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Abstract. A discrete limit theorem in the sense of weak

convergence of probability measures on the complex plane for the

Estermann zeta-function is obtained. The explicit form of the limit

measure in this theorem is given.

Introduction

As usual, denote by P, N, N0, Z and C the sets of all primes, posi-
tive integers, non-negative integers, integers, real and complex numbers,
respectively. For arbitrary α ∈ C and m ∈ N, the generalized divisor
function σα(m) is defined by

σα(m) =
∑

d/m

dα.

If α = 0, then σα(m) becomes the divisor function

σ0(m) = d(m) =
∑

d/m

1.
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It is well known that, for every positive ǫ,

d(m) ≪ǫ mǫ, m ∈ N.

Here and in the sequel f(x) ≪η g(x) with a positive function g(x), x ∈ I,
means that there exists a constant c = c(η) > 0 such that |f(x)| ≤ cg(x),
x ∈ I. Since

σα(m) = mασ−α(m), (1)

hence we have that

σα(m) ≪ǫ mǫ+max(ℜα,0). (2)

Let s = σ + it be a complex variable, and k and l be coprime integers.
For σ > max(1, 1 + ℜα), the Estermann zeta-function E(s; k

l , α) with

parameters α and k
l is defined by

E

(
s;

k

l
, α

)
=

∞∑

m=1

σα(m)

ms
exp

{
2πim

k

l

}
.

The function E(s; k
l , α) is analytically continuable to the whole complex

plane, except for two simple poles at s = 1 and s = 1 + α if α 6= 0, and
a double pole at s = 1 if α = 0.

The function E(s; k
l , α) with parameter α = 0 was introduced by

T. Estermann in [2] for needs of the representation of a number as the
sum of two products. I. Kiuchi investigated [6] E(s; k

l , α) for α ∈ (−1, 0].
The paper [12] is devoted to zero distribution of the Estermann zeta-
function. The mean-square of E(s; k

l , α) was considered in [14], while the

universality for E(s; k
l , α) was proved in [3]. The mentioned results also

can be found in [13].

In view of [1], we have the functional equation

E

(
s;

k

l
, α

)
= E

(
s − α;

k

l
,−α

)
.

Therefore, without loss of generality, we can suppose that ℜα ≤ 0.

The first attempt to characterize the asymptotic behaviour of the
function E(s; k

l , α) by probabilistic terms was made in [9]. Here a limit
theorem in the sense of weak convergence of probability measures on the
complex plane was proved. To state this theorem, we need some notation.

Let γ = {s ∈ C : |s| = 1} be the unit circle on the complex plane,
and

Ω =
∏

p

γp,
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where γp = γ for each prime p. By the Tikhonov theorem, with the
product topology and pointwise multipilication, the infinite-dimensional
torus Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω)),
where B(S) denotes the class of Borel sets of the space S, the probability
Haar measure mH can be defined, and this leads to a probability space
(Ω,B(Ω), mH). Denote by ω(p) the projection of ω ∈ Ω to the coordinate
space γp, p ∈ P. We extend the function ω(p) to the set N by the formula

ω(m) =
∏

pr‖m

ωr(p), m ∈ N,

where pr ‖ m means that pr | m but pr+1 ∤ m. Now on the probability
space (Ω,B(Ω), mH) we define, for σ > 1

2 , the complex-valued random

element E(σ; k
l , α; ω) by the series

E

(
σ;

k

l
, α; ω

)
=

∞∑

m=1

σα(m)ω(m)

mσ
exp

{
2πim

k

l

}
,

and denote by P C
E,σ its distribution, i.e.,

P C
E,σ(A) = mH

(
ω ∈ Ω : E

(
σ;

k

l
, α; ω

)
∈ A

)
, A ∈ B(C).

Denote by meas{A} the Lebesgue measure of a measurable set A ⊂ R.
Then in [9] the following result has been obtained.

Theorem 1. Suppose that σ > 1
2 and ℜα ≤ 0. Then the probability

measure

1

T
meas

{
t ∈ [0, T ] : E

(
σ + it;

k

l
, α

)
∈ A

}
, A ∈ B(C),

converges weakly to the measure P C
E,σ as T → ∞.

