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Marek Bożejko*, Ken Dykema†, Franz Lehner‡

Communicated by R. I. Grigorchuk

Abstract. A combinatorial proof is given for the fact that

the Cayley graph of the fundamental group Γg of the closed, ori-

entable surface of genus g ≥ 2 with respect to the usual generating

set is isomorphic to the Cayley graph of a certain Coxeter group

generated by 4g elements.

1. Introduction

The fundamental group of the closed, orientable surface of genus g ≥ 2
in its usual presentation is

Γg = 〈a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g = 1〉. (1)

It is an open question, whether the spectral radius of the simple random
walk on Γg with respect to the symmetric generating set

Vg = {a1, a
−1
1 , b1, b

−1
1 , . . . , ag, a

−1
g , bg, b

−1
g } (2)

is an algebraic number. Bounds on this spectral radius have been ob-
tained by several authors; see [2], [1], [7] and [3].

For a group G with symmetric generating set S, let G(G,S) denote
the resulting Cayley graph. The spectral radius of the random walk
mentioned above depends only on the Cayley graph of G(Γg, Vg). It well
known to experts that there is a graph isomorphism from the Cayley
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graph of this surface group onto the Cayley graph G(G4g,W4g), where
G4g is the Coxeter group

G4g = 〈s1, . . . , s4g | s2i = 1, (sisi+1)2g = 1, 1 ≤ i ≤ 4g〉, (3)

with all subscripts of s taken modulo 4g, and where

W4g = {s1, . . . , s4g}. (4)

This result is of interest in part because it opens new avenues for tech-
niques of free probability theory (see [6]) to be applied to the random
walks on the surface groups. See the appendix, where a geomtric proof
(that was kindly shown to us by J.G. Ratcliffe) is given. In this paper
we provide an elementary combinatorial proof of this graph isomorphism.
This proof utilizes some techniques involving free monoids that may be
of further interest.

We now summarize the contents of this paper. In §2, we show that
certain bijections between free monoids induce isomorphisms of Cayley
graphs. In §3, we prove the graph isomorphism

G(Γg, Vg) ∼= G(G4g,W4g) (5)

in the case g = 2. The proof of this special case is simpler than and
motivates our proof of the general case. Parts of the Caylay graphs
G(Γ2, V2) and G(G8,W8) are drawn in Figures 1 and 2, and these drawings
motivate our construction of an isomorphism. In §4, we construct an
isomorphism (5) for general g ≥ 2.

2. Certain maps yielding isomorphisms of Cayley graphs

For i ∈ {1, 2}, let Gi be a group with symmetric generating set Si ⊆
Gi. Let S∗

i denote the free monoid on Si. We will let |w| denote the
length of a word w ∈ S∗

i . Take Ri ⊆ S∗
i × S∗

i and let Ci ⊆ S∗
i × S∗

i

denote the congruence generated by Ri, namely, the translation–invariant
equivalence relation generated by Ri; suppose that Gi is the quotient of
S∗

i by Ci, i.e. that Gi = Mon〈Si | Ri〉 is a presentation of Gi as a
monoid. (See, for example, Chapter 1 of [5] for basic facts about monoid
presentations.)

The following lemma follows directly from the definition of a congru-
ence.

Lemma 2.1. Let ψ : S∗
1 → S∗

2 and suppose that whenever (u, v) ∈ R1

and w, z ∈ S∗
1 , we have (ψ(wuz), ψ(wvz)) ∈ C2. Then (ψ×ψ)(C1) ⊆ C2.
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Proposition 2.2. Suppose ψ : S∗
1 → S∗

2 is a bijection such that

(i) if w ∈ S∗
1 and x ∈ S1, then there is y ∈ S2 such that ψ(wx) =

ψ(w)y,

(ii) (ψ × ψ)(C1) = C2.

Then, considering the quotients Gi = S∗
i /Ci, ψ descends to a bijection

from G1 onto G2 that implements a graph isomorphism from the Cayley
graph G(G1, S1) onto the Cayley graph G(G2, S2).

Proof. Let S∗
i (n) denote the set of words belonging to Si having length

n. Taking w = ∅ to be the empty word in S∗
1 , from (i) we get ψ(S1) ⊆

S∗
2(m + 1), where m is the length of ψ(∅). Moreover, using induction

on n, we see ψ(S∗
1(n)) ⊆ S∗

2(m + n) for all n ∈ N. Using that ψ is a
bijection, we conclude that m = 0 and

ψ(S∗
1(n)) = S∗

2(n).

Let w̃ ∈ S∗
2 and y ∈ S2. Let n = |w̃| and let w = ψ−1(w̃). Since

|ψ−1(w̃y)| = n+ 1, we have ψ−1(w̃y) = w′x for some w′ ∈ S∗
1(n). By (i),

w̃y = ψ(w′x) = ψ(w′)ỹ for some ỹ ∈ S2. But we must have w̃ = ψ(w′)
and ỹ = y. To summarize, we have shown the analogue of (i) for ψ−1,
namely:

∀w̃ ∈ S∗
2 ∀y ∈ S2 ∃x ∈ S1 such that ψ−1(w̃y) = ψ−1(w̃)x. (6)

Let ψ : G1 → G2 denote the map of equivalence classes induced by ψ.
Clearly, ψ is a bijection. Consider any edge of G(G1, S1); its endpoints
are g and gx for some g ∈ G1 and x ∈ S1. Let w ∈ S∗

1 be a representative
of g. By (i), there is y ∈ S2 such that ψ(wx) = ψ(w)y. Therefore,
ψ(gx) = ψ(g)y. So ψ(gx) and ψ(g) are the endpoints of an edge of
G(G2, S2). Arguing similarly, but using (6) instead of (i), we see that the
endpoints of any edge of G(G2, S2) get mapped by ψ−1 to the endpoints
of an edge of G(G1, S1). Thus, ψ implements an isomorphism of Cayley
graphs.

