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Abstract. A semigroup S is called F - semigroup if there
exists a group-congruence ρ on S such that every ρ-class contains
a greatest element with respect to the natural partial order ≤S of
S (see [8]). This generalizes the concept of F -inverse semigroups
introduced by V. Wagner [12] and investigated in [7]. Five different
characterizations of general F -semigroups S are given: by means
of residuals, by special principal anticones, by properties of the set
of idempotents, by the maximal elements in (S,≤S) and finally,
an axiomatic one using an additional unary operation. Also F -
semigroups in special classes are considered; in particular, inflations
of semigroups and strong semilattices of monoids are studied.

1. Introduction and summary

The concept of F–inverse semigroup S was introduced by V. Wagner
[12]: S is defined as an inverse semigroup such that for the least group–
congruence σ on S every σ–class contains a greatest element with respect
to the natural partial order of S. A theory of this class of inverse semi-
groups was developed in [7] (see also the corresponding chapters in [11]
and [6]).

By [8] for every semigroup S the relation

a ≤S b if and only if a = xb = by, xa = a(= ay) for some x, y ∈ S1
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is a partial order on S, the so called natural partial order . Note that for
e, f ∈ ES , e ≤S f iff e = ef = fe. If S is an inverse semigroup then ≤S

coincides with the partial order mentioned above. Thus a generalization
to non–inverse semigroups is made possible. First, in [3] generalized F–
semigroups were defined as semigroups S, on which there exists a group–
congruence ρ such that the identity ρ–class in the group S/ρ contains a
greatest element with respect to the natural partial order of S, the pivot
of S. Here the special case (corresponding to the F–inverse case) of F–
semigroups is considered, which are defined as generalized F–semigroups
S such that every ρ–class contains a greatest element with respect to ≤S .

In the theory of partially ordered semigroups (S, ·,≤) F–semigroups
appear under the name of strong Dubreil–Jacotin semigroups (see [1] and
Theorem 1. below). Note that in this case the partial order ≤ given on
S is supposed to be compatible with multiplication, that is, a ≤ b in S
implies that ac ≤ bc and ca ≤ cb for every c ∈ S. In general, the natural
partial order on a semigroup does not have this property (see [9]). Hence
the results on strong Dubreil–Jacotin semigroups cannot be applied to
our case and a theory for its own will be developed.

In Section 2, examples of F–semigroups are given. The concept of
residual – borrowed from the theory of partially ordered semigroups (see
[1] or [2]) – is defined in Section 3. A characterization of F–semigroups
by means of residuals of the greatest element of some ρ–class, in partic-
ular of the identity class, is provided. Also, an axiomatic characteriza-
tion of F -semigroups due to M. Petrich is given. In Section 4, principal
anticones (which characterize generalized F–semigroups, see [3]) are spe-
cialized thus obtaining another characterization of F–semigroups, which
in turn gives rise to a characterization in terms of idempotents. The
particular cases, where a greatest idempotent or an identity exists, are
considered. Section 5 provides a characterization of F–semigroups S by
means of the maximal elements in (S,≤S) and the principal order ideals
generated by them. Several special cases, as inverse, Clifford, monoid,
centric, commutative, or eventually regular semigroups, are dealt with.
The final section contains necessary and sufficient conditions for inflations
of semigroups or strong semilatties of monoids, to be F–semigroups.

2. Definitions and examples

A semigroup (S, ·) will be called F–semigroup if there exists a congruence
ρ on S such that (1) (S/ρ, ·) is a group, and (2) each ρ–class of S contains
a greatest element with respect to the natural partial order ≤S of S. The
maximum of the ρ–class, which constitutes the identity of S/ρ, is called
the pivot of S.
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In [3] a semigroup (S, ·) was defined to be a generalized F–semigroup
if there exists a group–congruence ρ on S such that (only) the identity
ρ–class of S admits a greatest element with respect to ≤S . Hence every
F–semigroup is a generalized F–semigroup. Therefore by [3], Proposition
3.7, Corollary 3.12, we have for every F–semigroup S:

1. ES is a subsemigroup of S with greatest element;
2. S is E–inversive (i.e., for every a ∈ S there exists x ∈ S with
ax ∈ ES);

3. if S is a monoid then S is E–unitary (i.e., e, ae ∈ ES(e, ea ∈ ES)
implies that a ∈ ES).

Remark. The group–congruence ρ appearing in the definition of an F–
semigroup S is uniquely determined: if τ is any group–congruence on
S making S an F–semigroup then both ρ and τ make S a generalized
F–semigroup, so that ρ = τ by [3], Theorem 3.3. In the following ρ will
always denote this group–congruence and φ the natural homomorphism
from S onto the group G = S/ρ.

Examples.

1. Every group G is an F–semigroup: the equality relation on G is a
group-congruence, whose classes consist of a single element each.

2. Every semigroup S with greatest element is an F–semigroup: the
universal relation on S is the desired group congruence. Semigroups
with greatest element are characterized in [3], Theorem 3.5; in gen-
eral, they are not regular.

3. A band B is an F–semigroup if and only if B has an identity: this
holds by [3], Example 3 of Section 4., using Example (2).

4. A trivially ordered semigroup S is an F–semigroup if and only if
S is a group: this follows from [3], Example 5 of Section 4., and
Example (1).

5. A semigroup S with zero is an F–semigroup if and only if S admits
a greatest element: this holds by [3], Example 6, Section 4, and
Example (2).

6. The direct product S = T×G, where T is a semigroup with greatest
element ω and G is a group, is an F–semigroup: the mapping
φ : S → G, (t, g)φ = g, is a surjective homomorphism, and for
the correspond ing group–congruence ρ on S an arbitrary ρ–class
(t, g)ρ ∈ S/ρ = G has (ω, g) ∈ S as greatest element. If T has no
identity or is not regular then S has the same property. Further
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examples are given in Section 6. below. The following is an example
of a generalized F–semigroup which is not an F–semigroup.

