (ISn, ∗) may be
factorized as

ε =
∏

x∈A\dom(ε)

εx =
∏∗

x∈A\dom(ε)

εx.

1. Isolated and completely isolated subsemigroups in (ISn, ∗)

Let S be a semigroup. For the idempotent e in S define
√

e = {x ∈ S : xm = e for some m > 0}.

Proposition 3 ([6]). If
√

e is a subsemigroup of S then
√

e is a minimal
with respect to inclusion isolated subsemigroup containing e.

Denote CA the set of those elements from ISn, which are one-to-one
maps on A and are arbitrarily defined on N \ A. That is,

CA = {β ∈ ISn | β(A) = A}.

Theorem 4. The only completely isolated subsemigroups of (ISn, ∗) are
CA, (ISn, ∗) \ CA and (ISn, ∗).
Proof. It is clear that CA is a subsemigroup of (ISn, ∗). Let β ∗ γ ∈ CA

for some β, γ from (ISn, ∗). Then dom(β ∗ γ) ⊃ A, therefore β(x) ∈ A
for all x ∈ A. This implies β ∈ CA. Hence CA is a completely isolated
subsemigroup. (ISn, ∗)\CA is also completely isolated as a complement to
the completely isolated subsemigroup. Obviously, (ISn, ∗) is completely
isolated.

Conversely, let T ⊂ (ISn, ∗) be a completely isolated subsemigroup.
Assume that T ∩ CA 6= ∅, β ∈ CA ∩ T . Then β∗s = α for some s ∈ N

hence α ∈ T . However, for any γ from CA we have γ∗t = α for some
t ∈ N, hence γ ∈ T . Therefore

T ∩ CA = ∅ or CA ⊂ T. (1)

Let T ∩ ((ISn, ∗) \ CA) 6= ∅ and β belong to the intersection. Then T
contains an idempotent ε as a power of β and rank(ε) < l. From remark
2 it follows that since T is completely isolated εx ∈ T for some x ∈ A.
But for any y ∈ A we have εx = (x, y) ∗ εy ∗ (x, y). So if CA ⊂ T then
T contains εy, as it is a semigroup. Otherwise T contains εy as it is
completely isolated. Consequently, T contains all idempotents of ranks
< l, and since some power of each element γ ∈ (ISn, ∗) \ CA equals such
idempotent, we get

((ISn, ∗) \ CA) ⊂ T or ((ISn, ∗) \ CA) ∩ T = ∅. (2)
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Now the statement of the theorem follows from (1) and (2).

For every x ∈ A denote

G(x) = {λ ∈ ISn : λ(x) /∈ A and λ(y) ∈ A \ {x} for all y ∈ A \ {x}}.

Observe, if |A| = 1 then G(x) = (ISn, ∗) \ CA, x ∈ A.

Lemma 5. G(x) =
√

εx.

Proof. It is clear that G(x) is a subsemigroup of (ISn, ∗) and G(x) ⊂ √
εx.

Further εx ∈ G(x) by definition of G(x).
Let λ∗k ∈ G(x) for some k ∈ N. If λ(x) ∈ A then whereas λ∗k is not

one-to-one map on A there exists y ∈ A \ {x} such that λ(y) ∈ N \ A.
Then λ∗k(y) is not defined for k ≥ 2, which contradicts the definition
of G(x). Now let λ(x) ∈ N \ A. Clearly, for λ∗k ∈ G(x) it is necessary
λ(y) ∈ A \ {x} for all y ∈ A \ {x}. Hence, λ ∈ G(x) and G(x) is isolated
subsemigroup. Finally, proposition 3 completes the proof.

Theorem 6. (i) If rank(α) ≥ 2 then the only isolated subsemigroups
of (ISn, ∗) are (ISn, ∗), CA, (ISn, ∗) \ CA and G(x), x ∈ A.

(ii) If rank(α) = 1 then the only isolated subsemigroups of (ISn, ∗) are
CA, (ISn, ∗) \ CA, (ISn, ∗), in particular all of them are completely
isolated.

