Algebra and Discrete Mathematics

Number 4. **(2007).** pp. 84 – 101

© Journal "Algebra and Discrete Mathematics"

Discrete limit theorems for Estermann zeta-functions. I

Antanas Laurinčikas and Renata Macaitienė

Communicated by V. V. Kirichenko

In honour of the 65th birthday of Professor V. V. Kirichenko

ABSTRACT. A discrete limit theorem in the sense of weak convergence of probability measures on the complex plane for the Estermann zeta-function is obtained. The explicit form of the limit measure in this theorem is given.

Introduction

As usual, denote by \mathcal{P} , \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} and \mathbb{C} the sets of all primes, positive integers, non-negative integers, integers, real and complex numbers, respectively. For arbitrary $\alpha \in \mathbb{C}$ and $m \in \mathbb{N}$, the generalized divisor function $\sigma_{\alpha}(m)$ is defined by

$$\sigma_{\alpha}(m) = \sum_{d/m} d^{\alpha}.$$

If $\alpha = 0$, then $\sigma_{\alpha}(m)$ becomes the divisor function

$$\sigma_0(m) = d(m) = \sum_{d/m} 1.$$

2000 Mathematics Subject Classification: 11M41.

Key words and phrases: compact topological group, Estermann zeta-function, Haar measure, probability measure, limit theorem, weak convergence.

It is well known that, for every positive ϵ ,

$$d(m) \ll_{\epsilon} m^{\epsilon}, \quad m \in \mathbb{N}.$$

Here and in the sequel $f(x) \ll_{\eta} g(x)$ with a positive function $g(x), x \in I$, means that there exists a constant $c = c(\eta) > 0$ such that $|f(x)| \leq cg(x)$, $x \in I$. Since

$$\sigma_{\alpha}(m) = m^{\alpha} \sigma_{-\alpha}(m), \tag{1}$$

hence we have that

$$\sigma_{\alpha}(m) \ll_{\epsilon} m^{\epsilon + \max(\Re \alpha, 0)}.$$
 (2)

Let $s = \sigma + it$ be a complex variable, and k and l be coprime integers. For $\sigma > \max(1, 1 + \Re \alpha)$, the Estermann zeta-function $E(s; \frac{k}{l}, \alpha)$ with parameters α and $\frac{k}{l}$ is defined by

$$E\left(s; \frac{k}{l}, \alpha\right) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)}{m^{s}} \exp\left\{2\pi i m \frac{k}{l}\right\}.$$

The function $E(s; \frac{k}{l}, \alpha)$ is analytically continuable to the whole complex plane, except for two simple poles at s = 1 and $s = 1 + \alpha$ if $\alpha \neq 0$, and a double pole at s = 1 if $\alpha = 0$.

The function $E(s; \frac{k}{l}, \alpha)$ with parameter $\alpha = 0$ was introduced by T. Estermann in [2] for needs of the representation of a number as the sum of two products. I. Kiuchi investigated [6] $E(s; \frac{k}{l}, \alpha)$ for $\alpha \in (-1, 0]$. The paper [12] is devoted to zero distribution of the Estermann zeta-function. The mean-square of $E(s; \frac{k}{l}, \alpha)$ was considered in [14], while the universality for $E(s; \frac{k}{l}, \alpha)$ was proved in [3]. The mentioned results also can be found in [13].

In view of [1], we have the functional equation

$$E\left(s; \frac{k}{l}, \alpha\right) = E\left(s - \alpha; \frac{k}{l}, -\alpha\right).$$

Therefore, without loss of generality, we can suppose that $\Re \alpha \leq 0$.

The first attempt to characterize the asymptotic behaviour of the function $E(s; \frac{k}{l}, \alpha)$ by probabilistic terms was made in [9]. Here a limit theorem in the sense of weak convergence of probability measures on the complex plane was proved. To state this theorem, we need some notation.

Let $\gamma = \{s \in \mathbb{C} : |s| = 1\}$ be the unit circle on the complex plane, and

$$\Omega = \prod_{p} \gamma_{p},$$

where $\gamma_p = \gamma$ for each prime p. By the Tikhonov theorem, with the product topology and pointwise multipilication, the infinite-dimensional torus Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, where $\mathcal{B}(S)$ denotes the class of Borel sets of the space S, the probability Haar measure m_H can be defined, and this leads to a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p , $p \in \mathcal{P}$. We extend the function $\omega(p)$ to the set \mathbb{N} by the formula

$$\omega(m) = \prod_{p^r \mid\mid m} \omega^r(p), \quad m \in \mathbb{N},$$

where $p^r \parallel m$ means that $p^r \mid m$ but $p^{r+1} \nmid m$. Now on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ we define, for $\sigma > \frac{1}{2}$, the complex-valued random element $E(\sigma; \frac{k}{l}, \alpha; \omega)$ by the series

$$E\bigg(\sigma;\frac{k}{l},\alpha;\omega\bigg) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)\omega(m)}{m^{\sigma}} \exp\bigg\{2\pi i m \frac{k}{l}\bigg\}\,,$$

and denote by $P_{E,\sigma}^{\mathbb{C}}$ its distribution, i.e.,

$$P_{E,\sigma}^{\mathbb{C}}(A) = m_H\left(\omega \in \Omega : E\left(\sigma; \frac{k}{l}, \alpha; \omega\right) \in A\right), \quad A \in \mathcal{B}(\mathbb{C}).$$

Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then in [9] the following result has been obtained.

