
Algebra and Discrete Mathematics RESEARCH ARTICLE
Number 1. (2006). pp. 89 – 97

c© Journal “Algebra and Discrete Mathematics”

Isolated and nilpotent subsemigroups in the

variants of ISn

Galyna Tsyaputa

Communicated by B. V. Novikov

Abstract. All isolated, completely isolated, and nilpotent

subsemigroups in the semigroup ISn of all injective partial trans-

formations of an n-element set, considered as a semigroup with a

sandwich multiplication are described.

Introduction and main definitions

In the monograph [5] Ljapin proposed some constructions for the semi-
groups, a certain modification of which is the following. Let S be a
semigroup. For a fixed a ∈ S define an operation ∗a via x ∗a y = xay,
x, y ∈ S. Obviously, this multiplication ∗a is associative, therefore the
set S with respect to this operation is the semigroup which is called the
semigroup S with a sandwich operation or the variant of S and is
denoted by (S, ∗a).

The variants of the classical transformation semigroups, ISn, Tn,
PT n, are interesting examples of this construction. In [7], [8], and [9],
criteria of isomorphisms of these variants are detailed, and some of their
properties are described.

Recall, a subsemigroup T of S is called isolated, provided that xk ∈ T
for some k ∈ N implies x ∈ S for all x, y ∈ S; T is called completely iso-
lated, provided that xy ∈ T implies x ∈ T or y ∈ T for all x, y ∈ S. Note
that every completely isolated subsemigroup is isolated, while the con-
trary does not hold true. Isolated and completely isolated subsemigroups
of the variants of Tn are described in [6].

Key words and phrases: Inverse symmetric semigroup, variants of a semi-

group, sandwich semigroup, isolated subsemigroups, nilpotent subsemigroups.
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A semigroup S with a zero 0 is called nilpotent of the nilpotency degree
k ≥ 1, provided that x1x2 · · ·xk = 0 for all x1, x2, . . . , xk ∈ S and there
exist y1, y2, . . . , yk−1 ∈ S such that y1y2 · · · yk−1 6= 0. Denote n(S) = k.
It is known[1], that a finite semigroup S is nilpotent if and only if each
element of S is nilpotent, that is, for each x ∈ S there exist k ∈ N such
that xk = 0 and xk−1 6= 0.

In this paper we describe completely isolated, isolated and nilpotent
subsemigroups of the variants of ISn, the inverse symmetric semigroup
of all partial injective transformations of the set N = {1, 2, . . . , n}.

In particular, in section 1 we study isolated and completely isolated
subsemigroups, and we produce the full description of nilpotent subsemi-
groups of the variants of ISn with respect to a natural zero (a nowhere
defined map) in section 2. In the proofs we use the technique presented
in [4].

For an arbitrary β ∈ ISn denote dom(β) and im(β) the domain and
image of β, respectively. The value |dom(β)| = | im(β)| is called the
range of β and is denoted by rank(β).

It is proved in [8] that semigroups (ISn, ∗α) and (ISn, ∗β) are iso-
morphic if and only if πα = βτ for some permutations π, τ ∈ Sn. Note if
α is a permutation then (ISn, ∗α) is isomorphic to ISn, and the subsemi-
group construction of the latter is studied in details in, for example,[2],
[3]. Therefore, without loss of generality, we may assume that the sand-
wich element α is a non-identity idempotent in ISn.

Now let us fix an idempotent α ∈ ISn. Set (ISn, ∗) = (ISn, ∗α),
dom(α) = A, rank(α) = l, l < n, and let α, as an element of ISn, be
defined on A identically.

Fix some z ∈ N \ A and for arbitrary pairwise different elements
x1, . . . , xk ∈ A define the following partial permutations:

(x1, . . . , xk)(x) =





xi+1, if x = xi, i < k,
x1, if x = xk,
x, if x ∈ N \ {x1, . . . , xk}

and

[x1, . . . , xk](x) =





xi+1, if x = xi, i < k,
z, if x = xk,
x, if x ∈ N \ {x1, . . . , xk, z}.

For any β ∈ (ISn, ∗) we denote β∗s = β ∗ β ∗ · · · ∗ β︸ ︷︷ ︸
s

.