In [10] a generalization of Theorem 1 was given, a limit theorem in
the space of meromorphic functions for the Estermann zeta-function was
obtained. Let D = {s ∈ C : σ > 1

2}, and let M(D) denote the space
of meromorphic on D functions equipped with the topology of uniform
convergence on compacta. Moreover, by H(D) denote the space of an-
alytic on D functions equipped with the topology of M(D). H(D) is a
subspace of M(D). On (Ω,B(Ω), mH), define the H(D)-valued random
element

E

(
s;

k

l
, α; ω

)
=

∞∑

m=1

σα(m)ω(m)

ms
exp

{
2πim

k

l

}
, s ∈ D, ω ∈ Ω,
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and denote by PH
E its distribution, i.e.,

PH
E (A) = mH

(
ω ∈ Ω : E

(
s;

k

l
, α; ω

)
∈ A

)
, A ∈ B(H(D)).

Then in [10] the following theorem has been proved.

Theorem 2. Suppose that ℜα ≤ 0. Then the probability measure

1

T
meas

{
τ ∈ [0, T ] : E

(
s + iτ ;

k

l
, α

)
∈ A

}
, A ∈ B(M(D)),

converges weakly to PH
E as T → ∞.

Theorems 1 and 2 are of continuous type, the measures in them are
defined by shifts E(σ + it; k

l , α) and E(s + iτ ; k
l , α), when t and τ vary

continuously in the interval [0, T ]. The aim of this paper is to obtain
a discrete limit theorem on the complex plane for the Estermann zeta-
function, when t in E(σ + it; k

l , α) takes values from some discrete set.
Let, for brevity, for N ∈ N0,

µN (...) =
1

N + 1

∑

0≤m≤N
...

1,

where in place of dots a condition satisfied by m is to written.

Theorem 3. Suppose that σ > 1
2 and ℜα ≤ 0. Moreover, let h > 0 be a

fixed number such that exp
{

2πr
h

}
is irrational for all r ∈ Z \ {0}. Then

the probability measure

PN,σ
def
=µN

(
E

(
σ + imh;

k

l
, α

)
∈ A

)
, A ∈ B(C),

converges weakly to P C
E,σ as N → ∞.

1. Limit theorems for absolutely convergent series

Let, for fixed σ1 > 1
2 ,

vn(m) = exp
{
−
(m

n

)σ1
}

.

For n ∈ N and σ > 1
2 , define

En

(
s;

k

l
, α

)
=

∞∑

m=1

σα(m)vn(m)

ms
exp

{
2πim

k

l

}
,
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and, for ω̂ ∈ Ω,

En

(
s;

k

l
, α; ω̂

)
=

∞∑

m=1

σα(m)vn(m)ω̂(m)

ms
exp

{
2πim

k

l

}
.

Since, by (2), for ℜα ≤ 0, the estimate σα(m) ≪ mǫ is true, it is easily
seen that the series for En

(
s; k

l , α
)

and En

(
s; k

l , α; ω
)

converge abso-
lutely in the half-plane σ > 1

2 . The details are similar to those given in
Chapter 5 of [8].

On (C,B(C)), define two probability measures

PN,n,σ = µN

(
En

(
σ + imh;

k

l
, α

)
∈ A

)

and

P̂N,n,σ = µN

(
En

(
σ + imh;

k

l
, α; ω̂

)
∈ A

)
.

Theorem 4. Suppose that σ > 1
2 and ℜα ≤ 0. Let h > 0 be a fixed

number such that exp
{

2πr
h

}
is irrational for all r ∈ Z \ {0}. Then on

(C,B(C)) there exists a probability measure Pn,σ such that the measures

PN,n,σ and P̂N,n,σ both converge weakly to Pn,σ as N → ∞.

The proof of Theorem 4 is based on a discrete limit theorem on the
torus Ω. Define

QN (A) = µN

(
(p−imh : p ∈ P) ∈ A

)
, A ∈ B(Ω).

Lemma 1. Let h > 0 be a fixed number such that exp
{

2πr
h

}
is irrational

for all r ∈ Z \ {0}. Then the probability measure QN converges weakly to

the Haar measure mH as N → ∞.

Proof. The dual group of Ω is

D def
=
⊕

p

Zp,

where Zp = Z for each prime p. An element k = (k2, k3, k5, ...) ∈ D,

where only a finite number of integers kp, p ∈ P, are distinct from zero,

acts on Ω by

ω → ωk =
∏

p

ωkp(p).