Theorem 1. Suppose that $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$. Then the probability measure

$$\frac{1}{T}\mathrm{meas}\left\{t\in[0,T]:E\bigg(\sigma+it;\frac{k}{l},\alpha\bigg)\in A\right\},\quad A\in\mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $P_{E,\sigma}^{\mathbb{C}}$ as $T \to \infty$.

In [10] a generalization of Theorem 1 was given, a limit theorem in the space of meromorphic functions for the Estermann zeta-function was obtained. Let $D = \{s \in \mathbb{C} : \sigma > \frac{1}{2}\}$, and let M(D) denote the space of meromorphic on D functions equipped with the topology of uniform convergence on compacta. Moreover, by H(D) denote the space of analytic on D functions equipped with the topology of M(D). H(D) is a subspace of M(D). On $(\Omega, \mathcal{B}(\Omega), m_H)$, define the H(D)-valued random element

$$E\left(s; \frac{k}{l}, \alpha; \omega\right) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)\omega(m)}{m^s} \exp\left\{2\pi i m \frac{k}{l}\right\}, \quad s \in D, \quad \omega \in \Omega,$$

and denote by P_E^H its distribution, i.e.,

$$P_E^H(A) = m_H\left(\omega \in \Omega : E\left(s; \frac{k}{l}, \alpha; \omega\right) \in A\right), \quad A \in \mathcal{B}(H(D)).$$

Then in [10] the following theorem has been proved.

Theorem 2. Suppose that $\Re \alpha \leq 0$. Then the probability measure

$$\frac{1}{T}\operatorname{meas}\left\{\tau\in[0,T]:E\left(s+i\tau;\frac{k}{l},\alpha\right)\in A\right\},\quad A\in\mathcal{B}(M(D)),$$

converges weakly to P_E^H as $T \to \infty$.

Theorems 1 and 2 are of continuous type, the measures in them are defined by shifts $E(\sigma + it; \frac{k}{l}, \alpha)$ and $E(s + i\tau; \frac{k}{l}, \alpha)$, when t and τ vary continuously in the interval [0, T]. The aim of this paper is to obtain a discrete limit theorem on the complex plane for the Estermann zeta-function, when t in $E(\sigma + it; \frac{k}{l}, \alpha)$ takes values from some discrete set.

Let, for brevity, for $N \in \mathbb{N}_0$,

$$\mu_N(...) = \frac{1}{N+1} \sum_{0 \le m \le N} 1,$$

where in place of dots a condition satisfied by m is to written.

Theorem 3. Suppose that $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$. Moreover, let h > 0 be a fixed number such that $\exp\left\{\frac{2\pi r}{h}\right\}$ is irrational for all $r \in \mathbb{Z} \setminus \{0\}$. Then the probability measure

$$P_{N,\sigma} \stackrel{\text{def}}{=} \mu_N \left(E\left(\sigma + imh; \frac{k}{l}, \alpha\right) \in A \right), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to $P_{E,\sigma}^{\mathbb{C}}$ as $N \to \infty$.

1. Limit theorems for absolutely convergent series

Let, for fixed $\sigma_1 > \frac{1}{2}$,

$$v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}.$$

For $n \in \mathbb{N}$ and $\sigma > \frac{1}{2}$, define

$$E_n\left(s; \frac{k}{l}, \alpha\right) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)v_n(m)}{m^s} \exp\left\{2\pi i m \frac{k}{l}\right\},\,$$

and, for $\widehat{\omega} \in \Omega$,

$$E_n\left(s; \frac{k}{l}, \alpha; \widehat{\omega}\right) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m) v_n(m) \widehat{\omega}(m)}{m^s} \exp\left\{2\pi i m \frac{k}{l}\right\}.$$

Since, by (2), for $\Re \alpha \leq 0$, the estimate $\sigma_{\alpha}(m) \ll m^{\epsilon}$ is true, it is easily seen that the series for $E_n\left(s; \frac{k}{l}, \alpha\right)$ and $E_n\left(s; \frac{k}{l}, \alpha; \omega\right)$ converge absolutely in the half-plane $\sigma > \frac{1}{2}$. The details are similar to those given in Chapter 5 of [8].

On $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, define two probability measures

$$P_{N,n,\sigma} = \mu_N \left(E_n \left(\sigma + imh; \frac{k}{l}, \alpha \right) \in A \right)$$

and

$$\widehat{P}_{N,n,\sigma} = \mu_N \left(E_n \left(\sigma + imh; \frac{k}{l}, \alpha; \widehat{\omega} \right) \in A \right).$$

Theorem 4. Suppose that $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$. Let h > 0 be a fixed number such that $\exp\left\{\frac{2\pi r}{h}\right\}$ is irrational for all $r \in \mathbb{Z} \setminus \{0\}$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure $P_{n,\sigma}$ such that the measures $P_{N,n,\sigma}$ and $\widehat{P}_{N,n,\sigma}$ both converge weakly to $P_{n,\sigma}$ as $N \to \infty$.