Proposition 1 ([8]). An element ε ∈ ISn is an idempotent in (ISn, ∗)
if and only if ε is an idempotent in ISn and dom(ε) ⊂ A.
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Remark 2. For each x ∈ A denote εx the idempotent of ISn such that
dom(εx) = A \ {x}. Then any idempotent ε 6= α of (ISn, ∗) may be
factorized as

ε =
∏

x∈A\dom(ε)

εx =
∏∗

x∈A\dom(ε)

εx.

1. Isolated and completely isolated subsemigroups in (ISn, ∗)

Let S be a semigroup. For the idempotent e in S define
√

e = {x ∈ S : xm = e for some m > 0}.

Proposition 3 ([6]). If
√

e is a subsemigroup of S then
√

e is a minimal
with respect to inclusion isolated subsemigroup containing e.

Denote CA the set of those elements from ISn, which are one-to-one
maps on A and are arbitrarily defined on N \ A. That is,

CA = {β ∈ ISn | β(A) = A}.

Theorem 4. The only completely isolated subsemigroups of (ISn, ∗) are
CA, (ISn, ∗) \ CA and (ISn, ∗).
Proof. It is clear that CA is a subsemigroup of (ISn, ∗). Let β ∗ γ ∈ CA

for some β, γ from (ISn, ∗). Then dom(β ∗ γ) ⊃ A, therefore β(x) ∈ A
for all x ∈ A. This implies β ∈ CA. Hence CA is a completely isolated
subsemigroup. (ISn, ∗)\CA is also completely isolated as a complement to
the completely isolated subsemigroup. Obviously, (ISn, ∗) is completely
isolated.

Conversely, let T ⊂ (ISn, ∗) be a completely isolated subsemigroup.
Assume that T ∩ CA 6= ∅, β ∈ CA ∩ T . Then β∗s = α for some s ∈ N

hence α ∈ T . However, for any γ from CA we have γ∗t = α for some
t ∈ N, hence γ ∈ T . Therefore

T ∩ CA = ∅ or CA ⊂ T. (1)

Let T ∩ ((ISn, ∗) \ CA) 6= ∅ and β belong to the intersection. Then T
contains an idempotent ε as a power of β and rank(ε) < l. From remark
2 it follows that since T is completely isolated εx ∈ T for some x ∈ A.
But for any y ∈ A we have εx = (x, y) ∗ εy ∗ (x, y). So if CA ⊂ T then
T contains εy, as it is a semigroup. Otherwise T contains εy as it is
completely isolated. Consequently, T contains all idempotents of ranks
< l, and since some power of each element γ ∈ (ISn, ∗) \ CA equals such
idempotent, we get

((ISn, ∗) \ CA) ⊂ T or ((ISn, ∗) \ CA) ∩ T = ∅. (2)
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Now the statement of the theorem follows from (1) and (2).

For every x ∈ A denote

G(x) = {λ ∈ ISn : λ(x) /∈ A and λ(y) ∈ A \ {x} for all y ∈ A \ {x}}.

Observe, if |A| = 1 then G(x) = (ISn, ∗) \ CA, x ∈ A.

Lemma 5. G(x) =
√

εx.

Proof. It is clear that G(x) is a subsemigroup of (ISn, ∗) and G(x) ⊂ √
εx.

Further εx ∈ G(x) by definition of G(x).
Let λ∗k ∈ G(x) for some k ∈ N. If λ(x) ∈ A then whereas λ∗k is not

one-to-one map on A there exists y ∈ A \ {x} such that λ(y) ∈ N \ A.
Then λ∗k(y) is not defined for k ≥ 2, which contradicts the definition
of G(x). Now let λ(x) ∈ N \ A. Clearly, for λ∗k ∈ G(x) it is necessary
λ(y) ∈ A \ {x} for all y ∈ A \ {x}. Hence, λ ∈ G(x) and G(x) is isolated
subsemigroup. Finally, proposition 3 completes the proof.

Theorem 6. (i) If rank(α) ≥ 2 then the only isolated subsemigroups
of (ISn, ∗) are (ISn, ∗), CA, (ISn, ∗) \ CA and G(x), x ∈ A.