3. The genus 2 case

Consider the fundumental group of the closed orientable surface of genus
g = 2 in its usual presentation:

Γ2 = 〈a, b, c, d | aba−1b−1cdc−1d−1 = 1〉

and take the symmetric generating set V = {a, a−1, b, b−1, c, c−1, d, d−1}.
Part of the Cayley graph G(Γ2, V ) around the identity element is drawn
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Figure 1: Part of the Cayley graph G(Γ2, V )
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1

a

ab−1

ab−1a−1

ab−1a−1d = b−1cdc−1

b−1

b−1c

b−1cd

a−1

b

c

d−1

c−1

d

dc

dcd−1

dcd−1c−1 = aba−1b−1

ab

aba−1

b−1a−1dc

= a−1b−1cd

a−1dcd−1

= ba−1b−1c

cdc−1d−1 = bab−1a−1d−1aba−1 = cd−1c−1b

c−1d−1ab

= d−1c−1ba

dc−1d−1a

= c−1bab−1

in Figure 1. (We have chosen to draw Cayley graphs with respect to
multiplication on the right.) Consider also the Coxeter group

G8 = 〈s1, . . . , s8 | s2i = (sisi+1)4 = 1, (1 ≤ i ≤ 8)〉,

where the subscript in si+1 is to be taken modulo 8. Take the symmetric
generating set W = {s1, . . . , s8}. Part of the Cayley graph G(G8,W )
around the identity element is drawn in Figure 2.

Theorem 3.1. The Cayley graphs G(Γ2, V ) and G(G8,W ) are isomor-
phic.

Proof. Let V ∗ and W ∗ be the free monoids on generating sets V and
W , respectively. Note that we continue to use the notation a−1, etc., for
elements of V , even though in the monoid V ∗ they are not invertible.
Thus, for example, ab−1bc and ac are distinct elements of V ∗. We will
keep this notation because we will use the order–two permutation x 7→
x−1 of V . Monoid presentations of the groups Γ2 and G8 are

Γ2 = Mon〈V | RΓ〉, G8 = Mon〈W | RG〉,
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Figure 2: Part of the Cayley graph G(G8,W )
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1

s1

s1s2

s1s2s1

s1s2s1s2 = s2s1s2s1

s2

s2s1

s2s1s2

s3

s4

s5

s6

s7

s8

s8s1

s8s1s8

s8s1s8s1 = s1s8s1s8

s1s8

s1s8s1

s2s3s2s3

= s3s2s3s2

s3s4s3s4

= s4s3s4s3

s5s4s5s4 = s4s5s4s5s6s5s6s5 = s5s6s5s6

s7s6s7s6

= s6s7s6s7

s8s7s8s7

= s7s8s7s8

where

RΓ = {(aba−1b−1, dcd−1c−1)} ∪ {(xx−1, ∅) | x ∈ V } ⊆ V ∗ × V ∗

RG = {(sisi, ∅) | 1 ≤ i ≤ 8} ∪ {(sisi+1sisi+1, si+1sisi+1si) | 1 ≤ i ≤ 8} ⊆

⊆W ∗ ×W ∗,

where ∅ denotes the empty word, i.e. the identity element of the monoid
V ∗ or W ∗ and where the subscript in si+1 should be taken modulo 8. We
will construct a bijection ψ : W ∗ → V ∗ and use Proposition 2.2 to show
that ψ implements an isomorphism of Cayley graphs. Let CΓ ⊆ V ∗ × V ∗

and CG ⊆ W ∗ ×W ∗ be the congruence relations generated by RΓ and,
respectively, RG.

An inspection of the drawings in Figures 1 and 2 suggests an obvious
relation (of being “neighbors”) on the generating sets V and W , respec-
tively. Namely, two generators are neighbors if there is an octagon in
the Cayley graph that contains both of them. These relations of V and,
respectively, W are encoded in the octagons of Figures 3 and 4. As
suggested by these figures, let us define the bijection η : {1, . . . , 8} → V
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Figure 3: A relation on the generators of Γ2
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d−1
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Figure 4: A relation on the generators of G8

1

2

3

4

5

6

7

8

by

η =

(

1 2 3 4 5 6 7 8
a b−1 a−1 b c d−1 c−1 d

)

.

and set ψ(si) = η(i). Suppose we try to define ψ(s1sj) = ψ(s1)γ(j) =
aγ(j) for some bijection γ : {1, . . . , 8} → V . Inspecting Figures 1 and 2,
we see that we need

γ(1) = a−1, γ(2) = b−1, γ(8) = b. (7)

But we also want γ to send neighbors in Figure 4 to neighbors in Figure 3.
The values (7) are, therefore, sufficient to determine γ. We have γ = η◦τ ,
where

τ =

(

1 2 3 4 5 6 7 8
3 2 1 8 7 6 5 4

)

is the permutation arising as the reflection of the octagon in Figure 4
through the axis containing vertices 2 and 6. Similarly, we are led to
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define ψ(s2sj) = b−1η(σ(j)), where

σ =

(

1 2 3 4 5 6 7 8
5 4 3 2 1 8 7 6

)

is the permutation arising from the reflection of the octagon through the
axis containing vertices 3 and 7. Exploring further, we are led to the
recursive definition of ψ described below.