The proof of Theorem 4 is based on a discrete limit theorem on the torus Ω . Define

$$Q_N(A) = \mu_N\left((p^{-imh} : p \in \mathcal{P}) \in A\right), \quad A \in \mathcal{B}(\Omega).$$

Lemma 1. Let h > 0 be a fixed number such that $\exp\left\{\frac{2\pi r}{h}\right\}$ is irrational for all $r \in \mathbb{Z} \setminus \{0\}$. Then the probability measure Q_N converges weakly to the Haar measure m_H as $N \to \infty$.

Proof. The dual group of Ω is

$$\mathcal{D} \stackrel{\mathrm{def}}{=} \bigoplus_{p} \mathbb{Z}_{p},$$

where $\mathbb{Z}_p = \mathbb{Z}$ for each prime p. An element $\underline{k} = (k_2, k_3, k_5, ...) \in \mathcal{D}$, where only a finite number of integers k_p , $p \in \mathcal{P}$, are distinct from zero, acts on Ω by

$$\omega \to \omega^{\underline{k}} = \prod_p \omega^{k_p}(p).$$

Therefore, the Fourier transform $g_N(\underline{k})$ of the measure Q_N is of the form

$$g_N(\underline{k}) = \int_{\Omega} \prod_p \omega^{k_p}(p) dQ_N = \frac{1}{N+1} \sum_{m=0}^N \prod_p p^{-imhk_p}$$
$$= \frac{1}{N+1} \sum_{m=0}^N \exp\left\{-imh \sum_p k_p \log p\right\}, \tag{3}$$

where only a finite number of integers k_p , $p \in \mathcal{P}$, are distinct from zero. It is well known that the system $\{\log p : p \in \mathcal{P}\}$ is linearly independent over the field of rational numbers \mathbb{Q} . Moreover,

$$\prod_{p} p^{k_p} = \exp\left\{\sum_{p} k_p \log p\right\}$$

is a rational number, while, by the hypothesis of the lemma, the number

$$\exp\left\{\frac{2\pi r}{h}\right\}$$

is irrational for all $r \in \mathbb{Z} \setminus \{0\}$. Hence, we obtain that

$$\exp\left\{-ih\sum_{p}k_{p}\mathrm{log}p\right\}\neq1$$

for $\underline{k} \neq \underline{0}$. Thus, we deduce from (3) that

$$g_N(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ \frac{1}{N+1} \frac{1 - \exp\left\{-i(N+1)h\sum_{p} k_p \log p\right\}}{1 - \exp\left\{-ih\sum_{p} k_p \log p\right\}} & \text{if } \underline{k} \neq \underline{0}. \end{cases}$$

This shows that

$$\lim_{N \to \infty} g_N(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ 0 & \text{if } \underline{k} \neq \underline{0}, \end{cases}$$

and in view of Theorem 1.4.2 of [4] the lemma is proved, since the limit Fourier transform corresponds the measure m_H .

Proof of Theorem 4. Define the function $u_{n,\sigma}:\Omega\to\mathbb{C}$ by the formula

$$u_{n,\sigma}(\omega) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)\omega(m)v_n(m)}{m^{\sigma}} \exp\left\{2\pi i m \frac{k}{l}\right\}.$$

Then the function $u_{n,\sigma}$ is continuous, and

$$u_{n,\sigma}\left((p^{-imh}:p\in\mathcal{P})\right)=E_n\left(\sigma+imh;\frac{k}{l},\alpha\right).$$

Therefore, $P_{N,n,\sigma}=Q_Nu_{n,\sigma}^{-1}$. Thus, by Lemma 1 and Theorem 5.1 of [1] we obtain that the measure $P_{N,n,\sigma}$ converges weakly to $m_Hu_{n,\sigma}^{-1}$ as $N\to\infty$.

Now let the function $\widehat{u}_{n,\sigma}:\Omega\to\mathbb{C}$ be given by the formula

$$\widehat{u}_{n,\sigma}(\omega) = \sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)\widehat{\omega}(m)\omega(m)v_n(m)}{m^{\sigma}} \exp\left\{2\pi i m \frac{k}{l}\right\}.$$

Then, similarly as above, we find that the measure $\widehat{P}_{N,n,\sigma}$ converges weakly to $m_H \widehat{u}_{n,\sigma}^{-1}$ as $N \to \infty$. However,

$$\widehat{u}_{n,\sigma}(\omega) = u_{n,\sigma}(\omega\widehat{\omega}) = u_{n,\sigma}(u(\omega)),$$

where $u(\omega) = \omega \widehat{\omega}$, $\omega \in \Omega$. Hence, $m_H \widehat{u}_{n,\sigma}^{-1} = m_H (u_{n,\sigma} u)^{-1} = (m_H u^{-1}) u_{n,\sigma}^{-1} = m_H u_{n,\sigma}^{-1}$, since the Haar measure is invariant.

2. Approximation in the mean

To prove Theorem 3, we have to pass from the function $E_n(s; \frac{k}{l}, \alpha)$ to $E(s; \frac{k}{l}, \alpha)$. For this, we need the estimate for the mean

$$\frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma + imh; \frac{k}{l}, \alpha\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right) \right|.$$

If $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$, then it is known [14] that

$$\int_{1}^{T} \left| E\left(\sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} dt \ll T, \quad T \to \infty.$$
 (4)

In our case, a discrete version of estimate (4) is necessary. To prove an estimate of such a kind, we use the Gallagher lemma, see [11], Lemma 1.4.

