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Abstract. This is a survey paper on the distribution of

arithmetical functions on some subsets of integers. Continuous

homomorphisms as arithmetical functions, and sets of uniqueness

are also treated.

1. Notations, definitions and basic theorems

We shall use the usual notation: N, Z, Q, R, C for the set of positive
integers, integers, rational, real and complex numbers, respectively. Let
Qx, Rx be the multiplicative group of rational, real numbers, respectively.

Let P be the set of primes, p(n) be the smallest, P (n) be the largest
prime factor of n. Let x1 = log x, x2 = log x1, . . . . Let π(x) be the
number of primes up to x.

Let G be an Abelian group. AG = class of additive functions (taking
values from G) is defined as follows: f : N → G belongs to AG if f(mn) =
f(m) + f(n) holds for every m, n ∈ N with (m, n) = 1. We say that
f ∈ A∗

G if f(mn) = f(m) + f(n) holds without any constraint.

For f ∈ A∗
G we extend the domain to Qx:

f
(m

n

)

= f(m) − f(n).
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If G is multiplicatively written we define MG, M∗
G as follows:

g ∈ MG if g : N → G, g(mn) = g(m) · g(n) ∀(m, n) = 1,
g ∈ M∗

G if g : N → G, g(mn) = g(m) · g(n) ∀m, n ∈ N.
MG = class of multiplicative functions, M∗

G = class of completely
multiplicative functions.

The following assertion can be proved easily.
Lemma 1. Let G be a topological Abelian group, f ∈ A∗

G, f : Qx → G
is continuous at 1. Then for each α ∈ Rx there exists the limit

lim
r→α
r∈Qx

f(r) =: Φ(α).

Φ is continuous everywhere in Rx, furthermore Φ(αβ) = Φ(α) + Φ(β)
valid for all α, β ∈ Rx. Thus Φ is a continuous homomorphism of Rx

into G.
On the other hand: if φ : Rx → G homomorphism then φ/N ∈ A∗

G.
Let yn(n ∈ N) be a sequence of real numbers,

FN (u) :=
1

N
#{n ≤ N | yn < u}.

Definition. We say that {yn(n ∈ N)} has a limit distribution, if

lim
N→∞

FN (u) = F (u)

exists for every continuity point of F , where F is a distribution function.
Theorem of Erdős and Wintner: f ∈ A has a limit distribution if
and only if

(a)
∑

|f(p)|<1

f(p)

p
, (b)

∑

|f(p)|<1

f2(p)

p
, (c)

∑

|f(p)|≥1

1/p

are convergent.
Theorem (Kátai, 1965.). Assume that f ∈ A, and (a), (b), (c) are
convergent. Then f has a distribution on the set of shifted primes, i.e.

lim
N→∞

1

π(N)
# {p < N | f(p + a) < u} = Ga(u)

exist for every continuity points of Ga, when a 6= 0.
Question: are the convergence of (a), (b), (c) necessary? I wanted to
find all f ∈ A∗ for which f(p + 1) = 0, (p ∈ P).
Definition. We say that E ⊆ N is a set of uniqueness (for the set of
completely additive functions) if f ∈ A∗, f(E) = 0 implies that f(N) = 0.
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I proved: The set P + 1 can be enlarged by a finite set of primes
q1, . . . , qs such that E = {P + 1, q1, . . . , qs} is a set of uniqueness. (Acta
Arithmetica: 16 (1968), 1-4).

Elliott proved: P + 1 is a set of uniqueness (Acta Arithmetica 26
(1974), 11-20).

Wolke (Elemente der Math. 33 (1978), 14-16) proved: E is a set of
uniqueness if and only if every n ∈ N can be written as

n = er1

i1
. . . erh

ih
, r1, . . . , rh ∈ Q.

Hildebrand (Proc. London 53 (1989), 209-232) proved that the con-
vergence of (a), (b), (c) are necessary to the existence of the limit distri-
bution of f(p + a).

From Hildebrand’s theorem it follows that, if for each ε > 0,

1

π(x)
#{p ≤ x

∣

∣ |f(p + 1)| ≥ ε} → 0 (x → ∞),

then f(p + 1) = 0.
Definition. We say that E ⊆ N is a set of uniqueness for the class of
functions in A∗

G, if f ∈ A∗
G, f(E) = 0 implies that f(N) = 0.