Proof. By theorem 4 and lemma 5 all listed subsemigroups are isolated.
Let T be isolated subsemigroup of (ISn, ∗). As in the proof of theorem

4 it can be shown that (1) holds.
Assume that CA ⊂ T . If T 6= CA then there exists β ∈ T \ CA and T

contains some idempotent ε of rank < l. Denote A\ im(ε) = {a1, . . . , ak}
and consider elements λ = [a1, . . . , ak] and µ = [ak, . . . , a1]. From λ∗k =
µ∗k = ε it follows that λ, µ ∈ T and λ∗µ = εak

belongs to T . However as
CA ⊂ T , T contains all εx, x ∈ A, and hence it contains all idempotents
of ranks ≤ l − 1. Therefore in this case T = (ISn, ∗).

Now assume that CA ∩T = ∅ and T contains an element β and some
idempotent ε of rank < l as a power of β. Consider the cases.

1) The case of l = 1.
Obviously, the power of any element from (ISn, ∗) \ CA is a nowhere
defined map, so T = (ISn, ∗) \ CA.

2) The case of l ≥ 2.

If rank(ε) ≤ l − 2 then by the analogous arguments produced above
it can be shown that T contains at least two different idempotents εx
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and εy, x, y ∈ A, x 6= y. We show that T contains all idempotents
of rank l − 1, and hence, T = (ISn, ∗) \ CA. Indeed, let z ∈ A and
z 6= x, y. Consider element µ = (x, z) ∗ [y]. µ∗2 = εy, hence µ ∈ T .
Then (εx ∗µ)∗2 = [x] ∗ [y] ∗ [z] ∈ T . Let σ = [x, y, z], τ = [z, y, x]. We
have σ∗3 = τ∗3 = [x]∗[y]∗[z], hence σ, τ ∈ T and finally σ∗τ = εz ∈ T .

Now let rank(ε) = l − 1. If ε is not the only idempotent in T then by
the above reasoning T = (ISn, ∗) \ CA. If ε is the only idempotent in
T then T = G(x).

The theorem is proved.

2. Nilpotent subsemigroups in (ISn, ∗)

For every positive integer k denote Nilk the set of all nilpotent subsemi-
groups of (ISn, ∗) of nilpotency degree ≤ k. The set Nilk is partially or-

dered with respect to inclusions in a natural way. Set M = A
(1)∪A∪A

(2)
,

where A
(1)

= N \A, and A
(2)

is a disjoint copy of A
(1)

. For every x ∈ A
(1)

denote x′ the corresponding element from A
(2)

.
Denote Ordk(M) the ordered set of all strict partial orders, Λ, on M

which satisfy the following two conditions:

(1) the cardinalities of chains of Λ are bounded by k,

(2) A
(1) ⊆ min(Λ), A

(2) ⊆ max(Λ), where min(Λ) and max(Λ) mean the
sets of all minimal and maximal elements of order Λ respectively.

If k ≤ m then we have natural inclusions Nilk →֒ Nilm and Ordk(M) →֒
Ordm(M), which preserve the partial order. Therefore we can consider
the ordered sets

Nil =
⋃

k

Nilk and Ord(M) =
⋃

k

Ordk(M).

For every partial order Λ ∈ Ord(M) consider the set

Mon(Λ) = {β ∈ ISn : β(x) 6= x and (x, β(x)) ∈ Λ for all x ∈ dom(β)}
(3)

and for every subsemigroup S ∈ Nil the relation

ΛS = {(x, y) : x ∈ A and there exists β ∈ S such that β(x) = y}
∪ {(x, y) : y ∈ A and there exists β ∈ S such that β(x) = y}

∪ {(x, y) :x ∈ A
(1)

,y ∈ A
(2)

and there exists β ∈ S such thatβ(x)= y}.
(4)
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Let β ∈ ISn and rank(β) = k, k ≤ n. Write β as

β =

(
x11 . . . x1i1 x21 . . . x2i2 x31 . . . x3i3 x41 . . . x4i4

y11 . . . y1i1 y21 . . . y2i2 y31 . . . y3i3 y41 . . . y4i4

)
, (5)

that is, dom(β) = {x11, . . . , x4i4} and β(xij) = yij for all i, j, moreover

{x11, . . . , x1i1} ⊂ A, {y11, . . . , y1i1} ⊂ A,

{x21, . . . , x2i2} ⊂ A, {y21, . . . , y2i2} ⊂ N \ A,

{x31, . . . , x3i3} ⊂ N \ A, {y31, . . . , y3i3} ⊂ A,

{x41, . . . , x4i4} ⊂ N \ A, {y41, . . . , y4i4} ⊂ N \ A.