Lemma 2. Let T_0 and $T \ge \delta > 0$ be real numbers, \mathcal{T} be a finite set in the interval $[T_0 + \frac{\delta}{2}, T_0 + T - \frac{\delta}{2}]$, and

$$N_{\delta}(x) = \sum_{\substack{t \in \mathcal{T} \\ |t-x| < \delta}} 1.$$

Moreover, let S(x) be a complex-valued continuous function on $[T_0, T_0+T]$ having a continuous derivative on (T_0, T_0+T) . Then

$$\sum_{t \in \mathcal{T}} N_{\delta}^{-1} |S(t)|^{2} \leq \frac{1}{\delta} \int_{T_{0}}^{T_{0}+T} |S(x)|^{2} dx + \left(\int_{T_{0}}^{T_{0}+T} |S(x)|^{2} dx \right)^{\frac{1}{2}} \left(\int_{T_{0}}^{T_{0}+T} |S'(x)|^{2} dx \right)^{\frac{1}{2}}.$$

Lemma 3. Suppose that $\sigma > \frac{1}{2}$, $\sigma \neq 1$, $\sigma \neq 1 + \Re \alpha$, if $\alpha \neq 0$, $\Re \alpha \leq 0$ and $N \to \infty$. Then

$$\sum_{m=0}^{N} \left| E\left(\sigma + imh + i\tau; \frac{k}{l}, \alpha\right) \right|^{2} \ll N + |\tau|.$$

Proof. A simple application of the integral Cauchy formula and (4) show that

$$\int_{1}^{T} \left| E' \left(\sigma + it; \frac{k}{l}, \alpha \right) \right|^{2} dt \ll T.$$

Hence, and from (4), using Lemma 2, we have that

$$\begin{split} \sum_{m=0}^{N} \left| E\left(\sigma + imh + i\tau; \frac{k}{l}, \alpha\right) \right|^{2} &\leq \frac{1}{h} \int_{0}^{hN} \left| E\left(\sigma + it + i\tau; \frac{k}{l}, \alpha\right) \right|^{2} \mathrm{d}t \\ &+ \left(\int_{0}^{hN} \left| E\left(\sigma + it + i\tau; \frac{k}{l}, \alpha\right) \right|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \left(\int_{0}^{hN} \left| E'\left(\sigma + it + i\tau; \frac{k}{l}, \alpha\right) \right|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \\ &\ll \int_{-|\tau|}^{hN+|\tau|} \left| E\left(\sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} \mathrm{d}t \\ &+ \left(\int_{-|\tau|}^{hN+|\tau|} \left| E\left(\sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \left(\int_{-|\tau|}^{hN+|\tau|} \left| E'\left(\sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \\ &\ll N + |\tau|. \end{split}$$

Theorem 5. Suppose that $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$. Then

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma + imh; \frac{k}{l}, \alpha\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right) \right| = 0.$$

Proof. Let σ_1 the same as in Section 1. For $n \in \mathbb{N}$, define

$$l_n(s) = \frac{s}{\sigma_1} \Gamma\left(\frac{s}{\sigma_1}\right) n^s.$$

Then, see [9], for $\sigma > \frac{1}{2}$,

$$E_n\left(s; \frac{k}{l}, \alpha\right) = \frac{1}{2\pi i} \int_{\sigma_1 - i\infty}^{\sigma_1 + i\infty} E\left(s + z; \frac{k}{l}, \alpha\right) l_n(z) \frac{\mathrm{d}z}{z}.$$

Define σ_2 by

$$\sigma > \sigma_2 > \begin{cases} \frac{1}{2} & \text{if } \alpha = 0 \text{ or } 1 + \Re \alpha - \sigma > 0, \\ 1 + \Re \alpha & \text{otherwise.} \end{cases}$$

Thus, we obtain by the residue theorem that

$$E_n\left(s; \frac{k}{l}, \alpha\right) = \frac{1}{2\pi i} \int_{\sigma_2 - \sigma - i\infty}^{\sigma_2 - \sigma + i\infty} E\left(s + z; \frac{k}{l}, \alpha\right) l_n(z) \frac{\mathrm{d}z}{z} + E\left(s; \frac{k}{l}, \alpha\right) + R\left(s; \frac{k}{l}, \alpha\right),$$

where

$$R\left(s; \frac{k}{l}, \alpha\right) = \begin{cases} \underset{z=1-s}{\operatorname{Res}} E(s+z; \frac{k}{l}, \alpha) \frac{l_n(z)}{z} & \text{if } \alpha = 0, \\ \underset{z=1-s}{\operatorname{Res}} E(s+z; \frac{k}{l}, \alpha) \frac{l_n(z)}{z} & + \underset{z=1+\alpha-s}{\operatorname{Res}} E(s+z; \frac{k}{l}, \alpha) \frac{l_n(z)}{z} \\ & \text{if } 1 + \Re \alpha - \sigma > 0. \end{cases}$$

Hence, we have

$$\frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma + imh; \frac{k}{l}, \alpha\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right) \right|$$

$$\ll \int_{-\infty}^{\infty} \left(\frac{|l_n(\sigma_2 - \sigma + i\tau)|}{|\sigma_2 - \sigma + i\tau|} \frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma_2 + imh + i\tau; \frac{k}{l}, \alpha\right) \right| \right) d\tau$$

$$+\frac{1}{N+1}\sum_{m=0}^{N}\left|R\left(\sigma_{2}-\sigma+imh;\frac{k}{l},\alpha\right)\right|.$$
 (5)