Let ρ = τσ. Then ρ is the rotation of the octagon through angle π/2.
Let H be the group generated by σ and τ . Then H is the dihedral group
of order 8, and the sets {1, 3, 5, 7} and {2, 4, 6, 8} are both preserved by
all elements of H. Consider the map W ∗ → H denoted w 7→ hw and
defined recursively by h∅ = id and

hwsk
=

{

τhw, k odd

σhw, k even,

for all w ∈W ∗. Define ψ : W ∗ → V ∗ by ψ(∅) = ∅ and

ψ(wsk) = ψ(w)η(hw(k))

for all w ∈ W ∗. It is clear that ψ is a bijection from W ∗ onto V ∗ that
preserves word length and that condition (i) of Proposition 2.2 is satisfied
(with S1 = W and S2 = V ). We also observe the following.

Claim 3.2. If w,w′ ∈W ∗ and if hw = hw′ , then for every z ∈W ∗ there is
z̃ ∈ V ∗ such that ψ(wz) = ψ(w)z̃ and ψ(w′z) = ψ(w′)z̃. Moreover, this
map z 7→ z̃ is a bijection from W ∗ onto V ∗ that preserves word length.

Suppose i ∈ {1, 3, 5, 7} and w ∈W ∗. Then hwsi
= τhw,

ψ(wsisi) = ψ(w)η(hw(i))η(τhw(i))

and hwsisi
= ττhw = hw. But hw(i) is odd and for all k ∈ {1, 3, 5, 7} we

have η(τ(k)) = η(k)−1. Thus, using Claim 3.2, for every z ∈W ∗ there is
z̃ ∈ V ∗ such that

ψ(wz) = ψ(w)z̃, ψ(wsisiz) = ψ(w)xx−1z̃, (8)

where x = η(hw(i)) ∈ V , and we have (ψ(wsisiz), ψ(wz)) ∈ CΓ.
Similarly, if i ∈ {2, 4, 6, 8} and w ∈W ∗ then

ψ(wsisi) = ψ(w)η(hw(i))η(σhw(i))

and hwsisi
= σσhw = hw. But hw(i) is even, and for all k ∈ {2, 4, 6, 8} we

have η(σ(k)) = η(k)−1. Thus, using Claim 3.2, for every z ∈W ∗ there is
z̃ ∈ V ∗ such that

ψ(wz) = ψ(w)z̃, ψ(wsisiz) = ψ(w)xx−1z̃, (9)
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where x = η(hw(i)) ∈ V , and again we have (ψ(wsisiz), ψ(wz)) ∈ CΓ.
Let i ∈ {1, 3, 5, 7} and w ∈W ∗. Then

ψ(wsisi±1sisi±1) = ψ(w)t,

where

t = η(hw(i))η(τhw(i± 1))η(στhw(i))η(τστhw(i± 1)) (10)

and
hwsisi±1sisi±1

= στστhw = ρ2hw.

On the other hand,

ψ(wsi±1sisi±1si) = ψ(w)u,

where

u = η(hw(i± 1))η(σhw(i))η(τσhw(i± 1))η(στσhw(i)) (11)

and
hwsi±1sisi±1si

= τστσhw = ρ−2hw = ρ2hw.

Invoking Claim 3.2, for every z ∈W ∗ there is z̃ ∈ V ∗ such that

ψ(wsisi±1sisi±1z) = ψ(w)tz̃, ψ(wsi±1sisi±1siz) = ψ(w)uz̃,

where t and u are the words given in (10) and (11) that are determined
by the values of hw(i) and hw(i±1). But hw(i) ∈ {1, 3, 5, 7} and hw(i±1)
is a neighbor of hw(i) on the octagon in Figure 4. The values of t and
u are easily computed in the eight possible cases and these are displayed
in Table 1. We always get that (t, u) belongs to CΓ. Therefore, for every
w, z ∈W ∗,

(

ψ(wsisi±1sisi±1z), ψ(wsi±1sisi±1siz)
)

= (ψ(w)tz̃, ψ(w)uz̃) ∈ CΓ. (12)

By Lemma 2.1, we conclude

(ψ × ψ)(CG) ⊆ CΓ. (13)

In order to show the reverse inclusion in (13), we argue backwards. Let
w̃ ∈ V ∗ and x ∈ V . There is w ∈ W ∗ such that ψ(w) = w̃. Choose
i ∈ {1, . . . , 8} such that η(hw(i)) = x. When we invoked Claim 3.2 to
find (8) and (9), we found that for every z ∈ W ∗ there is z̃ ∈ V ∗ such
that

ψ(wsisiz) = w̃xx−1z̃, ψ(wz) = w̃z̃,
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and that the map z 7→ z̃ is a bijection from W ∗ onto V ∗. Hence, for all
w̃, z̃ ∈ V ∗ and x ∈ V , there is z ∈W ∗ such that

(ψ−1(w̃xx−1z̃), ψ−1(w̃z̃)) = (wsisiz, wz) ∈ CG.