7. Let Y = {α, β, γ, ω} be the four–element Boolean lattice with
α‖β, γ the least, ω the greatest element. Let Gα = {1α, a}, Gβ =
{1β, b}, Gγ = {1γ , c} be two–element groups and Gω = {1ω} the
trivial, group. Let 1ωφω,α = 1α 1ωφω,β = 1β , 1ωφω,γ = 1γ ; 1αφα,γ =
1γ , aφα,γ = c; 1βφβ,γ = 1γ , bφβ,γ = c; then each of these maps is an
injective homomorphism. Hence by [3], Corollary 4.7, the Clifford–
semigroup S = [Y,Gi, φi,j ] is a generalized F–semigroup. But S is
not an F–semigroup. Indeed, for the (least) group–congruence σ
on S (given by xσy if and only if ex = ey for some e ∈ ES) the
σ–class aσ ∈ S/σ has no greatest element: aσb since 1γa = 1γb = c;
if m ∈ aσ is such that a ≤S m, b ≤S m, then by [5], Example V.10,
m ∈ Gω and m = 1ω (since α‖β); but a ≤S 1ω ∈ ES implies by [9],
Lemma 2.1, that a ∈ ES , a contradiction. Note that σ makes S a
generalized F–semigroup; hence by the Remark above, there is no
other group–congruence on S which could make S an F–semigroup.

In a partially ordered set (X,≤), a subset having a greatest element is
not necessarily a principal order ideal, that is, of the form (a] = {x ∈
X |x ≤ a}. However, if S is an F–semigroup this holds for the ρ–classes
with respect to ≤S :

Lemma 1. Let S be a semigroup such that there exist a group G and a
surjective homomorphism φ : S → G. Then (i) a ≤S b implies aϕ = bϕ;
(ii)for every g ∈ G, gφ−1 is a principal order ideal of (S,≤S) if and only
if gφ−1 admits a greatest element.

Proof. (i) holds by cancellation in G. (ii) This follows from the following
fact: if g ∈ G and a ∈ gφ−1, then for any x ≤S a (x ∈ S) we have by (i),
that xφ = aφ = g, whence x ∈ gφ−1.

3. Residuals

In the sequel we will use the following concepts, which come from the
theory of partially ordered semigroups (see [1],[2]). Let S be a semigroup
and s ∈ S; for any a ∈ S define 〈s .·a〉 = {x ∈ S | ax ≤S s}. If 〈s .·a〉 has
a greatest element with respect to ≤S then this element is denoted by
s .· a and is called the right residual of s by a. The left residual of s ∈ S
by a ∈ S is defined dually and is denoted by s ·. a. If s .· a (resp. s ·. a)
exists for every a ∈ S then s ∈ S is called right (resp. left) residuated;
s ∈ S is called residuated if it is both right– and left–residuated. Finally,
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s ∈ S is called equiresiduated if it is residuated and s .· a = s ·.a for every
a ∈ S; the latter element is denoted by s : a.

We give a first characterization of F–semigroups by means of residuals
of the pivot, i.e., the greatest element of the identity ρ–class. Recall that
ρ denotes the defining group–congruence and φ the corresponding natural
homomorphism.

Proposition 1. Let S be an F–semigroup and let m ∈ S be the maximum
element of its ρ–class. Then for any a ∈ S,〈m . · a〉 = {x ∈ S |xφ =
(aρ)−1(mρ)}, 〈m ·. a〉 = {x ∈ S | xφ = (mρ)(aρ)−1}, both are principal
order ideals of (S,≤S), and m ∈ S is residuated.

Proof. Let a ∈ S; then by Lemma 1.:

x ∈ 〈m .· a〉 ⇔ ax ≤S m⇔ (ax)φ = mφ⇔ xφ = (aρ)−1(mρ).

Thus for g = (aρ)−1(mρ) ∈ S/ρ we have that 〈m .·a〉 = gφ−1. Since gφ−1

has a greatest element so does 〈m .· a〉, that is, m ∈ S is right–residuated.
Furthermore by Lemma 1., 〈m .· a〉 is a principal order ideal of (S,≤S);
in fact 〈m .· a〉 = (m .· a]. Similarly, 〈m ·. a〉 has a greatest element and
〈m ·. a〉 = (m ·. a]. Hence m is residuated.

Corollary 1. Let S be an F–semigroup with pivot ξ. Then 〈ξ . · a〉 =
[(aρ)−1]φ−1 = 〈ξ ·. a〉 = (ξ : a] for any a ∈ S, and ξ is equiresiduated.

Proof. Let a ∈ S. Since ξ is the greatest element of the identity ρ–class
we have ξρ = 1G, the identity of G = S/ρ. It follows by Proposition 1.,
that ξ is residuated and that 〈ξ .·a〉 = {x ∈ S | xφ = (aρ)−1} = 〈ξ ·. a〉 is
a principal order ideal of (S,≤S). Therefore ξ ∈ S is equiresiduated and
〈ξ .· a〉 = (ξ : a].

The following results are consequences of Corollary 1.

Corollary 2. Let S be an F–semigroup with pivot ξ. Then for every
a ∈ S,

(1) the greatest element of (aρ)−1 ∈ S/ρ is ξ : a;
(2) the greatest element of aρ ∈ S/ρ is ξ : (ξ : a).

Proof. (1) For a ∈ S by Corollary 1., ξ : a exists and [(aρ)−1]φ−1 = (ξ :
a]. Hence ξ : a is the greatest element of the ρ–class (aρ)−1 ∈ S/ρ.

(2) Let a ∈ S; then by (1), (aρ)−1 = (ξ : a)ρ. It follows that aρ =
[(ξ : a)ρ]−1 has ξ : (ξ : a) as greatest element.

Corollary 3. Let S be an F–semigroup with pivot ξ. Then the cor-
responding group–congruence ρ on S is given by: a ρ b if and only if
ξ : a = ξ : b.
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Proof. By Corollary 1., ξ : a exists for every a ∈ S. It follows by Corollary
2.(1), that

aρb⇔ aρ = bρ⇔ (aρ)−1 = (bρ)−1 ⇔ ξ : a = ξ : b.