Let G = T = torus = {z ∈ C, |z| = 1}.
Meyer, Indlekofer, Dress and Wolkman, Hoffman proved: in order

that E would be a set of uniqueness for the class A∗
T , it is necessary and

sufficient that every positive integer n had a representation

n =
s
∏

j=1

a
dj

j ,

with some integers dj and aj ∈ E.
Let K be the multiplicative group generated by the elements {p +

1 | p ∈ P}.
In my paper implicitly is stated: there is a suitable constant L, such

that every integer n can be written as a(n) · k(n), where k(n) ∈ K, and
a(n) is such a rational number in the reduced form of which all prime
factors are less than L.

Elliott proved: L = 10387 is appropriate.
Recently Elliott proved: O(Qx | K) ∈ {1, 2, 3}.
It is not known whether (−1)Ω(p+1) = constant for every large prime

p, or not?
Question: Under what condition is true, that for f ∈ A, ∆f(n) =
f(n + 1) − f(n) has a limit distribution?

If f(n) = c log n, then ∆f(n) → 0 ⇒ ∃ limit distribution.
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Hildebrand proved: Let f ∈ A, such that ∆f(n) has a limit distribu-
tion. Then f(n) = c log n + g(n),

(∗)
∑

p∈P

min(g2(p), 1)

p
< ∞.

If (∗) holds, then the function ∆f(n) has a limit distribution.

2. Characterization of log n as an additive function

The first result is from Erdős (Annals of Math. 1946). Here we shall only
list the most important results on this topic:

1. If ∆(n) = f(n + 1) − f(n) → 0, then f = c log. (P. Erdős, 1946)
2. If ∆(n) ≥ 0 (∀n), then f = c log. (P. Erdős, 1946)
3. If lim inf ∆kf(n) ≥ 0, then f = c log. (I. Kátai)
4. If ∆f(n) ≥ −K, then f(n) = c log n + u(n), u(n) bounded.

(Wirsing)
5. If

1

x

∑

n≤x

|∆f(n)| → 0 (x → ∞),

then f = c log. (I. Kátai)

6. If f ∈ A∗, and
∆f(n)

log n
→ 0 (n → ∞), then f = c log. (Wirsing)

7. Let f, g ∈ A, ηn := g(n + 1) − f(n). If
a) ηn → 0, then f(n) = g(n) = c log n,
b) ηn is bounded, then f(n) = c log n + u(n),

g(n) = c log n + v(n), and u(n), v(n) are bounded.

c) If f, g ∈ A∗,
ηn

log n
→ 0, then f(n) = g(n) = c log n.

8. Elliott characterized f ∈ A, satisfying

f(an + b) − f(An + B) → C, (n → ∞),

if ∆ = aB − Ab 6= 0.
Assume that aA∆ 6= 0. Then there exists c, c1, so that

∣

∣

∣

∣

f(m)

log m
− f(n)

log n

∣

∣

∣

∣

≤ c1

(

L(m)

log m
+

L(n)

log n

)

holds uniformly for all integers m and n which satisfy 2 ≤ m ≤ n ≤ em,
and are prime to aA∆.

Here
L(x) = max

n≤xc
|f(an + b) − f(An + B)|.
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3. Characterization of n
s as a multiplicative function

In a series of papers: Multiplicative functions with regularity properties
I-VI., (Acta Mathem. Hung. 1983-1991) the following assertions are
proved:

I. If f, g ∈ M, and

∑ |g(n + 1) − f(n)|
n

< ∞,

then either

(!)
∑ |f(n)|

n
< ∞,

∑ |g(n)|
n

< ∞,

or

f(n) = g(n) = nσ+it, σ, τ ∈ R, 0 ≤ σ < 1.

II. Assume that f, g ∈ M∗, k ≥ 1 be fixed, f(n) 6= 0, g(n) 6= 0, if
(n, k) = 1, and f(n) = g(n) = 0 if (n, k) > 1, furthermore

∑

n

1

n
|g(n + k) − f(n)| < ∞.

Then either (!) is satisfied or there exist F, G ∈ M∗, s ∈ C with
Re s < 1, such that f(n) = nsF (n), g(n) = nsG(n), and

G(n + k) = F (n) (n ∈ N)

holds.

Consequence:
∑ 1

n
|λ(n + 1) − λ(n)| = ∞, λ =Liouville function.

Conjecture (1984): If f ∈ M, ∆f(n) → 0, then either f(n) → 0 or
f(n) = niτ .

Conjecture proved by Wirsing in 1984, published by Wirsing, Tang
and Shao Journal of Number Theory 56, (1996).

Bassily and Kátai proved: If f, g ∈ M, g(2n+1)− cf(n) → 0 (n →
∞), c 6= 0, then either f(n) → 0, or f(n) = ns, 0 ≤ Re s < 1, g(n) =
f(n) if n odd.