(ii) If rank(α) = 1 then the only isolated subsemigroups of (ISn, ∗) are
CA, (ISn, ∗) \ CA, (ISn, ∗), in particular all of them are completely
isolated.

Proof. By theorem 4 and lemma 5 all listed subsemigroups are isolated.
Let T be isolated subsemigroup of (ISn, ∗). As in the proof of theorem

4 it can be shown that (1) holds.
Assume that CA ⊂ T . If T 6= CA then there exists β ∈ T \ CA and T

contains some idempotent ε of rank < l. Denote A\ im(ε) = {a1, . . . , ak}
and consider elements λ = [a1, . . . , ak] and µ = [ak, . . . , a1]. From λ∗k =
µ∗k = ε it follows that λ, µ ∈ T and λ∗µ = εak

belongs to T . However as
CA ⊂ T , T contains all εx, x ∈ A, and hence it contains all idempotents
of ranks ≤ l − 1. Therefore in this case T = (ISn, ∗).

Now assume that CA ∩T = ∅ and T contains an element β and some
idempotent ε of rank < l as a power of β. Consider the cases.

1) The case of l = 1.
Obviously, the power of any element from (ISn, ∗) \ CA is a nowhere
defined map, so T = (ISn, ∗) \ CA.

2) The case of l ≥ 2.

If rank(ε) ≤ l − 2 then by the analogous arguments produced above
it can be shown that T contains at least two different idempotents εx
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and εy, x, y ∈ A, x 6= y. We show that T contains all idempotents
of rank l − 1, and hence, T = (ISn, ∗) \ CA. Indeed, let z ∈ A and
z 6= x, y. Consider element µ = (x, z) ∗ [y]. µ∗2 = εy, hence µ ∈ T .
Then (εx ∗µ)∗2 = [x] ∗ [y] ∗ [z] ∈ T . Let σ = [x, y, z], τ = [z, y, x]. We
have σ∗3 = τ∗3 = [x]∗[y]∗[z], hence σ, τ ∈ T and finally σ∗τ = εz ∈ T .

Now let rank(ε) = l − 1. If ε is not the only idempotent in T then by
the above reasoning T = (ISn, ∗) \ CA. If ε is the only idempotent in
T then T = G(x).

The theorem is proved.

2. Nilpotent subsemigroups in (ISn, ∗)

For every positive integer k denote Nilk the set of all nilpotent subsemi-
groups of (ISn, ∗) of nilpotency degree ≤ k. The set Nilk is partially or-

dered with respect to inclusions in a natural way. Set M = A
(1)∪A∪A

(2)
,

where A
(1)

= N \A, and A
(2)

is a disjoint copy of A
(1)

. For every x ∈ A
(1)

denote x′ the corresponding element from A
(2)

.
Denote Ordk(M) the ordered set of all strict partial orders, Λ, on M

which satisfy the following two conditions:

(1) the cardinalities of chains of Λ are bounded by k,

(2) A
(1) ⊆ min(Λ), A

(2) ⊆ max(Λ), where min(Λ) and max(Λ) mean the
sets of all minimal and maximal elements of order Λ respectively.

If k ≤ m then we have natural inclusions Nilk →֒ Nilm and Ordk(M) →֒
Ordm(M), which preserve the partial order. Therefore we can consider
the ordered sets

Nil =
⋃

k

Nilk and Ord(M) =
⋃

k

Ordk(M).

For every partial order Λ ∈ Ord(M) consider the set

Mon(Λ) = {β ∈ ISn : β(x) 6= x and (x, β(x)) ∈ Λ for all x ∈ dom(β)}
(3)

and for every subsemigroup S ∈ Nil the relation

ΛS = {(x, y) : x ∈ A and there exists β ∈ S such that β(x) = y}
∪ {(x, y) : y ∈ A and there exists β ∈ S such that β(x) = y}

∪ {(x, y) :x ∈ A
(1)

,y ∈ A
(2)

and there exists β ∈ S such thatβ(x)= y}.
(4)
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Let β ∈ ISn and rank(β) = k, k ≤ n. Write β as