Using Corollary 1. we have a first characterization of F–semigroups
in the class of all generalized F–semigroups (concerning these see [3]).

Theorem 1. Let S be a semigroup. Then S is an F–semigroup if and
only if S is a generalized F–semigroup whose pivot is right (left, equi)
residuated.

Proof. Necessity. By Corollary 1., the pivot ξ of S is equiresiduated.
Sufficiency. By hypothesis, there exists a group–congruence ρ on S

and a surjective homomorphism φ : S → S/ρ = G such that 1Gφ
−1 = (ξ],

i.e., ξρ = 1G. Let g ∈ G; we have to show that gφ−1 ⊆ S has a greatest
element. Since φ is surjective, g−1 = aφ = aρ for some a ∈ S. By the
proof of Proposition 1. (taking m = ξ), 〈ξ . · a〉 = [(aρ)−1]φ−1 = gφ−1.
Since by hypothesis, ξ .·a exists it follows that ξ .·a is the greatest element
of gφ−1. Therefore by definition, S is an F–semigroup.

This characterization of an F–semigroup S uses residuation of the
pivot of S, that is, of the greatest element of the identity ρ–class of S.
There is an analoguous one in terms of residuation of the greatest element
of some non–identity ρ–class of S (compare with [1], Theorem 25.8, on
partially ordered semigroups). In order to prove this we first make the
following observations concerning residuals.

If (S,≤, ·) is a partially ordered semigroup and if a,m ∈ S are such
that m .· a exists, then x ≤ m.· a implies by multiplication on the left
by a ∈ S that ax ≤ a(m .· a) ≤ m (see the definition of residuals in [2]).
For a semigroup S and its natural partial order ≤S this implication does
not hold, in general. In fact, consider the following

Example 1. Let B be the three–element band given in [10], p.176, third
multiplication table:

B a b c

a a b a
b a b a
c a b c

Then S = B1 is an F–semigroup (see Example (3) of Section 2). For
a, c ∈ B we have c . · a = 1, since a · 1 = a ≤S c and 1 ∈ S is the
greatest element of (S,≤S). For x = b we have x ≤S 1 = c . · a, but
ax = ab = b 6≤S c (since bc = a 6= b). Nevertheless, we have the following
result:
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Lemma 2. Let S be a semigroup and let ρ be a group congruence on
S. Assume that a,m ∈ S are such that m is the greatest element of its
ρ–class and that m .· a (resp. m ·. a) exists. Then ax ≤S m if and only
if x ≤S m.· a (resp. xa ≤S m if and only if x ≤S m ·. a).

Proof. If ax ≤S m for some x ∈ S then by definition, x ≤S m . · a.
Conversely, let x ∈ S be such that x ≤S m .· a, that is x ∈ (m .· a]. As
in the proof of Proposition 1., 〈m . · a〉 = gϕ−1 for some g ∈ G = S/ρ.
Since m .· a = max 〈m .· a〉 = max (gϕ−1) it follows by Lemma 1., that
gϕ−1 = (m .· a]. Therefore x ∈ (m .· a] = 〈m .· a〉 and ax ≤S m.

This result allows to deduce a useful formula for residuals with re-
spect to products (compare with [1], Theorem 25.5, on partially ordered
semigroups).

Lemma 3. Let S be a semigroup and let ρ be a group–congruence on S.
If some ρ–class admits a greatest element m, which is also right (left)
residuated, then for all a, b ∈ S,m .· ab = (m .· a) .· b (resp. m ·. ab =
(m ·. b) ·. a).

Proof. By hypothesis, m .· s exists for every s ∈ S. Let a, b ∈ S; then
by definition, ab(m . · ab) ≤S m. Hence b(m . · ab) ≤S m . · a and thus
m .·ab ∈ 〈(m .·a) .· b〉. Let x ∈ 〈(m .·a) .· b〉; then bx ≤S m .·a. Thus by
Lemma 2., a · bx ≤S m, whence x ≤S m .· ab. It follows that m .· ab ∈ S
is the greatest element of 〈(m .· a) .· b〉, which is denoted by (m .· a) .· b.
Similarly for the left–residuals.

The announced characterization of (generalized) F–semigroups now
follows.

Theorem 2. Let S be a semigroup.

(1) S is a generalized F–semigroup if and only if there exists a group–
congruence ρ on S such that one of the ρ–classes of S contains a
greatest element m and (m .·m) (resp. m ·. m) exists.

(2) S is an F–semigroup if and only if there exists a group–congruence ρ
on S such that one of the ρ–classes of S contains a greatest element
m and m is right (resp. left) residuated.

Proof. (1) Necessity. The pivot ξ of S is the greatest element of the
identity ρ–class of S. We show that ξ .· ξ exists (similarly, ξ ·. ξ exists).
First, ξ ∈ 〈ξ . · ξ〉 since by [3], Corollary 3.6, ξ2 ≤S ξ. Let x ∈ 〈ξ . · ξ〉;
then ξx ≤S ξ so that by Lemma 1., (ξx)φ = ξφ. Thus (ξρ)(xρ) = ξρ and
xρ = 1G, the identity of G = S/ρ. Therefore x ∈ 1Gφ

−1 = (ξ], whence
x ≤S ξ. It follows that ξ = ξ .· ξ.
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Sufficiency. We show that m . · m is the greatest element of the
identity ρ–class in G = S/ρ. Let x ∈ 1Gφ

−1; then xφ = 1G and (mx)φ =
(mφ)(xφ) = mφ. Thus mx ∈ mρ = (m] and mx ≤S m, that is, x ≤S

m . · m. It follows by Lemma 1., that 1G = xφ = (m . · m)φ, whence
m .·m ∈ 1Gφ

−1. Therefore, S is a generalized F–semigroup with pivot
ξ = m .·m.