We can choose $\sigma_2 \neq 1$ and $\sigma_2 \neq 1 + \Re \alpha$. Thus, by Lemma 3

$$\frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma_{2} + imh + i\tau; \frac{k}{l}, \alpha\right) \right|$$

$$\ll \frac{1}{N} \left(\sum_{m=0}^{N} 1 \right)^{\frac{1}{2}} \left(\sum_{m=0}^{N} \left| E\left(\sigma_{2} + imh + i\tau; \frac{k}{l}, \alpha\right) \right|^{2} \right)^{\frac{1}{2}}$$

$$\ll 1 + |\tau|. \tag{6}$$

Applying Lemma 2 again, we find that

$$\sum_{m=0}^{N} \left| R\left(\sigma_{2} - \sigma + imh; \frac{k}{l}, \alpha\right) \right|$$

$$\ll \sqrt{N} \left(\sum_{m=0}^{N} \left| R\left(\sigma_{2} - \sigma + imh; \frac{k}{l}, \alpha\right) \right|^{2} \right)^{\frac{1}{2}}$$

$$\ll \sqrt{N} \left(\int_{0}^{Nh} \left| R\left(\sigma_{2} - \sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} dt \right)$$

$$+ \left(\int_{0}^{Nh} \left| R\left(\sigma_{2} - \sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} dt \right)^{\frac{1}{2}} \left(\int_{0}^{Nh} \left| R'\left(\sigma_{2} - \sigma + it; \frac{k}{l}, \alpha\right) \right|^{2} dt \right)^{\frac{1}{2}} \right)^{\frac{1}{2}}.$$

$$(7)$$

Since the function $l_n(s)$ contains the Euler gamma-function, we obtain the estimate

$$\int_{0}^{Nh} \left| R\left(\sigma_2 - \sigma + it; \frac{k}{l}, \alpha\right) \right|^2 dt \ll 1.$$
 (8)

This and application of the Cauchy integral formula give the bound

$$\int_{0}^{Nh} \left| R' \left(\sigma_2 - \sigma + it; \frac{k}{l}, \alpha \right) \right|^2 dt \ll 1.$$

This and (7), (8) lead to the estimate

$$\frac{1}{N+1} \sum_{m=0}^{N} \left| R\left(\sigma_2 - \sigma + imh; \frac{k}{l}, \alpha\right) \right|^2 dt \ll \frac{1}{\sqrt{N}}.$$

Therefore, in view of (5) and (6)

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma + imh; \frac{k}{l}, \alpha\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right) \right|$$

$$\ll \lim_{n \to \infty} \int_{-\infty}^{\infty} \left| l_n(\sigma_2 - \sigma + i\tau) \right| (1 + |\tau|) dt. \tag{9}$$

However, since $\sigma_2 - \sigma < 0$,

$$\lim_{n o \infty} \int\limits_{-\infty}^{\infty} \left| l_n(\sigma_2 - \sigma + i au) \right| (1 + | au|) \mathrm{d}t = 0,$$

and the theorem is a consequence of estimate (9).

We also need an analogue of Theorem 5 for the functions $E(s; \frac{k}{l}, \alpha; \omega)$ and $E_n(s; \frac{k}{l}, \alpha; \omega)$

Theorem 6. Let $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$. Then, for almost all $\omega \in \Omega$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \left| E\left(\sigma + imh; \frac{k}{l}, \alpha; \omega\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha; \omega\right) \right| = 0.$$

Proof. In [9], Lemma 5, it was obtained that, under the hypotheses of the theorem,

$$\int_{0}^{T} \left| E\left(\sigma + it; \frac{k}{l}, \alpha; \omega\right) \right|^{2} dt \ll T$$

for almost all $\omega \in \Omega$. Hence, similarly to the proof of Lemma 3, we obtain that

$$\sum_{m=0}^{N} \left| E\left(\sigma + imh + i\tau; \frac{k}{l}, \alpha; \omega\right) \right|^{2} \ll N + |\tau| \tag{10}$$

for almost all $\omega \in \Omega$.

The random variables $\omega(m), m \in \mathbb{N}$, are pointwise orthogonal, that is

$$\mathbb{E}(\omega(m)\overline{\omega(n)}) = \begin{cases} 1 & \text{if } m = n, \\ 0 & \text{if } m \neq n, \end{cases}$$

where $\mathbb{E}(X)$ denotes the expectation of X. Hence, we have that

$$\mathbb{E}\left(\frac{\sigma_{\alpha}(m)\omega(m)}{m^{\sigma}} \frac{\overline{\sigma_{\alpha}(n)}\overline{\omega}(n)}{n^{\sigma}} \exp\left\{2\pi i \frac{k}{l}(m-n)\right\}\right)$$

$$=\begin{cases} \frac{|\sigma_{\alpha}(m)|^{2}}{m^{2\sigma}} & \text{if } m=n, \\ 0 & \text{if } m \neq n. \end{cases}$$