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
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Therefore, the Fourier transform gN (k) of the measure QN is of the form

gN (k) =

∫

Ω

∏

p

ωkp(p)dQN =
1

N + 1

N∑

m=0

∏

p

p−imhkp

=
1

N + 1

N∑

m=0

exp

{
−imh

∑

p

kplog p

}
, (3)

where only a finite number of integers kp, p ∈ P, are distinct from zero.

It is well known that the system {log p : p ∈ P} is linearly independent

over the field of rational numbers Q. Moreover,

∏

p

pkp = exp

{
∑

p

kp log p

}

is a rational number, while, by the hypothesis of the lemma, the number

exp

{
2πr

h

}

is irrational for all r ∈ Z \ {0}. Hence, we obtain that

exp

{
−ih

∑

p

kplogp

}
6= 1

for k 6= 0. Thus, we deduce from (3) that

gN (k) =






1 if k = 0,

1
N+1

1−exp

{
−i(N+1)h

∑
p

kp log p

}

1−exp

{
−ih

∑
p

kp log p

} if k 6= 0.

This shows that

lim
N→∞

gN (k) =





1 if k = 0,

0 if k 6= 0,

and in view of Theorem 1.4.2 of [4] the lemma is proved, since the limit

Fourier transform corresponds the measure mH .

Proof of Theorem 4. Define the function un,σ : Ω → C by the formula

un,σ(ω) =
∞∑

m=1

σα(m)ω(m)vn(m)

mσ
exp

{
2πim

k

l

}
.
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Then the function un,σ is continuous, and

un,σ

(
(p−imh : p ∈ P)

)
= En

(
σ + imh;

k

l
, α

)
.

Therefore, PN,n,σ = QNu−1
n,σ. Thus, by Lemma 1 and Theorem 5.1 of

[1] we obtain that the measure PN,n,σ converges weakly to mHu−1
n,σ as

N → ∞.
Now let the function ûn,σ : Ω → C be given by the formula

ûn,σ(ω) =
∞∑

m=1

σα(m)ω̂(m)ω(m)vn(m)

mσ
exp

{
2πim

k

l

}
.

Then, similarly as above, we find that the measure P̂N,n,σ converges
weakly to mH û−1

n,σ as N → ∞. However,

ûn,σ(ω) = un,σ(ωω̂) = un,σ(u(ω)),

where u(ω) = ωω̂, ω ∈ Ω. Hence, mH û−1
n,σ = mH(un,σu)−1 =

(mHu−1)u−1
n,σ = mHu−1

n,σ, since the Haar measure is invariant. �

2. Approximation in the mean

To prove Theorem 3, we have to pass from the function En(s; k
l , α) to

E(s; k
l , α). For this, we need the estimate for the mean

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ + imh;
k

l
, α

)
− En

(
σ + imh;

k

l
, α

)∣∣∣∣ .

If σ > 1
2 and ℜα ≤ 0, then it is known [14] that

T∫

1

∣∣∣∣E
(

σ + it;
k

l
, α

)∣∣∣∣
2

dt ≪ T, T → ∞. (4)

In our case, a discrete version of estimate (4) is necessary. To prove an
estimate of such a kind, we use the Gallagher lemma, see [11], Lemma 1.4.

Lemma 2. Let T0 and T ≥ δ > 0 be real numbers, T be a finite set in

the interval [T0 + δ
2 , T0 + T − δ

2 ], and

Nδ(x) =
∑

t∈T
|t−x|<δ

1.
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Moreover, let S(x) be a complex-valued continuous function on [T0, T0+T ]

having a continuous derivative on (T0, T0 + T ). Then

∑

t∈T

N−1
δ |S(t)|2 ≤ 1

δ

T0+T∫

T0

|S(x)|2dx

+




T0+T∫

T0

|S(x)|2dx





1

2



T0+T∫

T0

|S′(x)|2dx





1

2

.

Lemma 3. Suppose that σ > 1
2 , σ 6= 1, σ 6= 1 + ℜα, if α 6= 0, ℜα ≤ 0

and N → ∞. Then

N∑

m=0

∣∣∣∣E
(

σ + imh + iτ ;
k

l
, α

)∣∣∣∣
2

≪ N + |τ |.

Proof. A simple application of the integral Cauchy formula and (4) show

that
T∫

1

∣∣∣∣E
′

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt ≪ T.