(2)Necessity holds by Proposition 1.

Sufficiency. By hypothesis, m . · m exists (resp. m · . m exists).
Therefore by (1), S is a generalized F–semigroup with pivot ξ = m .·m
(see the proof of sufficiency in (1)). Let a ∈ S; then by Lemma 3.,
m . ·ma = (m . ·m) . · a = ξ . · a. Hence ξ . · a exists, that is, ξ is right
residuated. It follows by Theorem 1. that S is an F–semigroup.

We conclude this section with an axiomatic characterization of F -
semigroups due to M. Petrich. It consists of four axioms concerning a
unary operation on a semigroup, which reflect properties of the set of the
greatest elements in the different ρ-class of an F -semigroup.

Theorem 3 ((M. Petrich)). A semigroup S is an F -semigroup if and
only if S has a unary operation a→ a′ satisfying

(F1) (ab)′ = (a′b)′ = (ab′)′,

(F2) a ≤S a
′,

(F3) if a′ = (a2)′ and b′ = (b2)′ then a′ = b′,

(F4) for any a ∈ S there exists b ∈ S such that a′ = (aba)′.

Proof. Necessity. Let ρ be the defining group congruence on S and for
any a ∈ S, a′ the greatest element of aρ ∈ S/ρ. Then for all a, b ∈ S,
aρa′ and bρb′ imply that ab ρ a′b ρ ab′, whence (F1) holds. (F2) follows
from the definition of a′ ∈ S (a ∈ S). If a′ = (a2)′ and b′ = (b2)′ then
aρa2 and bρb2 so that by cancellation in the group S/ρ, aρ = 1G = bρ;
hence (F3) holds. Since S/ρ is a regular semigroup, (F4) is satisfied.

Sufficiency. Define a relation ρ on S by: aρb ⇔ a′ = b′. Then
by (F1), ρ is a congruence. By (F4), S/ρ is a regular semigroup. Let
aρ, bρ ∈ ES/ρ. Then aρa2, bρb2, whence a′ = (a2)′, b′ = (b2)′. Thus
(F3) yields that a′ = b′, and aρ = bρ. Therefore S/ρ is a group (see
[11], Lemma II.2.10). Let aρ ∈ S/ρ; we first show that a′ ∈ aρ. Since
by (F2), a ≤S a′ we have a = xa′ = xa for some x ∈ S1. If x = 1 then
a′ = a ∈ aρ. If x ∈ S then (xρ)(a′ρ) = (xρ)(aρ) so that by cancellation,
a′ρ = aρ, and a′ ∈ aρ. Let b ∈ aρ; then bρa and b′ = a′. Hence it follows
by (F2), that b ≤S b′ = a′. Therefore, a′ ∈ S is the greatest element of
the ρ-class aρ ∈ S/ρ, and S is an F -semigroup.
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4. Principal anticones

Generalized F–semigroups S were characterized in [3], Theorem 3.1, by
the existence of a principal anticone H = (ξ] in (S, ·,≤S). Specializing H
we obtain F–semigroups. Note that for the pivot ξ of S and any a ∈ S,

H : a = {x ∈ S | ax ∈ H = (ξ]} = {x ∈ S | ax ≤S ξ} = 〈ξ .· a〉.

Hence ξ .· a exists in S if and only if H : a contains a greatest element.
Taking into account Theorem 1., we thus have proved

Theorem 4. Let S be a semigroup. Then S is an F–semigroup if and
only if S has a principal anticone H such that for every a ∈ S, H : a
contains a greatest element with respect to ≤S.

As a consequence we obtain the following characterization.

Theorem 5. Let S be a semigroup. Then S is an F–semigroup with
pivot ξ if and only if

(i) ξ is an upper bound of ES and ξ2 ∈ ES,
(ii) H = ES∪{ξ} is a unitary subset of S, i.e., hx, h ∈ H or xh, h ∈ H

implies x ∈ H,
(iii) for every a ∈ S, H : a has a greatest element.

Proof. Necessity. Since S is also a generalized F–semigroup with pivot
ξ, (i) and (ii) hold by [3], Theorem 3.8 and Corollary 3.6. Furthermore
(ξ] = ES ∪ {ξ} = H is a principal anticone of S. Thus by Theorem 4.,
also (iii) holds.

Sufficiency. First we show that S is E–inversive. Let a ∈ S; then by
(iii), H : a 6= φ. Hence there exists x ∈ S such that ax ∈ H = ES ∪ {ξ}.
If ax ∈ ES we are done; if ax = ξ then a · xξ = ξ2 ∈ ES by (i).
Hence by the proof of Theorem 3.8 in [3], H = ES ∪ {ξ} is a principal
anticone of S. Together with (iii) it follows by Theorem 4., that S is an
F–semigroup.

Two particular cases should be mentioned.

Theorem 6. Let S be a semigroup containing a greatest idempotent e.
Then S is an F–semigroup with pivot e if and only if (i) S is E–unitary,
and (ii) for every a ∈ S there exists a greatest x ∈ S such that ax ∈ ES.

Proof. Necessity. By Theorem 5, H = ES ∪{e} = ES is a unitary subset
of S, that is, S is E–unitary. Furthermore for every a ∈ S, H : a = ES :
a = {x ∈ S | ax ∈ ES} has a greatest element.

Sufficiency. By hypothesis, e ∈ ES is an upper bound of ES with
e2 = e ∈ ES . Also, H = ES ∪ {e} = ES is a unitary subset of S, by (i).
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Finally for every a ∈ S, H : a = ES : a has a greatest element, by (ii).
Therefore by Theorem 5., S is an F–semigroup with pivot e.

If S is a monoid then the identity 1S is the greatest idempotent of S.
In this case the condition that S be E–unitary can be dropped. To see
this we show

Lemma 4. Let S be a monoid. Then S is E–unitary if and only if for
every e ∈ ES, 1S .· e (resp. 1S ·.e) exists in S.

