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ABSTRACT. A discrete limit theorem in the sense of weak
convergence of probability measures on the complex plane for the
Estermann zeta-function is obtained. The explicit form of the limit

measure in this theorem is given.

Introduction

As usual, denote by P, N, Ny, Z and C the sets of all primes, posi-
tive integers, non-negative integers, integers, real and complex numbers,
respectively. For arbitrary o € C and m € N, the generalized divisor
function o,(m) is defined by

oa(m) =Y d°

d/m

If @ =0, then o,(m) becomes the divisor function

oo(m) = d(m) => 1.

d/m
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It is well known that, for every positive ¢,
d(m) < mf, meN.

Here and in the sequel f(z) <, g(x) with a positive function g(x), x € I,
means that there exists a constant ¢ = ¢(n) > 0 such that | f(z)| < cg(x),
x € I. Since

oa(m) =m%_qo(m), (1)

hence we have that
aa(m) <. me—i—max(?Ra,O)‘ (2)

Let s = o + it be a complex variable, and k£ and [ be coprime integers.
For ¢ > max(1,1 + Ra), the Estermann zeta-function E(s;%,a) with
parameters o and % is defined by

ok B 2. ga(m) .k
E<s7l,a> = Z ~ exp {2mml}.

m=1

The function E(s; %, a) is analytically continuable to the whole complex
plane, except for two simple poles at s =1 and s =1+ a if a # 0, and
a double pole at s =1 if a = 0.

The function E(s; %,a) with parameter o = 0 was introduced by
T. Estermann in [2] for needs of the representation of a number as the
sum of two products. I. Kiuchi investigated [6] E(s; %, a) for a € (—1,0].
The paper [12] is devoted to zero distribution of the Estermann zeta-
function. The mean-square of E(s; %, a) was considered in [14], while the
universality for E(s; %, a) was proved in [3]. The mentioned results also
can be found in [13].

In view of [1], we have the functional equation

k k
E(s;l,a> :E<s—a;l,—a>.

Therefore, without loss of generality, we can suppose that Ra < 0.

The first attempt to characterize the asymptotic behaviour of the
function F(s; %, «) by probabilistic terms was made in [9]. Here a limit
theorem in the sense of weak convergence of probability measures on the
complex plane was proved. To state this theorem, we need some notation.

Let 7 = {s € C : |s| = 1} be the unit circle on the complex plane,

and
Q= H/ypa
P
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where 7, = 7 for each prime p. By the Tikhonov theorem, with the
product topology and pointwise multipilication, the infinite-dimensional
torus €2 is a compact topological Abelian group. Therefore, on (€2, B(Q)),
where B(.S) denotes the class of Borel sets of the space S, the probability
Haar measure mpy can be defined, and this leads to a probability space
(Q,B(2), mp). Denote by w(p) the projection of w € € to the coordinate
space vp, p € P. We extend the function w(p) to the set N by the formula

w(m) = H w'(p), meN,

prlm

where p” || m means that p” | m but p"*! { m. Now on the probability
space (€, B(2),my) we define, for o > %, the complex-valued random
element E(o; %, a;w) by the series

ko 2. Ta(m)w(m) _k
E(a, l,ogw) = Z Texp 27mm7 ,

m=1

and denote by Pg, , its distribution, i.e.,
C k
Pg,(A)=mpy|lweQ: F 73T hw eAl, AeB(C).

Denote by meas{A} the Lebesgue measure of a measurable set A C R.
Then in [9] the following result has been obtained.

Theorem 1. Suppose that o > % and Ra < 0. Then the probability

measure
1 Lk
ieas {t €1[0,77: E<O’ + it; l,a) € A} , AeB(C),

converges weakly to the measure Pga as T — oo.

In [10] a generalization of Theorem 1 was given, a limit theorem in
the space of meromorphic functions for the Estermann zeta-function was
obtained. Let D = {s € C: ¢ > 1}, and let M (D) denote the space
of meromorphic on D functions equipped with the topology of uniform
convergence on compacta. Moreover, by H(D) denote the space of an-
alytic on D functions equipped with the topology of M (D). H(D) is a
subspace of M (D). On (2, B(2),mp), define the H(D)-valued random

element

E(s;?,a;w) = Wexp{2mm];}, seD, weq,
m

m=1
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and denote by Pg its distribution, i.e.,
k
PH(A) =mpy (w €N: E(s;l,a;w> € A) , AeB(H(D)).
Then in [10] the following theorem has been proved.

Theorem 2. Suppose that Ra < 0. Then the probability measure
1
meas {7‘ €1[0,7] : E(s +iT; I;,a) € A} , AeB(M(D)),

converges weakly to Pg as T — oo.