Thus, in view of (2), the series

$$\sum_{m=1}^{\infty} \mathbb{E} \left| \frac{\sigma_{\alpha}(m)\omega(m)}{m^{\sigma}} \exp \left\{ 2\pi i m \frac{k}{l} \right\} \right|^{2} \log^{2} m$$

converges for any fixed $\sigma > \frac{1}{2}$. Therefore, by the Rademacher theorem, see, for example [11], the series, for any fixed $\sigma > \frac{1}{2}$,

$$\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)\omega(m)}{m^{\sigma}} \exp\left\{2\pi i m \frac{k}{l}\right\}$$

converges for almost all $\omega \in \Omega$. Hence, the series

$$\sum_{m=1}^{\infty} \frac{\sigma_{\alpha}(m)\omega(m)}{m^{\sigma}} \exp\left\{2\pi i m \frac{k}{l}\right\},\,$$

for almost all $\omega \in \Omega$, converges uniformly on compact subsets of the half-plane $\{s \in \mathbb{C} : \sigma > \frac{1}{2}\}$. This shows that, for almost all $\omega \in \Omega$, the function $E(s; \frac{k}{l}, \alpha; \omega)$ is analytic in the region $\{s \in \mathbb{C} : \sigma > \frac{1}{2}\}$. Therefore, using the representation

$$E_n\left(s; \frac{k}{l}, \alpha; \omega\right) = \frac{1}{2\pi i} \int_{\sigma_1 - i\infty}^{\sigma_1 + i\infty} E\left(s + z; \frac{k}{l}, \alpha; \omega\right) l_n(z) \frac{\mathrm{d}z}{z},$$

we obtain that, for $\frac{1}{2} < \sigma_2 < \sigma$,

$$E_n\left(s; \frac{k}{l}, \alpha; \omega\right) = \frac{1}{2\pi i} \int_{\sigma_2 - \sigma - i\infty}^{\sigma_2 - \sigma + i\infty} E\left(s + z; \frac{k}{l}, \alpha; \omega\right) l_n(z) \frac{\mathrm{d}z}{z} + E\left(s; \frac{k}{l}, \alpha; \omega\right)$$

for almost all $\omega \in \Omega$. Using the latter formula and (9), we complete the proof in the same way as in the case of Theorem 5.

3. Proof of Theorem 3

Define one more probability measure

$$\widehat{P}_{N,\sigma} = \mu_N \left(E\left(\sigma + imh; \frac{k}{l}, \alpha; \omega\right) \in A \right), \quad A \in \mathcal{B}(\mathbb{C}).$$

We begin the proof of Theorem 3 with the following statement.

Theorem 7. Suppose that $\sigma > \frac{1}{2}$ and $\Re \alpha \leq 0$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure P_{σ} such that the measures $P_{N,\sigma}$ and $\widehat{P}_{N,\sigma}$ both converge weakly to P_{σ} as $N \to \infty$.

Proof. By Theorem 4, for $\sigma > \frac{1}{2}$, the measures $P_{N,n,\sigma}$

$$\widehat{P}_{N,n,\sigma} = \mu_N\left(E_n\left(\sigma + imh; \frac{k}{l}, \alpha; \omega\right) \in A\right), \quad A \in \mathcal{B}(\mathbb{C}),$$

for every $\omega \in \Omega$, both converge weakly to the same measure $P_{n,\sigma}$ as $N \to \infty$.

For any positive M, by the Chebyshev inequality

$$P_{N,n,\sigma}(\{z \in \mathbb{C} : |z| > M\}) = \mu_N\left(\left|E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right)\right| > M\right)$$

$$\leq \frac{1}{M(N+1)} \sum_{m=0}^{N} \left|E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right)\right|. \tag{11}$$

As we have observed above, the series for $E_n(s; \frac{k}{l}, \alpha)$ converges absolutely for $\sigma > \frac{1}{2}$. Also, the latter property holds for $E'_n(s; \frac{k}{l}, \alpha)$. Therefore, for $\sigma > \frac{1}{2}$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{1}^{T} \left| E_n \left(\sigma + it; \frac{k}{l}, \alpha \right) \right|^2 dt = \sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2 v_n^2(m)}{m^{2\sigma}}$$

$$\leq \sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2}{m^{2\sigma}} < \infty, \quad (12)$$

and

$$\lim_{T \to \infty} \frac{1}{T} \int_{1}^{T} \left| E'_n \left(\sigma + it; \frac{k}{l}, \alpha \right) \right|^2 dt = \sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2 v_n^2(m) \log^2 m}{m^{2\sigma}}$$

$$\leq \sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2 \log^2 m}{m^{2\sigma}} < \infty. (13)$$

An application of Lemma 2 yields

$$\frac{1}{N+1} \sum_{m=0}^{N} \left| E_n \left(\sigma + imh; \frac{k}{l}, \alpha \right) \right| \ll \frac{1}{\sqrt{N}} \left(\sum_{m=0}^{N} \left| E_n \left(\sigma + imh; \frac{k}{l}, \alpha \right) \right|^2 \right)^{\frac{1}{2}}$$

$$\ll \frac{1}{\sqrt{N}} \left(\frac{1}{Nh} \int_{0}^{Nh} \left| E_n \left(\sigma + it; \frac{k}{l}, \alpha \right) \right|^2 dt$$

$$+ \left(\frac{1}{N} \int_{0}^{Nh} \left| E_n \left(\sigma + it; \frac{k}{l}, \alpha \right) \right|^2 dt \right)^{\frac{1}{2}} \left(\frac{1}{N} \int_{0}^{hN} \left| E_n \left(\sigma + it; \frac{k}{l}, \alpha \right) \right|^2 dt \right)^{\frac{1}{2}}.$$