Hence, and from (4), using Lemma 2, we have that

N∑

m=0

∣∣∣∣E
(

σ + imh + iτ ;
k

l
, α

)∣∣∣∣
2

≤ 1

h

hN∫

0

∣∣∣∣E
(

σ + it + iτ ;
k

l
, α

)∣∣∣∣
2

dt

+




hN∫

0

∣∣∣∣E
(

σ + it + iτ ;
k

l
, α

)∣∣∣∣
2

dt





1

2



hN∫

0

∣∣∣∣E
′

(
σ + it + iτ ;

k

l
, α

)∣∣∣∣
2

dt





1

2

≪
hN+|τ |∫

−|τ |

∣∣∣∣E
(

σ + it;
k

l
, α

)∣∣∣∣
2

dt

+





hN+|τ |∫

−|τ |

∣∣∣∣E
(

σ + it;
k

l
, α

)∣∣∣∣
2

dt





1

2





hN+|τ |∫

−|τ |

∣∣∣∣E
′

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt





1

2

≪ N + |τ |.
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Theorem 5. Suppose that σ > 1
2 and ℜα ≤ 0. Then

lim
n→∞

lim sup
N→∞

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ + imh;
k

l
, α

)
− En

(
σ + imh;

k

l
, α

)∣∣∣∣ = 0.

Proof. Let σ1 the same as in Section 1. For n ∈ N, define

ln(s) =
s

σ1
Γ

(
s

σ1

)
ns.

Then, see [9], for σ > 1
2 ,

En

(
s;

k

l
, α

)
=

1

2πi

σ1+i∞∫

σ1−i∞

E

(
s + z;

k

l
, α

)
ln(z)

dz

z
.

Define σ2 by

σ > σ2 >






1
2 if α = 0 or 1 + ℜα − σ > 0,

1 + ℜα otherwise.

Thus, we obtain by the residue theorem that

En

(
s;

k

l
, α

)
=

1

2πi

σ2−σ+i∞∫

σ2−σ−i∞

E

(
s + z;

k

l
, α

)
ln(z)

dz

z

+E

(
s;

k

l
, α

)
+ R

(
s;

k

l
, α

)
,

where

R

(
s;

k

l
, α

)
=






Res
z=1−s

E(s + z; k
l , α) ln(z)

z if α = 0,

Res
z=1−s

E(s + z; k
l , α) ln(z)

z + Res
z=1+α−s

E(s + z; k
l , α) ln(z)

z

if 1 + ℜα − σ > 0.

Hence, we have

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ + imh;
k

l
, α

)
− En

(
σ + imh;

k

l
, α

)∣∣∣∣

≪
∞∫

−∞

(
|ln(σ2 − σ + iτ)|
|σ2 − σ + iτ |

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ2 + imh + iτ ;
k

l
, α

)∣∣∣∣

)
dτ
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+
1

N + 1

N∑

m=0

∣∣∣∣R
(

σ2 − σ + imh;
k

l
, α

)∣∣∣∣ . (5)

We can choose σ2 6= 1 and σ2 6= 1 + ℜα. Thus, by Lemma 3

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ2 + imh + iτ ;
k

l
, α

)∣∣∣∣

≪ 1

N

(
N∑

m=0

1

) 1

2
(

N∑

m=0

∣∣∣∣E
(

σ2 + imh + iτ ;
k

l
, α

)∣∣∣∣
2
) 1

2

≪ 1 + |τ |. (6)

Applying Lemma 2 again, we find that

N∑

m=0

∣∣∣∣R
(

σ2 − σ + imh;
k

l
, α

)∣∣∣∣

≪
√

N

(
N∑

m=0

∣∣∣∣R
(

σ2 − σ + imh;
k

l
, α

)∣∣∣∣
2
) 1

2

≪
√

N

( Nh∫

0

∣∣∣∣R
(

σ2 − σ + it;
k

l
, α

)∣∣∣∣
2

dt

+

( Nh∫

0

∣∣∣∣R
(

σ2 − σ + it;
k

l
, α

)∣∣∣∣
2

dt

) 1

2

( Nh∫

0

∣∣∣∣R
′

(
σ2 − σ + it;

k

l
, α

)∣∣∣∣
2

dt

) 1

2

) 1

2

.