Theorems 1 and 2 are of continuous type, the measures in them are

defined by shifts E (o + it; %, a) and E(s 4+ iT; %,a), when ¢ and 7 vary

continuously in the interval [0,7]. The aim of this paper is to obtain

a discrete limit theorem on the complex plane for the Estermann zeta-

function, when t in E(o + it; %, «) takes values from some discrete set.
Let, for brevity, for N € Ny,

1

) =N 1

0<m<N

where in place of dots a condition satisfied by m is to written.

Theorem 3. Suppose that o > —% and Ra < 0. Moreover, let h > 0 be a
fized number such that exp {2—21} is irrational for all v € Z \ {0}. Then

the probability measure

e ) k
Py o d:fuN (E<O‘—|— imh; l,a) € A) , AeB(C),

converges weakly to P}EC,U as N — oo.

1. Limit theorems for absolutely convergent series
Let, for fixed o1 > %,

i o {- ()7}

For n e N and o > %, define

E, <S; k,a> _ Mm)?mexp{%imk},
[ ms



88 DISCRETE LIMIT THEOREMS FOR ESTERMANN ZETA-FUNCTIONS. I

and, for & € Q,

E, <3; k,a;@) - i Ta(m)on(m)e(m) {27rimk}.

l ms l

m=1

Since, by (2), for Ra < 0, the estimate o,(m) < m€ is true, it is easily
seen that the series for F, (3; %,a) and F, (3; %,a;w) converge abso-
lutely in the half-plane o > % The details are similar to those given in
Chapter 5 of [8].

On (C, B(C)), define two probability measures

k
PNone =N <En (a + imbh,; T a> € A>
and

~ Eoo
PNno = pN (En <a + imh; l,a;w) € A) .

Theorem 4. Suppose that o > % and Ra < 0. Let h > 0 be a fized
number such that exp { &=} is irrational for all v € Z \ {0}. Then on
(C,B(C)) there exists a probability measure P, , such that the measures
Py o and ]3]\/7,“7 both converge weakly to P, , as N — oo.

The proof of Theorem 4 is based on a discrete limit theorem on the
torus 2. Define

Qu(A) = v (7™ peP) e A), AcBO).

Lemma 1. Let h > 0 be a fized number such that exp {2—’}7} 1s irrational
for all r € Z\ {0}. Then the probability measure Qn converges weakly to

the Haar measure myg as N — oo.

Proof. The dual group of  is

D déf@zp,

P
where Z, = Z for each prime p. An element k = (ko, ks, ks,...) € D,

where only a finite number of integers k,, p € P, are distinct from zero,

acts on 2 by
w— Wk = Hwk”(p).
p
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Therefore, the Fourier transform gy (k) of the measure @y is of the form

1 & _
gn(k) = / [Te" (p)dQy = Vo S e
Qo P

m=0 p
) N
= w11 Z exp {—imhz kplogp} , (3)
m=0 P

where only a finite number of integers k,, p € P, are distinct from zero.
It is well known that the system {logp : p € P} is linearly independent

over the field of rational numbers Q. Moreover,

Hpkp = exp {Z kplogp}
p p

is a rational number, while, by the hypothesis of the lemma, the number

exp 4 2
Xp Y
is irrational for all € Z \ {0}. Hence, we obtain that

exp {—ih Z k:plogp} #1

P
for k # 0. Thus, we deduce from (3) that
1 if k=0,

gn (k) = 4 1_‘5‘XP{—i(N+1)hZ kp 10gp}
* P
N+1

1exp{ —ih )" kp logp}
p

This shows that
1 if k=0,

lim gy(k) =
N—oo 0 if k+#0,

and in view of Theorem 1.4.2 of [4] the lemma is proved, since the limit

Fourier transform corresponds the measure mpg. O

Proof of Theorem 4. Define the function uy, , : © — C by the formula

i) = 3 AN o Lo .

l
=1
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Then the function u,, is continuous, and
—imh . k
Un,o ((p :pGP)) =F, a—{—zmh;j,a )

Therefore, Py, o = QNu;})_. Thus, by Lemma 1 and Theorem 5.1 of
[1] we obtain that the measure Py ,, converges weakly to mHu;}, as
N — oo.