Problem: Characterize f, g ∈ M with g(An + B) + Cf(an + b) → 0.

Some important results are proved by B.M. Phong.

Conjecture 1. If f ∈ M and

(∗) 1

x

∑

n≤x

|∆f(n)| → 0,
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then either
1

x

∑

n≤x

|f(n)| → 0,

or f(n) = ns, 0 ≤ Re s < 1.
Mauclaire and Murata proved: If f ∈ M, (∗) holds, |f(n)| = 1 (∀n ∈

N), then f ∈ M∗.
Hildebrand proved: ∃c > 0: If g ∈ M∗, |g(n)| = 1, and |g(p) − 1| ≤

c (p ∈ P), then either g(n) = 1 (n ∈ N), or

lim inf
1

x

∑

n≤x

|∆g(n)| > 0.

I proved: ∃0 < β < 1, δ > 0: If g ∈ M∗, |g(n)| = 1, and

lim sup
∑

xβ<p<x

|g(p) − 1|
p

< δ,

lim inf
x→∞

1

x

∑

x
2
≤n≤x

|∆g(n)| = 0,

then g(n) = 1 (∀n).
Let ‖x‖ = min

n∈Z
|x − n|.

Bui Minh Phong proved the following theorems:
I. Let k be fixed. Then there exist suitable positive constants δ, η >

0 such that if f0, f1, . . . , fk ∈ A, ‖fj(p)‖ < δ (p ∈ P, j = 0, . . . , k)
l(n) := f0(n) + . . . + fk(n + k), then

lim inf
x→∞

1

x

∑

n≤x

‖l(n) + Γ‖ < η

implies that
l(n) + Γ ≡ 0(mod 1).

II. Let a1, b1, a2, b2 ∈ Z, a1, a2 ∈ N, ∆ = a1b2 − a2b1 6= 0. Then
there exist δ, η > 0 such that: if

f, g ∈ A, ‖f(p)‖ ≤ δ, ‖g(p)‖ ≤ δ (p ∈ P)

and

lim inf
x→∞

1

x

∑

n≤x

‖f(a1n + b1) + g(a2n + b2) + Γ‖ ≤ η,

then
f(a1n + b1) + g(a2n + b2) + Γ ≡ 0(mod 1) (n ∈ Z).
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4. On additive functions mod 1.

Let T = R/Z.
Definition. We say that F ∈ AT is of "finite support" if F (pα) = 0
holds for every large p and α ∈ N.

Let F0, . . . , Fk−1 ∈ AT ,

Ln(F0, . . . , Fk−1) = F0(n) + . . . + Fk−1(n + k − 1).

Conjecture 2.

Let L(k)
0 be the space of those (F0, . . . , Fk−1) for which Ln(F0, . . . , Fk−1) =

0 (∀n ∈ N).

Then every Fj is of finite support. Furthermore L(k)
0 is a finite di-

mensional Z module.
Remark. If Gj(n) = τj log n (mod 1), τ0 + . . . + τk−1 = 0, then
Ln(G0, . . . , Gk−1) → 0 (n → ∞).
Conjecture 3. If Fν ∈ AT (ν = 0, . . . , k − 1), and

Ln(F0, . . . , Fk−1) → 0 (n → ∞),

then there exist suitable real numbers τ0, . . . , τk−1 such that τ0 + . . . +
τk−1 = 0 and for the functions Hj(n) = Fj(n) − τj log n we have

Ln(H0, . . . , Hk−1) = 0.

Remarks.
1. Conjecture 3, k = 1 follows from Wirsing’s theorem.
2. Conjecture 2, k = 3 was proved by Kátai for Fν ∈ A∗

T , and for
Fν ∈ AT by R. Styer.
Conjecture 4. For every integer k ≥ 1 there exists a constant ck such
that for every prime p greater than ck,

min
1≤j

P (j)<p

max
i∈[−k,k]

i6=0

P (jp + l) < p.

No proof for k ≥ 2.
Proposition. Let L∗l

0 be the space of those l-tuples (F0, . . . , Fl−1) of
Fν ∈ A∗

T for which Ln(F0, . . . , Fl−1) = 0 (n ∈ N) holds. Assume that
Conjecture 4 is true for k = 1. Then L∗l

0 is a finite dimensional space.

5. Continuous homomorphisms as elements of AG,

G = Abelian compact group

Z. Daróczy and I. Kátai: Let G = metrically compact Abelian group.
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f : N → G. Sf = set of limit points of f(n)(n ∈ N). Sf is a closed
space, f(N) ⊆ Sf .