(7)

Since the function ln(s) contains the Euler gamma-function, we obtain

the estimate
Nh∫

0

∣∣∣∣R
(

σ2 − σ + it;
k

l
, α

)∣∣∣∣
2

dt ≪ 1. (8)

This and application of the Cauchy integral formula give the bound

Nh∫

0

∣∣∣∣R
′

(
σ2 − σ + it;

k

l
, α

)∣∣∣∣
2

dt ≪ 1.

This and (7), (8) lead to the estimate

1

N + 1

N∑

m=0

∣∣∣∣R
(

σ2 − σ + imh;
k

l
, α

)∣∣∣∣
2

dt ≪ 1√
N

.
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Therefore, in view of (5) and (6)

lim
n→∞

lim sup
N→∞

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ + imh;
k

l
, α

)
− En

(
σ + imh;

k

l
, α

)∣∣∣∣

≪ lim
n→∞

∞∫

−∞

|ln(σ2 − σ + iτ)| (1 + |τ |)dt. (9)

However, since σ2 − σ < 0,

lim
n→∞

∞∫

−∞

|ln(σ2 − σ + iτ)| (1 + |τ |)dt = 0,

and the theorem is a consequence of estimate (9).

We also need an analogue of Theorem 5 for the functions E(s; k
l , α; ω)

and En(s; k
l , α; ω)

Theorem 6. Let σ > 1
2 and ℜα ≤ 0. Then, for almost all ω ∈ Ω,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑

m=0

∣∣∣∣E
(

σ + imh;
k

l
, α; ω

)

−En

(
σ + imh;

k

l
, α; ω

)∣∣∣∣ = 0.

Proof. In [9], Lemma 5, it was obtained that, under the hypotheses of

the theorem,
T∫

0

∣∣∣∣E
(

σ + it;
k

l
, α; ω

)∣∣∣∣
2

dt ≪ T

for almost all ω ∈ Ω. Hence, similarly to the proof of Lemma 3, we obtain

that

N∑

m=0

∣∣∣∣E
(

σ + imh + iτ ;
k

l
, α; ω

)∣∣∣∣
2

≪ N + |τ | (10)

for almost all ω ∈ Ω.

The random variables ω(m), m ∈ N, are pointwise orthogonal, that

is

E
(
ω(m)ω(n)

)
=





1 if m = n,

0 if m 6= n,



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
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where E(X) denotes the expectation of X. Hence, we have that

E

(
σα(m)ω(m)

mσ

σα(n)ω(n)

nσ
exp

{
2πi

k

l
(m − n)

})

=






|σα(m)|2

m2σ if m = n,

0 if m 6= n.

Thus, in view of (2), the series

∞∑

m=1

E

∣∣∣∣
σα(m)ω(m)

mσ
exp

{
2πim

k

l

}∣∣∣∣
2

log2 m

converges for any fixed σ > 1
2 . Therefore, by the Rademacher theorem,

see, for example [11], the series, for any fixed σ > 1
2 ,

∞∑

m=1

σα(m)ω(m)

mσ
exp

{
2πim

k

l

}

converges for almost all ω ∈ Ω. Hence, the series

∞∑

m=1

σα(m)ω(m)

mσ
exp

{
2πim

k

l

}
,

for almost all ω ∈ Ω, converges uniformly on compact subsets of the

half-plane {s ∈ C : σ > 1
2}. This shows that, for almost all ω ∈ Ω,

the function E(s; k
l , α; ω) is analytic in the region {s ∈ C : σ > 1

2}.
Therefore, using the representation

En

(
s;

k

l
, α; ω

)
=

1

2πi

σ1+i∞∫

σ1−i∞

E

(
s + z;

k

l
, α; ω

)
ln(z)

dz

z
,

we obtain that, for 1
2 < σ2 < σ,

En

(
s;

k

l
, α; ω

)
=

1

2πi

σ2−σ+i∞∫

σ2−σ−i∞

E

(
s+z;

k

l
, α; ω

)
ln(z)

dz

z
+E

(
s;

k

l
, α; ω

)

for almost all ω ∈ Ω. Using the latter formula and (9), we complete the

proof in the same way as in the case of Theorem 5.
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3. Proof of Theorem 3

Define one more probability measure

P̂N,σ = µN

(
E

(
σ + imh;

k

l
, α; ω

)
∈ A

)
, A ∈ B(C).

We begin the proof of Theorem 3 with the following statement.