It remains to consider the relation (aba−1b−1, dcd−1c−1) ∈ RΓ. Given
w̃ ∈ V ∗, let w = ψ−1(w̃). Since hw is a symmetry of the octagon in
Figure 4 that maps odds to odds, we may choose i ∈ {1, 3, 5, 7} and a
sign ± such that hw(i) = 1 and hw(i±1) = 8. When we invoked Claim 3.2
above to conclude (12), for every z̃ ∈ V ∗ we found z ∈W ∗ such that

(ψ−1(w̃aba−1b−1z̃), ψ−1(w̃dcd−1c−1z̃)) =

= (wsisi±1sisi±1z, wsi±1sisi±1siz) ∈ CG.

Applying Lemma 2.1, we conclude

(ψ−1 × ψ−1)(CΓ) ⊆ CG.

All the conditions needed to apply Proposition 2.2 have been proved
and we conclude that ψ induces an isomorphism of the Cayley graphs.

4. The general case of genus g ≥ 2

Let g be an integer, g ≥ 2. Consider the fundamental group Γg of the
closed, orientable surface of genus g in its usual presentation (1). Let
V = Vg be the symmetric generating set (2). Consider the Coxeter group
G = G4g given at (3) and let W = W4g be as in (4).

Theorem 4.1. The Cayley graphs G(Γg, V ) and G(G,W ) are isomorphic.

Table 1: Values of t and u in the different cases.

hw(i) hw(i± 1) t u

1 8 aba−1b−1 dcd−1c−1

1 2 ab−1a−1d b−1cdc−1

3 2 a−1b−1cd b−1a−1dc

3 4 a−1dcd−1 ba−1b−1c

5 4 cdc−1d−1 bab−1a−1

5 6 cd−1c−1b d−1aba−1

7 6 c−1d−1ab d−1c−1ba

7 8 c−1bab−1 dc−1d−1a.
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Proof. Let V ∗ and W ∗ denote the free monoids on V and W , respectively.
We will construct a bijection ψ : W ∗ → V ∗ for which we can invoke
Proposition 2.2. This construction is analogous to the one in the proof
of the special case, Theorem 3.1, but more complicated.

In V ∗, a−1
j and b−1

j should be understood as symbols only and not

as multiplicative inverses. Thus, for example, a1b1b
−1
1 a2 and a1a2 are

distinct elements of V ∗. We chose not to introduce extra symbols to
replace a−1

j and b−1
j , because we will use the notation x 7→ x−1 (here

taking inverses in Γg) for the obvious permutation of V . When k ∈ Z

we will take ak to mean aj where j ∈ {1, . . . , g} and j ≡ k (mod g)
and similarly for a−1

j , bj and b−1
j . Similarly, for elements sj of W , the

subscript j is always taken modulo 4g.

For future use, it will be convenient to have names for certain elements
of V ∗ that correspond to taking the first half u of a cyclic permutation
of the word

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g

and the inverse v of the second half. Let n ∈ Z. If g is even, then set

u1(n) = (anbna
−1
n b−1

n )(an+1bn+1a
−1
n+1b

−1
n+1) · · · (an+ g

2
−1bn+ g

2
−1a

−1
n+ g

2
−1
b−1
n+ g

2
−1

)

u2(n) = (bna
−1
n b−1

n an+1)(bn+1a
−1
n+1b

−1
n+1an+2) · · · (bn+ g

2
−1a

−1
n+ g

2
−1
b−1
n+ g

2
−1
an+ g

2

)

u3(n) = (a−1
n b−1

n an+1bn+1)(a−1
n+1b

−1
n+1an+2bn+2) · · · (a−1

n+ g

2
−1
b−1
n+ g

2
−1
an+ g

2

bn+ g

2

)

u4(n) = (b−1
n an+1bn+1a

−1
n+1)(b−1

n+1an+2bn+2a
−1
n+2) · · · (b−1

n+ g

2
−1
an+ g

2

bn+ g

2

a−1
n+ g

2

)

v1(n) = (bn−1an−1b
−1
n−1a

−1
n−1)(bn−2an−2b

−1
n−2a

−1
n−2) · · · (bn− g

2

an− g

2

b−1
n− g

2

a−1
n− g

2

)

v2(n) = (a−1
n bn−1an−1b

−1
n−1)(a−1

n−1bn−2an−2b
−1
n−2) · · · (a−1

n− g

2
+1
bn− g

2

an− g

2

b−1
n− g

2

)

v3(n) = (b−1
n a−1

n bn−1an−1)(b−1
n−1a

−1
n−1bn−2an−2) · · · (b−1

n− g

2
+1
a−1

n− g

2
+1
bn− g

2

an− g

2

)