Consider a map f : (ISn, ∗) → IS(M) defined in the following way:
if β is given by (5) then dom(f(β)) = {x11, . . . , x1i1 , x21, . . . , x4i4}

and

f(β) =

(
x11 . . . x1i1 x21 . . . x2i2 x31 . . . x3i3 x41 . . . x4i4

y11 . . . y1i1 y′21 . . . y′2i2
y31 . . . y3i3 y′41 . . . y′4i4

)
.

Proposition 7. The above map f : (ISn, ∗) → IS(M) is a monomor-
phism, besides,

Im(f) = {γ ∈ IS(M) : dom(γ) ⊂ A
(1) ∪ A, im(γ) ⊂ A ∪ A

(2)}.

Proof. Clear from the definition.

Hence, every nilpotent subsemigroup of (ISn, ∗) is mapped by f to
the corresponding nilpotent subsemigroup of IS(M). This allows one
to apply the results from [4] for IS(M) to the semigroup (ISn, ∗). In
particular, by a word for word repetition of corresponding proofs from [4]
one may prove propositions 8-10:

Proposition 8. (i) For each k ≥ 1 the map Λ 7→ Mon(Λ) is a homo-
morphism from the poset Ordk(M) to the poset Nilk.

(ii) For every k ≥ 1 the map S 7→ ΛS is a homomorphism from the
poset Nilk to the poset Ordk(M).

Proposition 9. Let n(S) = k. Then ΛS ∈ Ordk(M) \ Ordk−1(M).

Proposition 10. Let S ∈ Nil and Λ ∈ Ord(M). Then

(i) Mon(ΛS) ⊃ S, ΛMon(Λ) ⊂ Λ;

(ii) Mon(ΛMon(Λ)) = Mon(Λ);
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(iii) ΛMon(ΛS) = ΛS.

From proposition 9 we derive

Corollary. The nilpotency degree, n(S), of any nilpotent subsemigroup
S ⊂ (ISn, ∗) does not exceed rank(α) + 2, moreover the equality holds

true if and only if |N \ im(α)| ≥ 1 and min(ΛS) = A
(1)

, max(ΛS) = A
(2)

.
All maximal nilpotent subsemigroups are isomorphic.

By an ordered A-partition of M into k non-empty blocks we mean

the partition M = M1 ∪M2 ∪ · · ·∪Mk where M1 ⊃ A
(1)

, Mk ⊃ A
(2)

, and
the order of the blocks is also taken into account. With every ordered
A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk we associate the set

ord(M1, . . . , Mk) =
⋃

1≤i<j≤k

Mi × Mj ⊂ M × M. (6)

Lemma 11. Let k ≤ |M | be fixed. Then

(i) for every ordered A-partition M = M1 ∪ M2 ∪ · · · ∪ Mk the set
ord(M1, . . . , Mk) is a maximal element in Ordk(M);

(ii) different ordered A-partitions of M correspond to different elements
in Ordk(M);

(iii) each maximal element in Ordk(M) has the form ord(M1, . . . , Mk)
for some ordered A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk.