Theorem 7. Suppose that σ > 1
2 and ℜα ≤ 0. Then on (C,B(C)) there

exists a probability measure Pσ such that the measures PN,σ and P̂N,σ both

converge weakly to Pσ as N → ∞.

Proof. By Theorem 4, for σ > 1
2 , the measures PN,n,σ

P̂N,n,σ = µN

(
En

(
σ + imh;

k

l
, α; ω

)
∈ A

)
, A ∈ B(C),

for every ω ∈ Ω, both converge weakly to the same measure Pn,σ as

N → ∞.

For any positive M , by the Chebyshev inequality

PN,n,σ

(
{z ∈ C : |z| > M}

)
= µN

(∣∣∣∣En

(
σ + imh;

k

l
, α

)∣∣∣∣ > M

)

≤ 1

M(N + 1)

N∑

m=0

∣∣∣∣En

(
σ + imh;

k

l
, α

)∣∣∣∣ .

(11)

As we have observed above, the series for En(s; k
l , α) converges absolutely

for σ > 1
2 . Also, the latter property holds for E′

n(s; k
l , α). Therefore, for

σ > 1
2 ,

lim
T→∞

1

T

T∫

1

∣∣∣∣En

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt =
∞∑

m=1

|σα(m)|2v2
n(m)

m2σ

≤
∞∑

m=1

|σα(m)|2
m2σ

< ∞, (12)

and

lim
T→∞

1

T

T∫

1

∣∣∣∣E
′
n

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt =
∞∑

m=1

|σα(m)|2v2
n(m)log2m

m2σ
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≤
∞∑

m=1

|σα(m)|2log2m

m2σ
< ∞.(13)

An application of Lemma 2 yields

1

N + 1

N∑

m=0

∣∣∣∣En

(
σ + imh;

k

l
, α

)∣∣∣∣≪
1√
N

(
N∑

m=0

∣∣∣∣En

(
σ + imh;

k

l
, α

)∣∣∣∣
2
) 1

2

≪ 1√
N

(
1

Nh

Nh∫

0

∣∣∣∣En

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt

+

(
1

N

Nh∫

0

∣∣∣∣En

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt

) 1

2

(
1

N

hN∫

0

∣∣∣∣E
′
n

(
σ + it;

k

l
, α

)∣∣∣∣
2

dt

) 1

2

) 1

2

.

This, (12) and (13) show that

sup
n∈N

lim sup
N→∞

1

N + 1

N∑

m=0

∣∣∣∣En

(
σ + imh;

k

l
, α; ω

)∣∣∣∣ ≤ C(h)R, (14)

where

R =




∞∑

m=1

|σα(m)|2
m2σ

+

(
∞∑

m=1

|σα(m)|2
m2σ

) 1

2

(
∞∑

m=1

|σα(m)|2log2m

m2σ

) 1

2





1

2

< ∞.

For arbitrary ǫ > 0, let Mǫ = C(h)Rǫ−1. Then, taking into account (11)

and (14), we find that

lim sup
N→∞

PN,n,σ

(
{z ∈ C : |z| > Mǫ}

)
≤ ǫ. (15)

The function u : C → R, z → |z|, is continuous. Therefore, by Theorem 4

and Theorem 5.1 of [1] we have that, for σ > 1
2 , the probability measure

µN

(∣∣∣∣En

(
σ + imh;

k

l
, α

)∣∣∣∣ ∈ A

)
, A ∈ B(R),

converges weakly to Pn,σu−1 as N → ∞. This together with Theorem 2.1

of [1] and (15) implies

Pn,σ

(
{z ∈ C : |z| > Mǫ}

)
≤ lim inf

N→∞
PN,n,σ

(
{z ∈ C : |z| > Mǫ}

)

≤ lim sup
N→∞

PN,n,σ

(
{z ∈ C : |z| > Mǫ}

)
≤ ǫ
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(16)

for all n ∈ N. Define Kǫ = {z ∈ C : |z| ≤ Mǫ}. Then the set Kǫ is

compact, and by (16)

Pn,σ(Kǫ) ≥ 1 − ǫ

for all n ∈ N. This means that the family of probability measures {Pn,σ :

n ∈ N} is tight, and by the Prokhorov theorem, see Theorem 6.1 of [1],

it is relatively compact. Therefore, there exists a subsequence {Pnk,σ} ⊂
{Pn,σ} such that Pnk,σ converges weakly to some measure Pσ on (C,B(C))

as k → ∞.