v4(n) = (anb
−1
n a−1

n bn−1)(an−1b
−1
n−1a

−1
n−1bn−2) · · · (an− g

2
+1b

−1
n− g

2
+1
a−1

n− g

2
+1
bn− g

2

),

while if g is odd, then set

u1(n) = (anbna
−1
n b−1

n )(an+1bn+1a
−1
n+1b

−1
n+1) · · ·

· · · (a
n+ g−1

2
−1bn+ g−1

2
−1a

−1

n+ g−1

2
−1
b−1

n+ g−1

2
−1

)a
n+ g−1

2

b
n+ g−1

2

u2(n) = (bna
−1
n b−1

n an+1)(bn+1a
−1
n+1b

−1
n+1an+2) · · ·

· · · (b
n+ g−1

2
−1a

−1

n+ g−1

2
−1
b−1

n+ g−1

2
−1
a

n+ g−1

2

)b
n+ g−1

2

a−1

n+ g−1

2

u3(n) = (a−1
n b−1

n an+1bn+1)(a−1
n+1b

−1
n+1an+2bn+2) · · ·

· · · (a−1

n+ g−1

2
−1
b−1

n+ g−1

2
−1
a

n+ g−1

2

b
n+ g−1

2

)a−1

n+ g−1

2

b−1

n+ g−1

2
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u4(n) = (b−1
n an+1bn+1a

−1
n+1)(b−1

n+1an+2bn+2a
−1
n+2) · · ·

· · · (b−1

n+ g−1

2
−1
a

n+ g−1

2

b
n+ g−1

2

a−1

n+ g−1

2

)b−1

n+ g−1

2

a
n+ g−1

2
+1

v1(n) = (bn−1an−1b
−1
n−1a

−1
n−1)(bn−2an−2b

−1
n−2a

−1
n−2) · · ·

· · · (b
n− g−1

2

a
n− g−1

2

b−1

n− g−1

2

a−1

n− g−1

2

)b
n− g−1

2
−1an− g−1

2
−1

v2(n) = (a−1
n bn−1an−1b

−1
n−1)(a−1

n−1bn−2an−2b
−1
n−2) · · ·

· · · (a−1

n− g−1

2
+1
b
n− g−1

2

a
n− g−1

2

b−1

n− g−1

2

)a−1

n− g−1

2

b
n− g−1

2
−1

v3(n) = (b−1
n a−1

n bn−1an−1)(b−1
n−1a

−1
n−1bn−2an−2) · · ·

· · · (b−1

n− g−1

2
+1
a−1

n− g−1

2
+1
b
n− g−1

2

a
n− g−1

2

)b−1

n− g−1

2

a−1

n− g−1

2

v4(n) = (anb
−1
n a−1

n bn−1)(an−1b
−1
n−1a

−1
n−1bn−2) · · ·

· · · (a
n− g−1

2
+1b

−1

n− g−1

2
+1
a−1

n− g−1

2
+1
b
n− g−1

2

)a
n− g−1

2

b−1

n− g−1

2

.

Let

RΓ = {(u1(1), v1(1))} ∪

g
⋃

i=1

{(aia
−1
i , ∅), (a−1

i ai, ∅), (bib
−1
i , ∅), (b−1

i bi, ∅)} ⊆

V ∗ × V ∗

RG = {(sisi, ∅) | 1 ≤ i ≤ 4g} ∪ {((sisi+1)g, (si+1si)
g) | 1 ≤ i ≤ 4g} ⊆

W ∗ ×W ∗.

Then
Γg = Mon〈V | RΓ〉, G4g = Mon〈W | RG〉

are monoid presentations of the groups. Let CΓ ⊆ V ∗ × V ∗ and CG ⊆
W ∗ ×W ∗ be the congruences generated by RΓ and RG, respectively. We
have

(uj(n), vj(n)) ∈ CΓ, (n ∈ Z, 1 ≤ j ≤ 4). (14)

Consider the regular 4g–gon P with vertices labeled 1, 2, . . . , 4g going
clockwise and for p ∈ {1, . . . , 4g} let τp be the reflection of P through the
axis that contains the vertex p. Note that τp depends only on p modulo
2g. Let ρ be the clockwise rotation of P through angle 2πk

2g
. For n ∈ Z,

we will let τn denote the reflection τk where k ∈ {1, . . . 4g} and k ≡ n
(mod g). We have

τp1
τp2

= ρp2−p1 , (p1, p2 ∈ Z).

Let H denote the group of symmetries of P generated by {τp | 1 ≤ p ≤
4g}. We will identify elements of H with the corresponding permutations
of {1, . . . , 4g} according to how they move the vertices. Note that every
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element of H preserves the set {1, 3, . . . , 4g − 1} of odd numbers. Also,
H is isomorphic to the dihedral group of order 4g.

Consider the bijection η : {1, 2, . . . , 4g} → V given by

η =

(

1 2 3 4 5 6 7 8 . . . 4g − 3 4g − 2 4g − 1 4g

a1 b−1
1 a−1

1 b1 a2 b−1
2 a−1

2 b2 . . . ag b−1
g a−1

g bg

)

.

Thus,

η(4k − 3) = ak, η(4k − 2) = b−1
k , η(4k − 1) = a−1

k , η(4k) = bk

for all k ∈ {1, . . . , g}. Consider the map σ : {1, . . . , 4g} → H defined by

σ(4k − 3) = σ(4k − 1) = τ4k−2

σ(4k − 2) = σ(4k) = τ4k−1, (1 ≤ k ≤ g).

Thus, we have

η(σ(i)i) = η(i)−1 (15)

σ(σ(i)i) = σ(i) (16)

for all i ∈ {1, . . . , 4g}. Define recursively a map W ∗ → H, denoted
w 7→ hw, by

h∅ = id

hwsi
= σ(hw(i))hw (w ∈W ∗, si ∈W ).