Now let the function @y : @ — C be given by the formula

Un,o( Z Ta(m)o(m (m)vn(m) exp {QWimé} .

m=1

Then, similarly as above, we find that the measure ﬁN,W, converges
weakly to mpy, , as N — oo. However,

an,a(w) = un,a(wa) = un,d(u(w))v

where u(w) = wh, w € Q Hence, myt, 5 = mpg(unou) " =

(mHu_l)u;}, = mpu,, . o since the Haar measure is invariant. (]

2. Approximation in the mean

To prove Theorem 3, we have to pass from the function E,(s; %, a) to
E(s; %, «). For this, we need the estimate for the mean

R k k
m=0
If o > 1 and Ra < 0, then it is known [14] that

[ |p(rt)

In our case, a discrete version of estimate (4) is necessary. To prove an
estimate of such a kind, we use the Gallagher lemma, see [11], Lemma 1.4.

2
dt <T, T — o0. (4)

Lemma 2. Let Ty and T > § > 0 be real numbers, T be a finite set in
the interval [To+ 3, To + T — 3], and

>

teT
[t—z|<8
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Moreover, let S(x) be a complez-valued continuous function on [Ty, To+1T

having a continuous derivative on (Ty,To +T). Then

To+T
SNISOF < 5 [ IS@Pds
teT 7
To+T % To+T %
+ /yS(@de /\S’(m)2dx
To To

Lemma 3. Suppose that o > %, c#1, 01+ Ra, ifa #0, Ra <0
and N — oco. Then

2
< N +7|.

E<U+imh+i7’; ?,a)

m=0

Proof. A simple application of the integral Cauchy formula and (4) show

that
T
/ ‘E’ (o— + ity = )
1

Hence, and from (4), using Lemma 2, we have that

9 hN
<1/E +it 44 i
- o+ it+iT;—,«
_h ?l’
0

2
dt < T.

2
dt

N
m=0

E(J—i—imh—l—iT;?a)

hN i ) 3 /hN ) 9
+ /’E<U+it+i7;l,a> dt /‘E'<U+it+i7;l,a> dt
0 0
hN+|7| 9
k
< / 'E(U—i-it;l,a) dt
=7 ) )
hN+|7| ) 2 [ hN+|7| ) 2
Lk , ok
+ E U—I—zt;j,a dt E a—i—zt;j,a dt
=|7] —|7]
< N +|7].
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Theorem 5. Suppose that o > % and Ra < 0. Then

E(a—kimh;l;,a) —En(a—kimh;];,a)‘ =0.

Proof. Let o1 the same as in Section 1. For n € N, define

In(s) = 2T <8> ne.
o1 o1

N

Jun Hnsup =7 >

m=0

Then, see [9], for o > 1,

o1+i00

k 1 k d
E”(*w‘“) 5 | E(”“Z"OZ"(”;'
01—100
Define o9 by
% fa=0orl+Ra—0>0,
g > 09 >
14+ Ra  otherwise.

Thus, we obtain by the residue theorem that

o2 —0+100

k 1 k dz
En H) = 5 E Y7 n —
(s i a) 57 / (S—i—z ;i a)l (2) .

09 —0—100

k k
—I—E(s; 7,0z> + R(s; l,a),

Res E(s—i—z,l, )l”('z) if a =0,

where

k
R<S;l,a>: Res E(s+z;7,a)l"(z) + Res E(s+z;%,a)l"(2)

—1—s z z=1+a—s z

Hence, we have

if 1+Ra—0>0.
N

(a + imh; ];,oz> — En<a + imh; ?,a)‘

N
02—U+ZT)| 1 ‘ < , _k )‘
E(oy+imh+it;—, « dr
( |og — o +iT| N+1mz_:0 l

8\8 2
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1 N

tNFI
m=0

k
R(O’Q —U—l—imh;l,a) .

We can choose o3 # 1 and g2 # 1 + Ra.. Thus, by Lemma 3

N1l EI

m=0

. fv@)( )

< 1+ 6)

. .k
<02 + tmh + iT; l,oz)‘

. .k
02 + tmh + 17 l,oz)

Applying Lemma 2 again, we find that

k
R<02—U+imh;l,a>’
1
N k 2\ 2
N — imh; —
<<\/><mz::0 R(O'2 a+zm,l7a> )
Nh
i 2
<<\/ﬁ</’R(02—a+it;l,a) dt
1
2
WY

o [Ir(or-oeba) ) ([l ki)
0
(7)

Since the function I, (s) contains the Euler gamma-function, we obtain

Nh

i 2
/ ‘R<02 — o +1it; l,oz)
0

This and application of the Cauchy integral formula give the bound

Nh "
/ ‘R,<O'2 — 0+ 1it; l,oz>
0

This and (7), (8) lead to the estimate
N

m=0

the estimate

dt < 1. 8)

2
dt < 1.

1 2

N—l—lmzO

1
dt < —=.