This, (12) and (13) show that

$$\sup_{n \in \mathbb{N}} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \left| E_n \left(\sigma + imh; \frac{k}{l}, \alpha; \omega \right) \right| \le C(h)R, \tag{14}$$

where

$$R = \left(\sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2}{m^{2\sigma}} + \left(\sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2}{m^{2\sigma}}\right)^{\frac{1}{2}} \left(\sum_{m=1}^{\infty} \frac{|\sigma_{\alpha}(m)|^2 \log^2 m}{m^{2\sigma}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} < \infty.$$

For arbitrary $\epsilon > 0$, let $M_{\epsilon} = C(h)R\epsilon^{-1}$. Then, taking into account (11) and (14), we find that

$$\limsup_{N \to \infty} P_{N,n,\sigma} \left(\left\{ z \in \mathbb{C} : |z| > M_{\epsilon} \right\} \right) \le \epsilon. \tag{15}$$

The function $u: \mathbb{C} \to \mathbb{R}$, $z \to |z|$, is continuous. Therefore, by Theorem 4 and Theorem 5.1 of [1] we have that, for $\sigma > \frac{1}{2}$, the probability measure

$$\mu_N\left(\left|E_n\left(\sigma+imh;\frac{k}{l},\alpha\right)\right|\in A\right),\quad A\in\mathcal{B}(\mathbb{R}),$$

converges weakly to $P_{n,\sigma}u^{-1}$ as $N\to\infty$. This together with Theorem 2.1 of [1] and (15) implies

$$P_{n,\sigma}(\{z \in \mathbb{C} : |z| > M_{\epsilon}\}) \leq \liminf_{N \to \infty} P_{N,n,\sigma}(\{z \in \mathbb{C} : |z| > M_{\epsilon}\})$$

$$\leq \limsup_{N \to \infty} P_{N,n,\sigma}(\{z \in \mathbb{C} : |z| > M_{\epsilon}\}) \leq \epsilon$$

(16)

for all $n \in \mathbb{N}$. Define $K_{\epsilon} = \{z \in \mathbb{C} : |z| \leq M_{\epsilon}\}$. Then the set K_{ϵ} is compact, and by (16)

$$P_{n,\sigma}(K_{\epsilon}) \ge 1 - \epsilon$$

for all $n \in \mathbb{N}$. This means that the family of probability measures $\{P_{n,\sigma} : n \in \mathbb{N}\}$ is tight, and by the Prokhorov theorem, see Theorem 6.1 of [1], it is relatively compact. Therefore, there exists a subsequence $\{P_{n_k,\sigma}\} \subset \{P_{n,\sigma}\}$ such that $P_{n_k,\sigma}$ converges weakly to some measure P_{σ} on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ as $k \to \infty$.

Let θ_N be a random variable defined on a certain probability space $(\widehat{\Omega}, \mathcal{B}(\widehat{\Omega}), \mathbb{P})$ with the distribution

$$\mathbb{P}(\theta_N = mh) = \frac{1}{N+1}, \quad m = 0, 1, ..., N.$$

Define

$$X_{N,n} = X_{N,n}(\sigma) = E_n\left(\sigma + i\theta_N; \frac{k}{l}, \alpha\right)$$

and denote by $X_n = X_n(\sigma)$ the complex-valued random variable with the distribution $P_{n,\sigma}$. Then by Theorem 4

$$X_{N,n} \xrightarrow[N \to \infty]{\mathcal{D}} X_n,$$
 (17)

where $\xrightarrow{\mathcal{D}}$ denotes the convergence in distribution. Moreover, from the above remark

$$X_{n_k}(\sigma) \xrightarrow[k \to \infty]{\mathcal{D}} P_{\sigma}.$$
 (18)

Define

$$X_N(\sigma) = E\left(\sigma + i\theta_N; \frac{k}{l}, \alpha\right).$$

Then in view of Theorem 5, for $\sigma > \frac{1}{2}$ and any $\epsilon > 0$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \mathbb{P}\left(|X_N(\sigma) - X_{N,n}(\sigma)| \ge \epsilon\right)$$

$$= \lim_{n \to \infty} \limsup_{N \to \infty} \mu_N\left(\left|E\left(\sigma + imh; \frac{k}{l}, \alpha\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right)\right| \ge \epsilon\right)$$

$$\leq \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{\epsilon(N+1)} \sum_{m=1}^{\infty} \left|E\left(\sigma + imh; \frac{k}{l}, \alpha\right) - E_n\left(\sigma + imh; \frac{k}{l}, \alpha\right)\right| = 0.$$

This, (17), (18) and Theorem 4.2 of [1] show that

$$X_N(\sigma) \xrightarrow[N \to \infty]{\mathcal{D}} P_{\sigma},$$
 (19)

and this is equivalent to weak convergence of $P_{N,\sigma}$ to P_{σ} as $N \to \infty$.