Define recursively a map ψ : W ∗ → V ∗ by

ψ(∅) = ∅

ψ(wsi) = ψ(w)η(hw(i)) (w ∈W ∗, si ∈W ).

It is clear that ψ is a bijection from W ∗ onto V ∗ that preserves word
length and that condition (i) of Proposition 2.2 is satisfied (with S1 = W
and S2 = V ).

Claim 4.2. Suppose w,w′ ∈ W ∗ and suppose hw = hw′ . Then for every
z ∈W ∗ we have hwz = hw′z and there is a unique z̃ ∈ V ∗ such that

ψ(wz) = ψ(w)z̃ (17)

ψ(w′z) = ψ(w′)z̃. (18)

Moreover, the map z 7→ z̃ is a bijection from W ∗ onto V ∗.
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Proof. Uniqueness of z̃ is clear. If z = ∅ then (17) and (18) hold with
z̃ = ∅. Take z = si. Then hwz = σ(hw(i))hw = σ(hw′(i))hw′ = hw′z.
Moreover,

ψ(wz) = ψ(w)η(hw(i))

ψ(w′z) = ψ(w′)η(hw′(i)),

so (17) and (18) hold with z̃ = η(hw(i)), and the map z 7→ z̃ is a bijection
from W onto V . Now one easily shows by induction on n that if z ∈W ∗

with |z| = n, then z̃ exists such that (17) and (18) hold and the map
z 7→ z̃ is a bijection from the set of words in W ∗ of length n onto the set
of words in V ∗ of length n. This will finish the proof of Claim 4.2.

Claim 4.3. Let w ∈W ∗ and let i ∈ {1, . . . , 4g}. Then

hwsisi
= hw

and
ψ(wsisi) = ψ(w)xx−1,

where x = η(hw(i)).

Proof. We have ψ(wsi) = ψ(w)x and hwsi
= σ(hw(i))hw. Thus,

ψ(wsisi) = ψ(w)xη(hwsi
(i)) = ψ(w)xη(σ(hw(i))hw(i)) = ψ(w)xx−1,

where we have used (15) to obtain the last equality. Also,

hwsisi
= σ(hwsi

(i))hwsi
= σ(σ(hw(i))hw(i))σ(hw(i))hw = hw,

where we have used (16) and the fact that the each σ(n) is a reflection.
This finishes the proof of Claim 4.3

Claim 4.4. Let w ∈W ∗, let i ∈ {1, 3, 5, . . . , 4g− 1} and choose a sign ±.
Then

hw(sisi±1)g = hw(si±1si)g (19)

and there is (ũ, ṽ) ∈ CΓ ⊆ V ∗ × V ∗ such that

ψ(w(sisi±1)g) = ψ(w)ũ, ψ(w(si±1si)
g) = ψ(w)ṽ. (20)

Proof. Let k = hw(i) and ℓ = hw(i ± 1). Then k is odd, ℓ is even, and
|k − ℓ| = 1. let p1 = k and p2 = σ(p1)ℓ. The possible values of k, ℓ,
p1 and p2 are displayed in Table 2, where n is an integer. We assign to
a pair (p, p′) a name as indicated in Table 3, and we have included in
Table 2 the names of the pairs (p1, p2). We find
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ψ(wsi) = ψ(w)η(p1) hwsi
= σ(p1)hw

ψ(wsisi±1) = ψ(w)η(p1)η(p2) hwsisi±1
= σ(p2)σ(p1)hw.

Defining recursively

pj+2 = σ(pj+1)σ(pj)pj , (j ≥ 1), (21)

we find

ψ(w(sisi±1)g) = ψ(w)η(p1)η(p2) · · · η(p2g−1)η(p2g) (22)

hw(sisi±1)g = σ(p2g)σ(p2g−1) · · ·σ(p2)σ(p1)hw. (23)

In the various cases, a step of the recursion (pj , pj+1) 7→ (pj+2, pj+3)
determined by (21) for j odd is described in Table 4. There, “(in)” refers
to the is the name of the case (pj , pj+1) and “(out)” refers to the name of
the case corresponding to (pj+2, pj+3).

Similarly, letting q1 = ℓ and q2 = σ(q1)k and making the recursive
definition

qj+2 = σ(qj+1)σ(qj)qj , (j ≥ 1), (24)

we find

ψ(w(si±1si)
g) = ψ(w)η(q1)η(q2) · · · η(q2g−1)η(q2g) (25)

hw(si±1si)g = σ(q2g)σ(q2g−1) · · ·σ(q2)σ(q1)hw. (26)

The starting cases are given in Table 5, the names of pairs (q, q′) are
assigned according to Table 6 and the names of (q1, q2) are included
in Table 5. The recursive step (qj , qj+1) 7→ (qj+2, qj+3) is described in
Table 7.

Suppose we start with k = 4n− 3, ℓ = 4n− 4. When we recursively
calculate p1, p2, . . . , p2g−1, p2g, we run through g blocks of two whose
names are

{

An,Cn,An+1,Cn+1, . . . ,An+ g

2
−1,Cn+ g

2
−1, g even

An,Cn,An+1,Cn+1, . . . ,An+ g−1

2
−1,Cn+ g−1

2
−1,An+ g−1

2

, g odd.