Let θN be a random variable defined on a certain probability space

(Ω̂,B(Ω̂), P) with the distribution

P(θN = mh) =
1

N + 1
, m = 0, 1, ..., N.

Define

XN,n = XN,n(σ) = En

(
σ + iθN ;

k

l
, α

)

and denote by Xn = Xn(σ) the complex-valued random variable with the

distribution Pn,σ. Then by Theorem 4

XN,n
D−→

N→∞
Xn, (17)

where
D−→ denotes the convergence in distribution. Moreover, from the

above remark

Xnk
(σ)

D−→
k→∞

Pσ. (18)

Define

XN (σ) = E

(
σ + iθN ;

k

l
, α

)
.

Then in view of Theorem 5, for σ > 1
2 and any ǫ > 0,

lim
n→∞

lim sup
N→∞

P (|XN (σ) − XN,n(σ)| ≥ ǫ)

= lim
n→∞

lim sup
N→∞

µN

(∣∣∣∣E
(

σ + imh;
k

l
, α

)
− En

(
σ + imh;

k

l
, α

)∣∣∣∣ ≥ ǫ

)

≤ lim
n→∞

lim sup
N→∞

1

ǫ(N + 1)

∞∑

m=1

∣∣∣∣E
(

σ + imh;
k

l
, α

)
− En

(
σ + imh;

k

l
, α

)∣∣∣∣ = 0.
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This, (17), (18) and Theorem 4.2 of [1] show that

XN (σ)
D−→

N→∞
Pσ, (19)

and this is equivalent to weak convergence of PN,σ to Pσ as N → ∞.

Relation (19) shows that the measure Pσ is independent of the choice

of the sequence Pnk,σ. Hence, we obtain that

Xn(σ)
D−→

n→∞
Pσ. (20)

Now define

X̂N,n = X̂N,n(σ) = En

(
σ + iθN ;

k

l
, α; ω

)

and

X̂N = X̂N (σ) = E

(
σ + iθN ;

k

l
, α; ω

)
.

Then in the same way as above, using (20) and Theorem 6, we find that

the measure P̂N,σ also converges weakly to Pσ as N → ∞.

Proof of Theorem 3. In view of Theorem 7, it remains to identify the
limit measure Pσ.

Let A ∈ B(C) be a fixed continuity set of the limit measure Pσ in
Theorem 7. Then we have that

lim
N→∞

µN

(
E

(
σ + imh;

k

l
, α

)
∈ A

)
= Pσ(A). (21)

Now on (Ω,B(Ω)) define the random variable θ by the formula

θ = θ(ω) =

{
1 if E

(
σ; k

l , α; ω
)
∈ A,

0 if E
(
σ; k

l , α; ω
)

/∈ A.

Then we have that

Eθ =

∫

Ω

θdmH = mH

(
ω ∈ Ω : E

(
s;

k

l
, α; ω

)
∈ A

)
= P C

E,σ. (22)

Let ah = {p−ih : p ∈ P}. Define the transformation fh on Ω by
fh(ω) = ahω, ω ∈ Ω. Then fh is a measurable measure preserving trans-
formation on (Ω,B(Ω), mH). In [5] it was obtained that the transforma-
tion fh is ergodic. Then by the classical Birkhoff-Khinchine theorem, see,
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for example [7], we obtain that

lim
N→∞

1

N + 1

N∑

m=0

θ
(
fm

h (ω)
)

= Eθ (23)

for almost all ω ∈ Ω. However, by the definition of fh, we have that

1

N + 1

N∑

m=0

θ
(
fm

h (ω)
)

= µN

(
E

(
σ + imh;

k

l
, α; ω

)
∈ A

)
.

From this, (22) and (23) we obtain that

lim
N→∞

µN

(
E

(
σ + imh;

k

l
, α; ω

)
∈ A

)
= P C

E,σ(A).

Therefore, by (21), Pσ(A) = P C
E,σ(A). Since A is arbitrary continuity

set of Pσ, the latter equality is true for any continuity set A. However,
all continuity sets constitute the determining class, and we have that
Pσ(A) = P C

E,σ(A) for all A ∈ B(C). The theorem is proved. �
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[8] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic

Publishers, Dordrecht, Boston, London, 1996.
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