β =

(
x11 . . . x1i1 x21 . . . x2i2 x31 . . . x3i3 x41 . . . x4i4

y11 . . . y1i1 y21 . . . y2i2 y31 . . . y3i3 y41 . . . y4i4

)
, (5)

that is, dom(β) = {x11, . . . , x4i4} and β(xij) = yij for all i, j, moreover

{x11, . . . , x1i1} ⊂ A, {y11, . . . , y1i1} ⊂ A,

{x21, . . . , x2i2} ⊂ A, {y21, . . . , y2i2} ⊂ N \ A,

{x31, . . . , x3i3} ⊂ N \ A, {y31, . . . , y3i3} ⊂ A,

{x41, . . . , x4i4} ⊂ N \ A, {y41, . . . , y4i4} ⊂ N \ A.

Consider a map f : (ISn, ∗) → IS(M) defined in the following way:
if β is given by (5) then dom(f(β)) = {x11, . . . , x1i1 , x21, . . . , x4i4}

and

f(β) =

(
x11 . . . x1i1 x21 . . . x2i2 x31 . . . x3i3 x41 . . . x4i4

y11 . . . y1i1 y′21 . . . y′2i2
y31 . . . y3i3 y′41 . . . y′4i4

)
.

Proposition 7. The above map f : (ISn, ∗) → IS(M) is a monomor-
phism, besides,

Im(f) = {γ ∈ IS(M) : dom(γ) ⊂ A
(1) ∪ A, im(γ) ⊂ A ∪ A

(2)}.

Proof. Clear from the definition.

Hence, every nilpotent subsemigroup of (ISn, ∗) is mapped by f to
the corresponding nilpotent subsemigroup of IS(M). This allows one
to apply the results from [4] for IS(M) to the semigroup (ISn, ∗). In
particular, by a word for word repetition of corresponding proofs from [4]
one may prove propositions 8-10:

Proposition 8. (i) For each k ≥ 1 the map Λ 7→ Mon(Λ) is a homo-
morphism from the poset Ordk(M) to the poset Nilk.

(ii) For every k ≥ 1 the map S 7→ ΛS is a homomorphism from the
poset Nilk to the poset Ordk(M).

Proposition 9. Let n(S) = k. Then ΛS ∈ Ordk(M) \ Ordk−1(M).

Proposition 10. Let S ∈ Nil and Λ ∈ Ord(M). Then

(i) Mon(ΛS) ⊃ S, ΛMon(Λ) ⊂ Λ;

(ii) Mon(ΛMon(Λ)) = Mon(Λ);
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(iii) ΛMon(ΛS) = ΛS.

From proposition 9 we derive

Corollary. The nilpotency degree, n(S), of any nilpotent subsemigroup
S ⊂ (ISn, ∗) does not exceed rank(α) + 2, moreover the equality holds

true if and only if |N \ im(α)| ≥ 1 and min(ΛS) = A
(1)

, max(ΛS) = A
(2)

.
All maximal nilpotent subsemigroups are isomorphic.

By an ordered A-partition of M into k non-empty blocks we mean

the partition M = M1 ∪M2 ∪ · · ·∪Mk where M1 ⊃ A
(1)

, Mk ⊃ A
(2)

, and
the order of the blocks is also taken into account. With every ordered
A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk we associate the set

ord(M1, . . . , Mk) =
⋃

1≤i<j≤k

Mi × Mj ⊂ M × M. (6)

Lemma 11. Let k ≤ |M | be fixed. Then

(i) for every ordered A-partition M = M1 ∪ M2 ∪ · · · ∪ Mk the set
ord(M1, . . . , Mk) is a maximal element in Ordk(M);

(ii) different ordered A-partitions of M correspond to different elements
in Ordk(M);

(iii) each maximal element in Ordk(M) has the form ord(M1, . . . , Mk)
for some ordered A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk.