Table 2: Possible values of k, ℓ, p1 and p2.

k ℓ p1 σ(p1) p2 σ(p2) Name

4n− 3 4n− 4 4n− 3 τ4n−2 4n τ4n−1 An

4n− 3 4n− 2 4n− 3 τ4n−2 4n− 2 τ4n−1 Bn

4n− 1 4n− 2 4n− 1 τ4n−2 4n− 2 τ4n−1 Cn

4n− 1 4n 4n− 1 τ4n−2 4n− 4 τ4n−5 Dn
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We find

(p1, p2, . . . , p2g−1, p2g) =

=



























(4n− 3, 4n, 4n− 1, 4n− 2, 4n+ 1, 4n+ 4, 4n+ 3, 4n+ 2, . . .
. . . , 4n+ 2g − 7, 4n+ 2g − 4, 4n+ 2g − 5, 2n+ 2g − 6), g even

(4n− 3, 4n, 4n− 1, 4n− 2, 4n+ 1, 4n+ 4, 4n+ 3, 4n+ 2, . . .
. . . , 4n+ 2g − 9, 4n+ 2g − 6, 4n+ 2g − 7, 4n+ 2g − 8,

4n+ 2g − 5, 4n+ 2g − 2), g odd

and
η(p1)η(p2) · · · η(p2g−1)η(p2g) = u1(n). (27)

Furthermore, using the fourth column in Table 4, we immediately get

σ(p2g)σ(p2g−1) · · ·σ(p2)σ(p1) = ρg. (28)

On the other hand, recursively calculating q1, q2, . . . , q2g−1, q2g, we have
g blocks of two whose names are

{

En,Gn−1,En−1,Gn−2, . . . ,En− g

2
+1,Gn− g

2

, g even

En,Gn−1,En−1,Gn−2, . . . ,En− g−1

2
+1,Gn− g−1

2

,E
n− g−1

2

, g odd.

This yields
η(q1)η(q2) · · · η(q2g−1)η(q2g) = v1(n). (29)

Using the fourth column in Table 7, we get

σ(q2g)σ(q2g−1) · · ·σ(q2)σ(q1) = (ρ−1)g = ρ−g. (30)

From (22) and (27) we have ψ(w(sisi±1)g) = ψ(w)u1(n). From (25)
and (29) we have ψ(w(si±1si)

g) = ψ(w)v1(n). By (23) and (28),
hw(sisi±1)g = ρghw. By (26) and (30), hw(si±1si)g = ρ−ghw = ρghw.
By (14), (u1(n), v1(n)) ∈ CΓ. We have proved the claim in the case
k = 4n− 3 and ℓ = 4n− 4.

Table 3: Names of (p, p′).

p p′ Name

4n− 3 4n An

4n− 3 4n− 2 Bn

4n− 1 4n− 2 Cn

4n− 1 4n− 4 Dn
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In a similar manner, if k = 4n− 3 and ℓ = 4n− 2, then we find

η(p1)η(p2) · · · η(p2g−1)η(p2g) = v4(n),

η(q1)η(q2) · · · η(q2g−1)η(q2g) = u4(n)

and

σ(p2g)σ(p2g−1) · · ·σ(p2)σ(p1) =

{

(ρρ−3)
g

2 = ρ−g, g even,

(ρρ−3)
g−1

2 ρ = ρ−g+2, g odd,

σ(q2g)σ(q2g−1) · · ·σ(q2)σ(q1) =

{

(ρ3ρ−1)
g

2 = ρg, g even,

(ρ3ρ−1)
g−1

2 ρ3 = ρg+2, g odd.

If k = 4n− 1 and ℓ = 4n− 2, then we find

η(p1)η(p2) · · · η(p2g−1)η(p2g) = u3(n),

η(q1)η(q2) · · · η(q2g−1)η(q2g) = v3(n)

and

σ(p2g)σ(p2g−1) · · ·σ(p2)σ(p1) = (ρ)g = ρg

σ(q2g)σ(q2g−1) · · ·σ(q2)σ(q1) = (ρ−1)g = ρ−g.

Finally, if k = 4n− 1 and ℓ = 4n, then we find

η(p1)η(p2) · · · η(p2g−1)η(p2g) = v2(n),

η(q1)η(q2) · · · η(q2g−1)η(q2g) = u2(n)

and

σ(p2g)σ(p2g−1) · · ·σ(p2)σ(p1) =

{

(ρ−3ρ)
g

2 = ρ−g, g even,

(ρ−3ρ)
g−1

2 ρ−3 = ρ−g−2, g odd,

σ(q2g)σ(q2g−1) · · ·σ(q2)σ(q1) =

{

(ρ−1ρ3)
g

2 = ρg, g even,

(ρ−1ρ3)
g−1

2 ρ−1 = ρg−2, g odd.

Table 4: The recursion (pj , pj+1) 7→ (pj+2, pj+3).

(in) pj pj+1 σ(pj+1)σ(pj) pj+2 σ(pj+2) pj+3 (out)

An 4n− 3 4n ρ 4n− 1 τ4n−2 4n− 2 Cn

Bn 4n− 3 4n− 2 ρ 4n− 1 τ4n−2 4n− 4 Dn

Cn 4n− 1 4n− 2 ρ 4n+ 1 τ4n+2 4n+ 4 An+1

Dn 4n− 1 4n− 4 ρ−3 4n− 7 τ4n−6 4n− 6 Bn−1
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Using (14), (22), (23), (25) and (26) in all these cases, the proof of
Claim 4.4 is finished.