Proof. Necessity. Let e ∈ ES ; then e1S ≤S 1S implies that 1S ∈ 〈1S .· e〉.
If x ∈ 〈1S .· e〉 then ex ≤S 1S . Thus by [9], Lemma 2.1, ex ∈ ES . Since
S is E–unitary it follows that x ∈ ES . Hence x ≤S 1S and 1S = 1S .· e.
Similarly 1S ·. e = 1S .

Sufficiency. We show first that 1S .· e = 1S for any e ∈ ES . Indeed,
e1S = e ≤S 1S implies that 1S ≤S 1S .·e. But the identity of a semigroup
is a maximal element with respect to ≤S : 1S ≤S a ⇒ 1S = xa = x1S =
x ⇒ 1S = a. Hence it follows that 1S = 1S .· e. Let e, ex ∈ ES for some
x ∈ S. Then ex ≤S 1S and so x ≤S 1S . · e = 1S . Thus by [9], Lemma
2.1, x ∈ ES . Therefore S is E–unitary.

Using this result we obtain the second particular case.

Theorem 7. Let S be a monoid. Then S is an F–semigroup if and only
if for every a ∈ S there exists a greatest x ∈ S such that ax ∈ ES.

Proof. Necessity. Since S is also a generalized F–semigroup, the pivot
of S is ξ = 1S (1S is maximal in (S,≤S)). Since 1S is the greatest
idempotent of S, the statement now follows by Theorem 6.

Sufficiency. First ES 6= φ (see Section 2.(2)). Let e ∈ ES ; then by
hypothesis, there exists a greatest x ∈ S such that ex ∈ ES , that is,
ex ≤S 1S ([9], Lemma 2.1). Therefore by definition, 1S . · e exists. It
follows by Lemma 4., that S is E–unitary. Consequently by Theorem 6.,
S is an F–semigroup.

Remark 1. By [3], Corollary 3.12, a monoid S is a generalized F–
semigroup if and only if S is E–unitary and E–inversive. The latter
means that for every a ∈ S there exists some x ∈ S such that ax ∈ ES .
The stronger version appearing in Theorem 7. – for every a ∈ S there ex-
ists a greatest x ∈ S such that ax ∈ ES – first implies that S is E–unitary
and also that S is an F–semigroup.
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5. Maximal elements

The aim of this section is a characterization of F–semigroups S by prop-
erties of the maximal elements m in (S,≤S) and the principal order ideals
(m] = {x ∈ S | x ≤S m} generated by m ∈ S.

Lemma 5. Let S be an F–semigroup. Then the maximal elements of
(S,≤S) are precisely the greatest elements in the different ρ–classes of S.

Proof. Let a ∈ S be maximal in (S,≤S) and let m ∈ S be the greatest
element of the ρ–class aρ ∈ S/ρ. Then by Lemma 1., aρ = (m] and
a ≤S m. It follows that a = m. Conversely let m ∈ S be the greatest
element of its ρ–class and suppose that m ≤S x for some x ∈ S. Then
x ∈ xρ = (n] for some n ∈ S. Hence m ≤S x ≤S n and m ∈ (n] = xρ.
Thus m ρ x ρ n and n ∈ mρ = (m]. Therefore n ≤S m and m = x, that
is, m ∈ S is maximal in (S,≤S).

Proposition 2. Let S be an F–semigroup. Then S is the disjoint union
of principal order ideals in (S,≤S).

Proof. Let a ∈ S and m be the greatest element of aρ ∈ S/ρ. Then
by Lemma 1., aρ = (m]. Since ρ is an equivalence relation, it follows
that the principal order ideals of (S,≤S) corresponding to the different
ρ–classes of S are disjoint (see Lemma 1.).

Remark 2. (1) A semigroup S is the disjoint union of principal order
ideals of (S,≤S) if and only if for every a ∈ S there exists a unique
maximal m ∈ S with a ≤S m.

(2) The converse of Proposition 2. does not hold. Consider for ex-
ample, the two–element left–zero semigroup S = {a, b}. Then ≤S is the
identity relation and so S = {a} ∪ {b} = (a] ∪ (b]. But S in not an
F–semigroup since S is not a group (see Example (4) of Section 2).

The following additional conditions ensure that a semigroup is an
F–semigroup, and conversely, they are also necessary.

Theorem 8. A semigroup S is an F–semigroup if and only if

(i) S is E–inversive,
(ii) for every a ∈ S there exists a unique maximal m ∈ S with a ≤S m,
(iii) if a, b ∈ S are included in the same maximal element, then so are

ac, bc resp. ca, cb for any c ∈ S,
(iv) if a ∈ S, e ∈ ES, then a, ae, ea are included in the same maximal

element.
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Proof. Necessity. By Proposition 2., S is the disjoint union of principal
order ideals (mi], i ∈ I, in (S,≤S), which are given by the ρ–classes of S
and their maximum elements mi(i ∈ I). We have

(i) S is E–inversive by [3], Proposition 3.7.

(ii) Let a ∈ S; then a ∈ aρ = (mi] for some i ∈ I. Thus a ≤S mi,
where by Lemma 5., mi is maximal in (S,≤S). This mi ∈ S is unique
since a ∈ S belongs to a unique ρ–class.

(iii) Let a, b, c ∈ S be such that a, b ≤S mi for some i ∈ I. Then
a, b ∈ (mi] = miρ and aρb. Since ρ is a congruence, it follows that ac ρ bc
and ac, bc ∈ mjρ = (mj ] for some j ∈ I. Thus ac, bc ≤S mj where mj is
maximal in (S ≤S) by Lemma 5. Similarly for ca, cb ∈ S.

(iv) Let a ∈ S, e ∈ ES . Then eρ is the identity 1G of the group
G = S/ρ so that by (ii), for some k ∈ I: (ae)ρ = (aρ)(eρ) = aρ = (mk] =
(eρ)(aρ) = (ea)ρ. Therefore a, ae, ea ∈ (mk] and a, ae, ea ≤S mk.