Proof. Statements (i) and (ii) are proved analogously to lemma 7 from
[4].
(iii) Let the order Λ ∈ Ordk(M) be fixed. Denote by M1 the set of all

minimal elements of the relation Λ. By definition A
(1) ⊂ M1, therefore

M1 6= ∅. For every increasing (with respect to Λ) chain x1 < · · · < xm

of elements in M \ M1 there exists x0 ∈ M such that x0 < x1. Hence,
the cardinality of every increasing chain in M \M1 is bounded by k − 1.
Denote by M2 the set of all minimal elements in M \ M1, by M3 the set
of all minimal elements in M \ (M1 ∪ M2) and so on. In k steps we get

the partition M = M1 ∪ M2 ∪ · · · ∪ Mk, for which A
(1) ⊂ M1. Observe

that the elements of A
(2)

are maximal by the definition of Λ. Hence set

M̃i = Mi \ A
(2)

, 1 ≤ i ≤ k − 1,

M̃k = Mk ∪ A
(2)

and get the new partition M = M̃1 ∪ M̃2 ∪ · · · ∪ M̃k. Clearly, Λ ⊂
ord(M̃1, . . . , M̃k) and from the maximality of Λ we have Λ = ord(M̃1, . . . , M̃k).
The lemma is proved.
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For every ordered A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk denote

T (M1, . . . , Mk) = {β ∈ ISn : x ∈ Mi and β(x) ∈ Mj imply i < j

for all x ∈ dom(β)}. (7)

Lemma 12.

T (M1, . . . , Mk) = Mon(ord(M1, . . . , Mk)).

Proof. The assertion follows from definitions (3), (4), (6) and (7).

Theorem 13. (i) For every ordered A-partition of M = M1 ∪ M2 ∪
· · · ∪ Mk the semigroup T (M1, . . . , Mk) is maximal in Nilk.

(ii) Different ordered A-partitions of M correspond to different subsemi-
groups in Nilk.

(iii) Every maximal subsemigroup in Nilk has the form T (M1, . . . , Mk)
for some ordered A-partition of M = M1 ∪ M2 ∪ · · · ∪ Mk.

Proof. From lemma 12 it follows that the set T (M1, . . . , Mk) is a sub-
semigroup in Nilk. We show that

ΛT (M1,...,Mk) = ord(M1, . . . , Mk). (8)

From proposition 10(i) we have ΛT (M1,...,Mk) ⊂ ord(M1, . . . , Mk).
We prove the contrary inclusion. Let (x, y) ∈ ord(M1, . . . , Mk). Take
β ∈ ISn such that rank(β) = 1, dom(β) = {x}, im(β) = {y}. By
definition β ∈ Mon(ord(M1, . . . , Mk)), and using (4) we have (x, y) ∈
ΛMon(ord(M1,...,Mk)). Hence ΛT (M1,...,Mk) ⊃ ord(M1, . . . , Mk) and the equal-
ity (8) is proved.

Now let S ∈ Nilk be such that S ⊃ T (M1, . . . , Mk). According to
lemma 11 the order ord(M1, . . . , Mk) is a maximal element in Ordk(M),
therefore by proposition 8(ii) we get ΛS = ord(M1, . . . , Mk). Finally from
proposition 10(i), lemma 12, and equality (8) it follows

S ⊂ Mon(ΛS) = Mon(ord(M1, . . . , Mk)) = T (M1, . . . , Mk)

and the statement (i) is proved.
Statements (ii) and (iii) follow from proposition 8, lemma 11 and

lemma 12.

Let S be maximal nilpotent subsemigroup of (ISn, ∗) of nilpotency
degree k and let M = M1 ∪ M2 ∪ · · · ∪ Mk be the ordered A-partition of

M = A
(1) ∪A∪A

(2)
, which corresponds to the partial order ΛS . We call

the set (|M1|, |M2|, . . . , |Mk|) ∈ N
k the type of nilpotent subsemigroup S

and denote it by type(S). Set (|M1|, . . . , |Mk|)# = (|Mk|, . . . , |M1|).
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Proposition 14. Let T1 and T2 be two maximal nilpotent subsemigroups
of (ISn, ∗) of nilpotency degree k. Then

(i) if k = 2 then T1 and T2 are isomorphic if and only if type(T1) =
type(T2) or type(T1) = type(T2)

#.

(ii) if k > 2 then T1 and T2 are isomorphic if and only if type(T1) =
type(T2). T1 and T2 are anti-isomorphic if and only if type(T1) =
type(T2)

#.

The proof follows from proposition 7 and corresponding statements
about nilpotent subsemigroups of IS(M) from [3] (lemma 14.4 and the-
orem 14.1).

�
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