VN

R(O’Q — 0 +imh; I;,a>




94 DISCRETE LIMIT THEOREMS FOR ESTERMANN ZETA-FUNCTIONS. I

Therefore, in view of (5) and (6)

N
1 k k
nllngoli]{[rljgop N1 E ’E(U—I—imh; l,oz) - E, <U+ imh; l704>’

o0

< lim | |ln(os — o +im)| (1 + |7])dt. 9)

n—oo
—00

However, since 09 — o < 0,

o0
lim |ln(o2 — o +i7)| (1 + |7|)dt =0,
n—oo
—0o0
and the theorem is a consequence of estimate (9). O

We also need an analogue of Theorem 5 for the functions E(s; %, ;W)
and F,(s; l , 0 W)

Theorem 6. Let o > % and Ra < 0. Then, for almost all w € (2,

N
k
lim limsu E|o+imh; -, a;w
Jm limsup 57y > (o mhs . ic)
k
—En<a+imh;l,oz;w>‘ = 0.

Proof. In [9], Lemma 5, it was obtained that, under the hypotheses of

T
/‘ <U+1t a;w)
0

for almost all w € Q. Hence, similarly to the proof of Lemma 3, we obtain

that

the theorem,
2
dt <T

N

>

m=0

2
< N+ 7] (10)

k
E<U+imh+iT;l,a;w>

for almost all w € .
The random variables w(m), m € N, are pointwise orthogonal, that
is

- 1 if m =n,
E(w(m)w(n)) = .
0 if m#n,
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where [E(X) denotes the expectation of X. Hence, we have that

& (oa(m)w(m) %(72:(”) exp {2m’l;(m - n)})

mO’

oo (m)|?
m20

0 if m #n.

if m=n,

Thus, in view of (2), the series

|7l o (]

m
m=1

2
log2 m

converges for any fixed o > % Therefore, by the Rademacher theorem,

see, for example [11], the series, for any fixed o > %,

i ga(mw(m) {QWiml;}

mO’
m=1

converges for almost all w € 2. Hence, the series

i A"“(izf(m) exp {%m?} ,

m=1
for almost all w € €, converges uniformly on compact subsets of the
half-plane {s € C : ¢ > %} This shows that, for almost all w € Q,
the function E(s; ?,a;w) is analytic in the region {s € C : ¢ > %}

Therefore, using the representation

o1+i00
k 1 k dz
n 5 75006 = . E 5 7505 n V)
E<S’l aw) 5 / <s+z i aw)l (Z)z
o1 —100

we obtain that, for % < o9 <0,

o9 —0+100

k 1 k dz k
En<s,l,04,w> =5 / E<s+z,l,a,w>ln(z)z+E<s,l,a,w>

09 —0—100

for almost all w € Q. Using the latter formula and (9), we complete the

proof in the same way as in the case of Theorem 5. 0
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3. Proof of Theorem 3

Define one more probability measure

ﬁN,a = un (E<U+imh; ?,a;w) € A) , AeB(C).

We begin the proof of Theorem 3 with the following statement.
Theorem 7. Suppose that o > 5 and Ra < 0. Then on (C,B(C)) there

exists a probability measure P, such that the measures Py, and /PSNJ both

converge weakly to P, as N — o0.

Proof. By Theorem 4, for o > %, the measures Py . o

~ k
PN,n,o':/'LN (En(a—i-zmh,l,a,w) EA) 5 AGB(C),
for every w € ), both converge weakly to the same measure P, , as
N — oo.
For any positive M, by the Chebyshev inequality

k
PN,n,U({z eC:|z| > M}) = un <’En <a+imh;l,a>

N

1
S MovaD >

m=0

> )
k

As we have observed above, the series for E, (s; %, a) converges absolutely

for o > % Also, the latter property holds for E/ (s; %, «). Therefore, for

g > bR
T
1 . ? o |oa(m)|on (m)
TLEEOT/‘En(Jqut, ,a> dt = Z m20n
1 m=1
o |ga(m)]
< “ < 12
< Yl < 1
and
1 r 2 > oo (m)|2v2 (m)log?m
/ . (o4 n
TIEI;OT/‘ER<U+M, ,a> dt = Z p—r
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0 21 2
3 —‘Ga(m)tgog M < 0.(13)
m=1 m

An application of Lemma 2 yields

1

y
)

N

k 1
E, + imh; —, L —= FE,
(o+imi o)l 73 (3
m=0
< L 1/ E _i_z't.ﬁa ’
N\ Nh n| 0 e
0

d¢
1 EONR N2 T
+(N/‘En(a+zt;l,a> dt> (N/
0 0

This, (12) and (13) show that

k
<a+ tmh; l,a)