Sufficiency. Let T = {mi | i ∈ I} be the set of all maximal elements
in (S,≤S). Then by (ii), T 6= φ and S is the disjoint union of the principal
order ideals (mi](i ∈ I) of (S,≤S). We define:

a ρ b if and only if a, b ∈ (mi] for some i ∈ I.

Using (ii) and (iii) it is easy to show that ρ is a congruence. The semigroup
(S/ρ, ·) has eρ (e ∈ ES) as identity: first ES 6= φ by (i); let a ∈ S, then by
(iv), a, ae, ea ≤S mi for some i ∈ I; hence by definition of ρ, a ρ ae ρ ea;
thus

(aρ)(eρ) = (ae)ρ = aρ and (eρ)(aρ) = (ea)ρ = aρ.

Since the identity is unique, it follows that eρ = fρ for all e, f ∈ ES .
Let aρ ∈ S/ρ; then by (i), ax = f ∈ ES for some x ∈ S. Hence
(aρ)(xρ) = fρ, the identity of S/ρ. Thus (S/ρ, ·) is a group. Furthermore
by definition of ρ, every ρ–class of S contains a greatest element. It follows
that S is an F–semigroup.

Corollary 4. Let S be a semigroup with compatible natural partial order.
Then S is an F–semigroup if and only if

(i) S is E–inversive,
(ii) for every a ∈ S there is a unique maximal m ∈ S with a ≤S m,
(iv) if a ∈ S, e ∈ ES, then a, ae, ea are included in the same maximal

element.

Proof. Concerning sufficiency we show (iii) of Theorem 8. Let a, b, c ∈ S
be such that a, b ≤S m for some maximal m ∈ S. Then by hypothesis,
ac ≤S mc and bc ≤S mc. By (ii), mc ≤S p for some maximal p ∈ S.
Hence ac, bc ≤S p, and similarly, ca, cb ≤S q for a maximal q ∈ S.
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The following special case provides a new characterization of F–
inverse semigroups.

Corollary 5. Let S be an inverse semigroup. Then S is an F–semigroup
if and only if S has an identity and for every a ∈ S there is a unique
maximal m ∈ S such that a ≤S m.

Proof. Note that an inverse semigroup is E–inversive and has a compati-
ble natural partial order. Necessity. By [3], Theorem 3.14, S is a monoid.
The second property of S holds by Theorem 8(ii).

Sufficiency. We show that (iv) of Corollary 4. holds: let a ∈ S,
e ∈ ES ; then e ≤S 1S implies that ae ≤S a1S = a and ea ≤S 1Sa = a;
since by hypothesis, a ≤S m for some maximal m ∈ S it follows that
a, ae, ea ≤S m.

Corollary 6. Let S be a monoid with compatible natural partial order.
Then S is an F–semigroup if and only if S is E–inversive and for every
a ∈ S there exists a unique maximal m ∈ S such that a ≤S m.

Proof. By Corollary 4. and the proof of sufficiency in Corollary 5.

Corollary 7. Let S be a centric semigroup (i.e., aS = Sa for every
a ∈ S). Then S is an F–semigroup if and only if S is E–inversive and
for every a ∈ S there exists a unique maximal m ∈ S such that a ≤S m.

Proof. By [9], Corollary 3.7, ≤S is compatible. Necessity holds by Corol-
lary 4. Concerning sufficiency we show (iv) of Corollary 4. Let a ∈ S,
e ∈ ES ; then ae = xa for some x ∈ S, whence ae ≤S a. Similarly
ea ≤S a. Since a ≤S m for some maximal m ∈ S, we obtain that
ae, ea, a ≤S m.

As every commutative semigroup is centric we get

Corollary 8. Let S be a commutative semigroup. Then S is an F–
semigroup if and only if S is E–inversive and for every a ∈ S there exists
a unique maximal m ∈ S with a ≤S m.

Remark 3. Since every finite semigroup is E–inversive we obtain that
a finite commutative semigroup S is an F–semigroup if and only if for
every a ∈ S there exists a unique maximal m ∈ S such that a ≤S m (note
that in a finite partially ordered set every element is contained in some
maximal one).

Corollary 9. Let S be a semigroup with compatible natural partial order
and central idempotents (i.e., ae = ea for every a ∈ S, e ∈ ES). Then S
is an F–semigroup if and only if S is E–inversive and for every a ∈ S
there exists a unique maximal m ∈ S such that a ≤S m.
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Proof. Necessity holds by Corollary 4. In order to prove sufficiency we
show that (iv) of Corollary 4. holds: let a ∈ S, e ∈ ES ; then ae = ea ≤S

a, whence a, ae, ea ≤S m for some maximal m ∈ S.

Remark 4. Every Clifford–semigroup satisfies the general hypothesis of
Corollary 9. and is E–inversive. Thus we obtain: a Clifford–semigroup
S is an F–semigroup if and only if for every a ∈ S there exists a unique
maximal m ∈ S such that a ≤S m. Compare with Example (7) in Section
2: the Clifford–semigroup S given there is not an F–semigroup since for
c ∈ S we have c <S a, c <S b, where a, b ∈ S are both maximal elements
of (S,≤S). Another characterization of Clifford–semigroups, which are
F–semigroups, is given in Corollary 13. below, under the additional
assumption that the underlying semilattice satisfies the ascending chain
condition.

Corollary 10. Let S be an eventually regular semigroup (i.e, for every
a ∈ S there exists n > 0 such that an is regular) with central idempotents.
Then S is an F–semigroup if and only if for every a ∈ S there exists a
unique maximal m ∈ S with a ≤S m.

Proof. We show first that a ≤S b if and only if a = eb for some e ∈ ES1 .
Following the proof of Corollary 1.4.6 in [4] we have

a <S b⇒ a = xb = by, xa = a for some x, y ∈ S ⇒ a = xnb = xna

for every n > 0. By hypothesis, for x ∈ S there exists k > 0 such that
xk = xkzxk for some z ∈ S; thus zxk ∈ ES and

a = xka = xkzxk ·a = zxk ·xka = zxk ·a = z ·xkb = eb with e = zxk ∈ ES .