Proof. Statements (i) and (ii) are proved analogously to lemma 7 from
[4].
(iii) Let the order Λ ∈ Ordk(M) be fixed. Denote by M1 the set of all

minimal elements of the relation Λ. By definition A
(1) ⊂ M1, therefore

M1 6= ∅. For every increasing (with respect to Λ) chain x1 < · · · < xm

of elements in M \ M1 there exists x0 ∈ M such that x0 < x1. Hence,
the cardinality of every increasing chain in M \M1 is bounded by k − 1.
Denote by M2 the set of all minimal elements in M \ M1, by M3 the set
of all minimal elements in M \ (M1 ∪ M2) and so on. In k steps we get

the partition M = M1 ∪ M2 ∪ · · · ∪ Mk, for which A
(1) ⊂ M1. Observe

that the elements of A
(2)

are maximal by the definition of Λ. Hence set

M̃i = Mi \ A
(2)

, 1 ≤ i ≤ k − 1,

M̃k = Mk ∪ A
(2)

and get the new partition M = M̃1 ∪ M̃2 ∪ · · · ∪ M̃k. Clearly, Λ ⊂
ord(M̃1, . . . , M̃k) and from the maximality of Λ we have Λ = ord(M̃1, . . . , M̃k).
The lemma is proved.
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For every ordered A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk denote

T (M1, . . . , Mk) = {β ∈ ISn : x ∈ Mi and β(x) ∈ Mj imply i < j

for all x ∈ dom(β)}. (7)

Lemma 12.

T (M1, . . . , Mk) = Mon(ord(M1, . . . , Mk)).

Proof. The assertion follows from definitions (3), (4), (6) and (7).

Theorem 13. (i) For every ordered A-partition of M = M1 ∪ M2 ∪
· · · ∪ Mk the semigroup T (M1, . . . , Mk) is maximal in Nilk.

(ii) Different ordered A-partitions of M correspond to different subsemi-
groups in Nilk.

(iii) Every maximal subsemigroup in Nilk has the form T (M1, . . . , Mk)
for some ordered A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk.

Proof. From lemma 12 it follows that the set T (M1, . . . , Mk) is a sub-
semigroup in Nilk. We show that

ΛT (M1,...,Mk) = ord(M1, . . . , Mk). (8)

From proposition 10(i) we have ΛT (M1,...,Mk) ⊂ ord(M1, . . . , Mk).
We prove the contrary inclusion. Let (x, y) ∈ ord(M1, . . . , Mk). Take
β ∈ ISn such that rank(β) = 1, dom(β) = {x}, im(β) = {y}. By
definition β ∈ Mon(ord(M1, . . . , Mk)), and using (4) we have (x, y) ∈
ΛMon(ord(M1,...,Mk)). Hence ΛT (M1,...,Mk) ⊃ ord(M1, . . . , Mk) and the equal-
ity (8) is proved.

Now let S ∈ Nilk be such that S ⊃ T (M1, . . . , Mk). According to
lemma 11 the order ord(M1, . . . , Mk) is a maximal element in Ordk(M),
therefore by proposition 8(ii) we get ΛS = ord(M1, . . . , Mk). Finally from
proposition 10(i), lemma 12, and equality (8) it follows

S ⊂ Mon(ΛS) = Mon(ord(M1, . . . , Mk)) = T (M1, . . . , Mk)

and the statement (i) is proved.
Statements (ii) and (iii) follow from proposition 8, lemma 11 and

lemma 12.

Let S be maximal nilpotent subsemigroup of (ISn, ∗) of nilpotency
degree k and let M = M1 ∪ M2 ∪ · · · ∪ Mk be the ordered A-partition of

M = A
(1) ∪A∪A

(2)
, which corresponds to the partial order ΛS . We call

the set (|M1|, |M2|, . . . , |Mk|) ∈ N
k the type of nilpotent subsemigroup S

and denote it by type(S). Set (|M1|, . . . , |Mk|)# = (|Mk|, . . . , |M1|).
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Proposition 14. Let T1 and T2 be two maximal nilpotent subsemigroups
of (ISn, ∗) of nilpotency degree k. Then

(i) if k = 2 then T1 and T2 are isomorphic if and only if type(T1) =
type(T2) or type(T1) = type(T2)

#.

(ii) if k > 2 then T1 and T2 are isomorphic if and only if type(T1) =
type(T2). T1 and T2 are anti-isomorphic if and only if type(T1) =
type(T2)

#.

The proof follows from proposition 7 and corresponding statements
about nilpotent subsemigroups of IS(M) from [3] (lemma 14.4 and the-
orem 14.1).

�
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