Theorem. Let f ∈ A∗
G, ∆f(n) → 0 (n → ∞). Then there exists a

continuous homomorphism φ : Rx → G such that f(n) = φ(n).

More generally: Let H : Sf → Sf be continuous. Assume that f ∈
A∗

G, f(n + 1) − H(f(n)) → 0. Then f(n) = φ(n), φ : Rx → G is a
continuous homomorphism.

Conjecture 5. Let f ∈ A∗
T , en = (f(n), . . . , f(n + k − 1)). Then either

f(n) = λ log n(mod 1) with some λ ∈ R, or {en | n ∈ N} is dense in
Tk = T × · · · × T .

Conjecture 6. (I. Kátai & M.V. Subbarao). Assume that f ∈ A∗
G, G =

Abelian compact group. Assume that Sf = G. Let H = set of limit points
of ∆f(n). Then H is a closed subspace of G, and

f(n) = ϕ(n) + α(n),

where ϕ is the restriction of a continuous homomorphism φ : Rx → G
(i.e. ϕ(n) = φ(n) (n ∈ N)) and α(N) ⊆ H, closure α(N) = H.

A special case of Conjecture 6 can be formulated as

Conjecture 7. Let f ∈ M∗, |f(n)| = 1(n ∈ N), and

Bk = {α1, . . . , αk} = limit points of {f(n + 1)f(n) (n ∈ N)}.

Then Bk = Sk = {w|wk = 1}, f(n) = niτF (n), where F (N) = Sk, and
for every w ∈ Sk there is an infinite sequence nν such that

F (nν + 1)F (nν) = w.

I. Kátai and M.V. Subbarao proved: Conjecture 7 is true if k = 1, 2, 3,
and partially proved for k = 4.

Wirsing proved: Under the conditions of Conjecture 7, there is an
integer l, such that f(n) = niτF (n), where F (N) = Sl. (Annales Univ.
Budapest, Sectio Computatorica, 2004.)

6. Diophantinely smooth sequences

The definition and some interesting theorems are proved by Barban.

Let B = {a1 < a2 < . . . } be a subsequence in N, A(x) = #{aν <
x}, A(x, D, l) = #{aν < x, aν ≡ l (mod D)},

R(x, D, l) =

∣

∣

∣

∣

A(x, D, l) − A(x)

ϕ(D)

∣

∣

∣

∣

.
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Assume that

∑

D≤xα

lim
y≤x

lim
(l,D)=1

R(y, D, l) ≪ A(x)

(log x)B
,

where α is a suitable positive and B an arbitrary large constant.

We say that A is diophantinely smooth.

Examples for diophantinely smooth sequences:

1. A = P. (Linnik, Rényi, Barban, Bombieri - A.I. Vinogradov)

2. A = {n
∣

∣ p|n ⇒ p ≡ 1 (mod 4)}. (Levin - Timofeev)

3. Ak = {n | ω(n) = k}. (Wolke - Zhan Math. Z. 1993.)

One can prove that f ∈ A has a limit distribution on the set of
B+e = B + e, e 6= 0, where B is a diophantinely smooth sequence, if it
has a limit distribution on N.

7. Distribution of additive functions on Ak

Let πk(x) = #{n ≤ x | ω(n) = k}, Ak = {n | ω(n) = k}.
I. Kátai and M.V. Subbarao (Publicationes Math. 2003) proved:

Theorem: Let k = k(x) be such a sequence for which

∣

∣

∣

∣

k

x2
− 1

∣

∣

∣

∣

<

δx, δx → 0. Assume that f ∈ A, and

∑

|f(p)|≥1

1

p
,

∑

|f(p)|≤1

f(p)

p
,

∑

|f(p)|≤1

f2(p)

p

are convergent.

Then

lim
x→∞

1

πk(x)
#{n ≤ x, n ∈ Ak, f(n) < y} = F (y),

where F is a distribution function.

Theorem. Let k = k(x) be as above. Let g ∈ M, |g(n)| = 1 such that

∑

p

1 − g(p)

p

is convergent. Then

1

πk(x)

∑

n<x
n∈Ak

g(n) = (1 + ox(1))M(g) (x → ∞).
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Here
M(g) =

∏

p

ep,

ep =

(

1 − 1

p

) (

1 +
g(p)

p
+

g(p2)

p2
+ . . .

)

.

8. On the iterates of arithmetical functions

I. Let ϕ(n) = ϕ1(n) be Euler’s totient function, ϕk(n) = ϕ(ϕk−1(n))
(k = 2, 3, . . . ). Let Φ be the Gaussian distribution function.