Conversely, a = eb with e ∈ ES implies by centrality of idempotents in S
that a = eb = be, whence a ≤S b. It follows easily that the natural partial
order of S is compatible. Notice that an eventually regular semigroup is
E–inversive. Consequently, the statement follows from Corollary 9.

Remark 5. Every finite semigroup with central idempotents satisfies the
general condition in Corollary 10.

6. F–semigroups in special classes

We give necessary and sufficient conditions for (1) Inflations of a semi-
group, and (2) Strong semilattices of monoids, to be F–semigroups. Thus
two methods for the construction of further examples of F–semigroups
are provided.
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(1) Inflations of semigroups.
Let S =

⋃
α∈T Tα be an inflation of a semigroup T such that for every

α ∈ T there exist β, γ ∈ T with α = βα = αγ. Then

a ≤S b (a ∈ Tα, b ∈ Tβ) if and only if a = b or a = α ≤T β.

If a, b ∈ Tα then a ≤S b if and only if a = α (see [3], Section 4).

Theorem 9. Let S =
⋃

α∈T Tα be an inflation of the semigroup T in
which for every α ∈ T there exist β, γ ∈ T such that α = βα = αγ. Then
S is an F–semigroup if and only if

(i) T is an F–semigroup,
(ii) |Tµ| ≤ 2 for every maximal µ ∈ T ,
(iii) |Tα| = 1 for every non–maximal α ∈ T .

Proof. Necessity. (i) By definition, there exists a group G and a surjective
homomorphism φ : S → G such that for every g ∈ G, gφ−1 has a greatest
element u ∈ S, say, whence by Lemma 1., gφ−1 = (u]. Let ψ = φ|T ; then
ψ : T → G is a surjective homomorphism, too. We show that gψ−1 = (ω]
in (T,≤T ) if u ∈ Tω, say:

α ∈ (ω], α ∈ T ⇒ α ≤T ω ≤S u⇒ α ∈ (u] = gφ−1 in (S,≤S) ⇒
⇒ αψ = αφ = g ⇒ α ∈ gψ−1;

α ∈ gψ−1, α ∈ T ⇒ αφ = αψ = g ⇒ α ∈ gφ−1 = (u] in (S,≤S) ⇒
⇒ α ≤S u⇒ α ≤T ω ⇒ α ∈ (ω].

It follows by definition, that T is an F–semigroup.
(ii) We show first that |Tβ | ≤ 2 for every β ∈ T . Assume that there

exist β ∈ T and a, b ∈ Tβ such that a 6= b, a 6= β, b 6= β. Then
β <S a and β <S b. But both a and b are maximal in (S,≤S) since
a ≤S x (x ∈ S) implies that a = β. It follows by Theorem 8.(ii), that
a = b, a contradiction. Thus we have shown (ii).

(iii) Assume that there exists α ∈ T , not maximal with |Tα| 6= 1.
Then by the proof of (ii), |Tα| = 2. Hence Tα = {α, a} where α <S a.
Again, a ∈ S is maximal in (S ≤S). Since α ∈ T is not maximal in
(T,≤T ), α <T β for some β ∈ T ; β 6= a since β ∈ T , a /∈ T . By Theorem
8(ii), β ≤S m for some maximal m ∈ S; hence α <T β ≤S m. It follows
by Theorem 8(ii), that a = m. Hence β ≤S m = a ∈ Tα and so β ≤T α,
a contradiction.

Sufficiency. By (i), there exists a group G and a surjective homomor-
phism ψ : T → G such that gψ−1 has a greatest element in (T,≤T ). Let
g ∈ G and gψ−1 = (ω], where ω ∈ T . By (i) and (ii), |Tω| ≤ 2; thus
Tω = {ω, u} where ω ≤S u. Let φ : S → G, aφ = αψ if a ∈ Tα. Then φ is
a surjective homomorphism. We show that gφ−1 = (u]: a ∈ gφ−1, a ∈ Tα
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⇒ αψ = aφ = g ⇒ α ∈ gψ−1 = (ω] ⇒ α ≤T ω ≤S u; if α = ω, a ∈ Tω so
that either a = ω or a = u, thus a ≤S u and a ∈ (u]; if α <T ω, |Tα| = 1
by (ii), and a = α; thus a = α <T ω ≤S u and a ∈ (u]; a ∈ (u], a ∈ Tα

⇒ a ≤S u; if a = u then aφ = uφ = ωψ = g and a ∈ gφ−1; if a <S u
then a = α <T ω; by Lemma 1., aφ = ωφ = ωψ = g, i.e., a ∈ gφ−1.

It follows by definition, that S is an F–semigroup.

Corollary 11. Let G be a group and let S =
⋃

g∈G Tg be an inflation of
G. Then S is an F–semigroup if and only if |Tg| ≤ 2 for every g ∈ G.

Proof. By Example (1) in Section 2, G is an F–semigroup. Since the
natural partial order of any group is the identity relation, every element of
G is maximal in (G,≤G). Thus, the statement follows by Theorem 9.

Remark 6. (i) If T is a finite F-semigroup (more generally, if (T,≤T )
satisfies the ascending chain condition) then there are proper inflations
of T , which are again F–semigroups.

(ii) The semigroups S in Corollary 11. are non-regular F -semigroups
without identity. Note that the pivot is 1G ∈ S if T1G

= {1G}, and is
equal to a ∈ S if T1G

= {1G, a}.

(2) Strong semilattices of monoids.
Let S = [Y ;Sα, ϕα,β ] be a strong semilattice (Y,≤Y ) of monoids

Sα(α ∈ Y ) with linking homomorphisms φα,β : Sα → Sβ(α ≥Y β).
Then by the proof of Theorem 3.8 in [9]:

a ≤S b (a ∈ Sα, b ∈ Sβ) if and only if α ≤Y β and a ≤α bφβ,α,

where ≤α denotes the natural partial order of Sα(α ∈ Y ).