Relation (19) shows that the measure P_{σ} is independent of the choice of the sequence $P_{n_k,\sigma}$. Hence, we obtain that

$$X_n(\sigma) \xrightarrow[n \to \infty]{\mathcal{D}} P_{\sigma}.$$
 (20)

Now define

$$\widehat{X}_{N,n} = \widehat{X}_{N,n}(\sigma) = E_n\left(\sigma + i\theta_N; \frac{k}{l}, \alpha; \omega\right)$$

and

$$\widehat{X}_N = \widehat{X}_N(\sigma) = E\left(\sigma + i\theta_N; \frac{k}{l}, \alpha; \omega\right).$$

Then in the same way as above, using (20) and Theorem 6, we find that the measure $\hat{P}_{N,\sigma}$ also converges weakly to P_{σ} as $N \to \infty$.

Proof of Theorem 3. In view of Theorem 7, it remains to identify the limit measure P_{σ} .

Let $A \in \mathcal{B}(\mathbb{C})$ be a fixed continuity set of the limit measure P_{σ} in Theorem 7. Then we have that

$$\lim_{N \to \infty} \mu_N \left(E\left(\sigma + imh; \frac{k}{l}, \alpha\right) \in A \right) = P_{\sigma}(A). \tag{21}$$

Now on $(\Omega, \mathcal{B}(\Omega))$ define the random variable θ by the formula

$$\theta = \theta(\omega) = \begin{cases} 1 & \text{if } E\left(\sigma; \frac{k}{l}, \alpha; \omega\right) \in A, \\ 0 & \text{if } E\left(\sigma; \frac{k}{l}, \alpha; \omega\right) \notin A. \end{cases}$$

Then we have that

$$\mathbb{E}\theta = \int_{\Omega} \theta dm_H = m_H \left(\omega \in \Omega : E\left(s; \frac{k}{l}, \alpha; \omega \right) \in A \right) = P_{E, \sigma}^{\mathbb{C}}. \tag{22}$$

Let $a_h = \{p^{-ih} : p \in \mathcal{P}\}$. Define the transformation f_h on Ω by $f_h(\omega) = a_h \omega$, $\omega \in \Omega$. Then f_h is a measurable measure preserving transformation on $(\Omega, \mathcal{B}(\Omega), m_H)$. In [5] it was obtained that the transformation f_h is ergodic. Then by the classical Birkhoff-Khinchine theorem, see,

for example [7], we obtain that

$$\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \theta(f_h^m(\omega)) = \mathbb{E}\theta$$
 (23)

for almost all $\omega \in \Omega$. However, by the definition of f_h , we have that

$$\frac{1}{N+1} \sum_{m=0}^{N} \theta(f_h^m(\omega)) = \mu_N \left(E\left(\sigma + imh; \frac{k}{l}, \alpha; \omega\right) \in A \right).$$

From this, (22) and (23) we obtain that

$$\lim_{N \to \infty} \mu_N \left(E\left(\sigma + imh; \frac{k}{l}, \alpha; \omega \right) \in A \right) = P_{E, \sigma}^{\mathbb{C}}(A).$$

Therefore, by (21), $P_{\sigma}(A) = P_{E,\sigma}^{\mathbb{C}}(A)$. Since A is arbitrary continuity set of P_{σ} , the latter equality is true for any continuity set A. However, all continuity sets constitute the determining class, and we have that $P_{\sigma}(A) = P_{E,\sigma}^{\mathbb{C}}(A)$ for all $A \in \mathcal{B}(\mathbb{C})$. The theorem is proved.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
- [2] T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc., N.31, 1930, pp.123–133.
- [3] R. Garunkštis, A. Laurinčikas, R. Šleževičienė, J. Steuding, On the universality of Estermann zeta-functions, Analysis, N.22, 2002, pp.285–296.
- [4] H. Heyer, Probability Measures on Locally Compact Groups. Springer-Verlag, Berlin, 1977.
- [5] R. Kačinskaitė, A discrete limit theorem for the Matsumoto zeta-function on the complex plane, Lith. Math. J., N.40(4), 2000, pp. 364–378.
- [6] I. Kiuchi, On an exponentials sum involving the arithmetic function $\sigma_a(n)$, Math. J. Okayama Univ., N.29, 1987, pp.193–205.
- [7] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
- [8] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
- [9] A. Laurinčikas, Limit theorems for the Estermann zeta-function. I, Statist. Probab. Lett., N.72, 2005, pp.227–237.
- [10] A. Laurinčikas, Limit theorems for the Estermann zeta-function. II, Cent. Eur. J. Math., N.3(4), 2005, pp.580–590.

- [11] H. L. Montgomery, Topics in Multiplicative Number Theory, Springer-Verlag, Berlin, 1971.
- [12] R. Šleževičienė, J. Steuding, On the zeros of the Estermann zeta-function, Integral Transforms and Special Functions, N.13, 2002, pp.363–371.
- [13] R. Šleževičienė, On some aspects in the theory of the Estermann zeta-function, Fiz. Mat. Fak. Moksl. Semin. Darb., N.5, 2002, pp.115–130.
- [14] R. Šleževičienė, J. Steuding, The mean-square of the Estermann zeta-functon, Faculty of Mathematics and Informatics, Vilnius University, Preprint 2002-32, 2002.

CONTACT INFORMATION

A. Laurinčikas Department of Mathematics

and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius,

Lithuania

E-Mail: antanas.laurincikas@mif.vu.lt

R. Macaitienė Department of Mathematics

and Informatics, Šiauliai University, P. Višinskio 19, LT-77156 Šiauliai,

Lithuania

E-Mail: renata.macaitiene@mi.su.lt

Received by the editors: 09.07.2007 and in final form 07.04.2008.