Using Claims 4.2, 4.3 and 4.4 and using Lemma 2.1, we have

(ψ × ψ)(CG) ⊆ CΓ. (31)

In order to show the reverse inclusion in (31), we make use of some of the
calculations done in the proof of Claim 4.4, but reverse the argument.
Let w̃ ∈ V ∗ and x ∈ V . There is w ∈ W ∗ such that ψ(w) = w̃. Choose
i ∈ {1, . . . , 4g} such that η(hw(i)) = x. When we proved Claim 4.3, we
found that for every z ∈W ∗ there is z̃ ∈ V ∗ such that

ψ(wsisiz) = w̃xx−1z̃, ψ(wz) = w̃z̃,

and the map z 7→ z̃ is a bijection from W ∗ onto V ∗. Hence, for all
w̃, z̃ ∈ V ∗ and x ∈ V , there is z ∈W ∗ such that

(ψ−1(w̃xx−1z̃), ψ−1(w̃z̃)) = (wsisiz, wz) ∈ CG.

It remains to treat the relation (u1(1), v1(1)) ∈ RΓ. Given w̃ ∈ V ∗, let
w = ψ−1(w̃). We may choose i ∈ {1, 3, . . . , 4g − 1} and a sign ± such
that hw(i) = 1 and hw(i ± 1) = 4g. In the proof of Claim 4.4 for every
z̃ ∈ V ∗ we found z ∈W ∗ such that

(ψ−1(w̃u1(1)z̃), ψ−1(w̃v1(1)z̃)) = (w(sisi±1)gz, w(si±1si)
gz) ∈ CG.

Applying Lemma 2.1, we conclude

(ψ−1 × ψ−1)(CΓ) ⊆ CG.

We now apply Proposition 2.2 to conclude that ψ induces an isomor-
phism of the Cayley graphs.

Table 5: Possible values of k, ℓ, q1 and q2.
k ℓ q1 σ(q1) q2 σ(q2) Name

4n− 3 4n− 4 4n− 4 τ4n−5 4n− 7 τ4n−6 En

4n− 3 4n− 2 4n− 2 τ4n−1 4n+ 1 τ4n+2 Fn

4n− 1 4n− 2 4n− 2 τ4n−1 4n− 1 τ4n−2 Gn

4n− 1 4n 4n τ4n−1 4n− 1 τ4n−2 Hn
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5. Appendix. A geometric proof

In this section we present a classical, geometric proof of Theorem 4.1,
that was shown to us by J.G. Ratcliffe. We take g = n to avoid confusion
with the notation for side–pairing maps.

Geometric proof of Theorem 4.1. As in Example 4 on p. 382 of [4], there
is a regular hyperbolic 4n–gon P with dihedral angle π/2n. We position
P in the conformal disk model of the hyperbolic plane as in Figure 9.2.3
in [4] and we label the edges as in this figure (with a slight modification)
in positive order

S1, T
′
1, S

′
1, T1, . . . , Sn, T

′
n, S

′
n, Tn.

Let

gSi
, gS′

i
, gTi

, gT ′
i

(1 ≤ i ≤ n) (32)

be the side–pairing maps. By Poincaré’s fundamental polyhedron the-
orem (Theorem 11.2.2 in [4]; see also Theorem 6.7.7), the side–pairing
maps generate a discrete group Γ with fundamental polygon P and and
Γ has the presentation with generators (32) and relations

(

gSi
gS′

i

)

1≤i≤n
,

(

gTi
gT ′

i

)

1≤i≤n
, gS1

gT1
gS′

1
gT ′

1
· · · gSn

gTn
gS′

n
gT ′

n
.

This means that {gP | g ∈ Γ} is an exact tessellation of the hyperbolic
plane. Moreover, if S is a side of P , then S = P ∩ gSP . Hence, gS =
gP ∩ ggSP . This implies that the dual graph of the tessellation is the
undirected Cayley graph of the presentations.

Now P is a Coxeter polygon and so reflecting in the sides of P gen-
erates a Coxeter group G with 4n generators. Again, by Poincaré’s
fundamental polyhedron theorem (see Theorems 7.1.3 and 7.1.4 in [4]),
G is a discrete group with fundamental polygon P . The tessellation
{gP | g ∈ G} is the same tessellation as before and the undirected Cayley

Table 6: Names of (q, q′).

q q′ Name

4n− 4 4n− 7 En

4n− 2 4n+ 1 Fn

4n− 2 4n− 1 Gn

4n 4n− 1 Hn
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Table 7: The recursion (qj , qj+1) 7→ (qj+2, qj+3).

(in) qj qj+1 σ(qj+1)σ(qj) qj+2 σ(qj+2) qj+3 (out)

En 4n− 4 4n− 7 ρ−1 4n− 6 τ4n−5 4n− 5 Gn−1

Fn 4n− 2 4n+ 1 ρ3 4n+ 4 τ4n+3 4n+ 3 Hn+1

Gn 4n− 2 4n− 1 ρ−1 4n− 4 τ4n−5 4n− 7 En

Hn 4n 4n− 1 ρ−1 4n− 2 τ4n−1 4n+ 1 Fn

graph of the Coxeter presentation of G is the dual graph of the tessella-
tion. Therefore, Γ and G have isomorphic Cayley graphs with respect to
the above generators.
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