NI

E;L (a + it; %, a>

N
. 1 : k
ilelrl\)l h]{/n_?;lop Nl mEZO E, <0‘ + tmh; 7o w) ’ < C(h)R, (14)

where

D=

1
1\ 2
)P [oa(m)2)? (& |oa(m)[2log?m \ ?
Z Z el ) (2 o=t < oo
m=1

For arbitrary € > 0, let M. = C(h)Re~!. Then, taking into account (11)
and (14), we find that

limsup Pyno({z€C:|z| > M}) <e. (15)

N—oo

The function u : C — R, z — |z, is continuous. Therefore, by Theorem 4

and Theorem 5.1 of [1] we have that, for o > 3, the probability measure

k
N (‘En (U + tmh; l,a)

converges weakly to P, ;u~! as N — oo. This together with Theorem 2.1
of [1] and (15) implies

eA), A € B(R),

Poo({z€C: 2| >M}) < 1}\rfnianN7n,U({z€C:|z|>Me})
< limsup Pypno ({2 €C:lz] > M}) <e

N—oo
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(16)

for all n € N. Define K, = {z € C : |z| < M.}. Then the set K is
compact, and by (16)
PTL,O’(KE) >1—e€

for all n € N. This means that the family of probability measures {P, , :
n € N} is tight, and by the Prokhorov theorem, see Theorem 6.1 of [1],
it is relatively compact. Therefore, there exists a subsequence {P,, -} C
{P, +} such that P,, , converges weakly to some measure P, on (C, B(C))
as k — oo.

Let x5 be a random variable defined on a certain probability space
(€2, B(9),P) with the distribution

P(On = mh) = Nio ™= 0,1,...,N.

Define

l
and denote by X,, = X,,(0) the complex-valued random variable with the

distribution P, ,. Then by Theorem 4

k
XN,n = XN,n(U) =F, <0’ + 10N ,Oz)

(D) rx,, (17)

XN,n Nooo

D A
where —— denotes the convergence in distribution. Moreover, from the

above remark
L. p,. (18)

X, (0) 2

Define

tor? £ (oo ).

Then in view of Theorem 5, for o > % and any € > 0,

lim limsup P (| Xn(0) — Xnn(o)| > €)

n—oo N_,

k k
= lim limsuppuy (’E<U+imh;,a> - E, (a—i—imh;,a)

n—0o0 N_.oo l l

)

E(a + tmh; I;,a> — B, <U+imh; I;,oz)

[e.e]

1

n—oo N—oo € =1

IN

=0.
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This, (17), (18) and Theorem 4.2 of [1| show that

D

XN(O) Njgo P(77 (19)

and this is equivalent to weak convergence of Py, to P, as N — oo.
Relation (19) shows that the measure P, is independent of the choice

of the sequence P,, ;. Hence, we obtain that

D

Xn(O') n:)o PO" (20)
Now define
~ ~ \ k
XN,n = XN,n(U> =FE, <U +i0N; lya§w>
and

~ ~ k
Xy =Xn(o)=FE <a+i9N;l,oz;w> .

Then in the same way as above, using (20) and Theorem 6, we find that

the measure ISNJ also converges weakly to P, as N — oo. O

Proof of Theorem 3. In view of Theorem 7, it remains to identify the
limit measure P,.

Let A € B(C) be a fixed continuity set of the limit measure P, in
Theorem 7. Then we have that

A}im LN <E<0 + imh; I;,Oz> € A) = P,(A). (21)
Now on (€2, B(€2)) define the random variable 6 by the formula

0= 0(w) = 1 ifE(a;%,a;w)eA,
\ o ifE(a;%,oz;w)¢A.

Then we have that

k
E9:/9de:mH <w€Q:E<s;l,a;w> EA) :P}SG. (22)

Let ap, = {p~™ : p € P}. Define the transformation f, on Q by
frn(w) = apw, w € Q. Then fj, is a measurable measure preserving trans-
formation on (2, B(2),my). In [5] it was obtained that the transforma-
tion fj is ergodic. Then by the classical Birkhoff-Khinchine theorem, see,
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for example [7|, we obtain that

lim

N
im0 w) =B (23)
0

for almost all w € ). However, by the definition of f;, we have that
R k

From this, (22) and (23) we obtain that
. . k C
A}nn un | E{ o+ imh; 7w ) € A) = Pg,(A).

Therefore, by (21), P,(A) = PS_(A). Since A is arbitrary continuity
set of P,, the latter equality is true for any continuity set A. However,

all continuity sets constitute the determining class, and we have that
P,(A) = P}JC’U(A) for all A € B(C). The theorem is proved. O
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