Theorem 1. (N.L. Bassily, I. Kátai and M. Wijsmuller, Journal of Num-
ber Theory, 1997)

Let

ak =
1

(k + 1)!
, bk =

1√
2k + 1

ak,

k ≥ 1 be fixed. Then

lim
x→∞

x−1#

{

n ≤ x

∣

∣

∣

∣

∣

ω(ϕk(n)) − ak · xk+1
2

bk · xk+1/2
2

< z

}

= Φ(z),

and

lim
x→∞

1

π(x)
#

{

p ≤ x

∣

∣

∣

∣

∣

ω(ϕk(p − 1)) − ak · xk+1
2

bk · xk+1/2
2

< z

}

= Φ(z).

Let ∆(n) = Ω(n) − ω(n).

In Publicationes Math. Debrecen (Bassily, Kátai, Wijsmuller) is
proved:

Theorem 2. We have for every fixed k:

∆(ϕk(n)) = ak−1(1 + o(1))xk
2x4

for all but o(x) integers n ≤ x.

Theorem 3. We have

lim
x→∞

x−1#

{

n ≤ x

∣

∣

∣

∣

∆(ϕ(n)) − s(x)√
x2 · x4

< z

}

= Φ(z)

where s(x) = x2 · x4 + c1x2 + o(x2), c1 is a suitable constant.

II. Let σ∗(n) =
∑

d|n

(d, n
d )=1

d = sum of unitary divisors of n. σ∗
k(n) =

σ∗(σ∗
k−1(n)), k = 2, 3, . . . , σ∗ = σ∗

1.
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Erdős and Subbarao proved:

σ∗
2(n)

σ∗
1(n)

→ 1 almost all n.

I. Kátai and M. Wijsmuller proved:

σ∗
3(n)

σ∗
2(n)

→ 1 almost all n.

(Acta Math. Hung.)

We hope that
σ∗

k+1(n)

σ∗
k(n)

→ 1 almost all n

is true for every k = 3, 4, . . . .

III. In our paper (Mathematica Pannonica 1999, I. Kátai and M.V.
Subbarao) we investigated the iterates of the sum of "exponential divisors:
σ(e)(n). σ(e) is multiplicative and

σ(e)(pa) =
∑

b|a

pb.

Let

f0(n) = n, f1(n) = σ(e)(n), fj+1(n) = f1(fj(n)).

Theorem. k ≥ 1 fix. We have

lim
x→∞

x−1#

{

n ≤ x

∣

∣

∣

∣

fj(n)

fj−1(n)
< αj , j = 1, . . . , k

}

= Fk(α1, . . . , αk),

where Fk is strictly monotonic in each variables in (1,∞)k.

IV. Indlekofer – Kátai: (Lietuvos Mat. Rinkinis 2004). k ≥ 1, fix.
Q prime, fix: κ0, κ1, . . . be completely additive functions,

κ0(p) =

{

1 if p = Q

0 if p 6= Q
; κj+1(p) =

∑

q|p−1
q∈P

κj(q),

ρk(Q) = ρk(Q|x) =
∏

p<x
κk+1(p) 6=0

p∈P

(1 − 1/p) .

Nk(Q|x) = #{n ≤ x | Q ∤ ϕk+1(n)}.
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Theorem 1. Let ε > 0, k ≥ 2 be fixed, Q ∈
[

xk+ε
2 , xk+1−ε

2

]

, Q be prime.

Then
Nk(Q|x) = ρk(Q) × (1 + O (1/x2)) ,

and

log
1

ρk(Q)
= Ak+1(x) + O(1/Q) + O

(

x2k+1
2

Q2

)

,

Ak+1(x) =
xk+1

2

(k + 1)!(Q − 1)
+ O

(

x
k+ε/2
2

Q

)

.

Theorem 2. Let x3 · x2 ≤ Q ≤ x2
2. Then

N1(Q|x) = xρ1(Q)

(

1 + O

(

x2x3

Q

))

,

log
1

ρ1(Q)
=

x2
2

2Q
+ O

(

x3
2

Q2
+

x2 log Q

Q

)

.

Theorem 3. Let ε > 0, k ≥ 2, r ≥ 1 be fixed.

Let Q1, . . . , Qr ∈
[

x
k+1/2+ε
2 , xk+1−ε

2

]

, Q1, . . . , Qr be distinct primes.

Then
Nk(Q1, . . . , Qr|x)

x
= ρk(Q1) . . . ρk(Qr)

{

1 + O
(

x2k+1
2

∑

1/Q2
j

)}

.
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