Theorem 10. Let S = [Y, Sα, φα,β ] be a strong semilattice of monoids.
Then S is an F–semigroup if and only if

(i) (Y,≤Y ) has a greatest element ω, and for every α ∈ Y , φω,α is a
monoid homomorphism,

(ii) for every α ∈ Y , Sα is E–unitary, and any φα,β is idempotent pure,
(iii) for every a ∈ S, the set Ta = {x ∈ S|ax ∈ ES} has a greatest

element.

Proof. Necessity. (i) and (ii) hold by [3], Theorem 4.5. Furthermore by
[3], Proposition 4.4, S is a monoid. Hence, (iii) holds by Theorem 7.

Sufficiency. First by (iii), for any a ∈ S, a ∈ Sα say, and x ∈ Ta, the
element y = xϕβ,αβ ∈ Sαβ satisfies (aϕα,αβ)y ∈ E(Sαβ) with αβ ≤Y α.
Therefore by [3], Theorem 4.5, S is a generalized F -semigroup. Next by
(i), 1ω ∈ Sω is the identity 1S of S, and the pivot of S is ξ = 1S . Let
a ∈ S; then by [9], Lemma 2.1,
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max Ta =max{x ∈ S|ax ∈ ES} =max{x ∈ S|ax ≤S 1S} =max〈1S .· a〉,

which by (iii) shows that 1S . · a exists in S. It follows by Theorem 1.,
that S is an F–semigroup.

Next we deduce a necessary condition for S = [Y, Sα, φα,β ] to be an
F–semigroup.

Lemma 6. Let S = [Y, Sα, φα,β ] be a strong semilattice of monoids. If S
is an F–semigroup then the following holds: if a, b ∈ S are two maximal
elements then if a ∈ Sα, b ∈ Sβ say, there is no γ ≤Y α, β in Y such that
aφα,γ, bφβ,γ ∈ Sγ have a common lower bound in (Sγ ,≤γ).

Proof. Assume that there are maximal elements a, b ∈ S, a ∈ Sα, b ∈ Sβ

say, such that for some γ ≤Y α, β in Y and some c ∈ Sγ , c ≤γ aφα,γ and
c ≤γ bφβ,γ . Since aφα,γ ≤S a and bφβ,γ ≤S b it follows that c ≤S a and
c ≤S b, contradicting Theorem 8(ii).

Remark 7. (1) The semigroup S in Example (7) of Section 2. does not
have this property: a ∈ Gα, b ∈ Gβ are maximal in (S,≤S), but aφα,γ =
bφβ,γ = c and c ∈ Gγ is a common lower bound of aφα,γ , bφβ,γ ∈ Gγ .
Hence S is not an F–semigroup.

(2) For a strong semilattice of monoids, which is an F -semigroup,
the linking homomorphisms are not injective, in general. Consider S =
[Y ;Sα, Sω, ϕω,α] where Sα is a group, Sω is a non trivial band with iden-
tity 1ω, Y : α <Y ω, and eϕω,α = 1α for any e ∈ Sω. Then the relation ρ
defined on S as the universal relation on ES and as the identity relation
on S\ES is a group congruence whose classes are ES and the sets {a},
a ∈ S\ES . Since max ES = 1ω and max {a} = a for any a ∈ S\ES ,
S is an F -monoid with pivot ξ = 1ω = 1S (see also Theorem 10.). But
ϕω,α : Sω → Sα is not injective. Note that in case that each Sα in
S = [Y ;Sα;ϕα,β ] is a group and if S is an F -semigroup then by [3],
Corollary 4.8, each ϕα,β is injective.

Some particular cases should be mentioned.

Theorem 11. Let S = [Y, Sα, φα,β ] be a strong semilattice of trivially
ordered monoids. Then S is an F–semigroup if and only if (i) S is
an E–inversive monoid, and (ii) for every a ∈ S there exists a unique
maximal m ∈ S such that a ≤S m.

Proof. First, by [9], Corollary 3.9, the natural partial order of S is com-
patible. If S is an F–semigroup then by [3], Proposition 4.4, S is an
E-inverse monoid. The statement now follows by Corollary 6.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.84 F–Semigroups

Remark 8. Note that a ∈ S, a ∈ Sα say, is maximal in S = [Y, Sα;ϕα,β ]
where each Sα is a trivially ordered monoid, if and only if a /∈ Im ϕβ,α

for any β >Y α in Y . Also, by the Remark following Theorem 4.5 in [3],
for such a semigroup S the components Sα (α ∈ Y ) are not necessarily
E-inversive, i.e., groups.

If the semilattice (Y,≤Y ) satisfies the ascending chain condition, con-
ditions (i) and (ii) in Theorem 11. can be expressed in terms of properties
of (Y,≤Y ) and the homomorphisms φα,β .

Corollary 12. Let S = [Y, Sα, φα,β ] be a strong semilattice of trivially
ordered monoids such that (Y,≤Y ) satisfies the ascending chain condition
(in particular, Y is finite). Then S is an F–semigroup if and only if

(i) (Y,≤Y ) has a greatest element ω,
(ii) for every a ∈ S, a ∈ Sα say, there exists β ≤Y α and x ∈ Sβ such

that (aφα,β)x ∈ E(Sβ),
(iii) if a, b ∈ S are maximal in (S,≤S), a ∈ Sα, b ∈ Sβ say, then aφα,γ 6=

bφβ,γ for every γ ≤Y α, β.

Proof. Necessity. (i) and (ii) hold by [3],Theorem 4.5 ; (iii) holds by
Lemma 6.

Sufficiency. We show first that each φω,α is a monoid-homomorphism.
Let e ∈ E(Sα); then e ≤α 1α (the identity of Sα) so that by the trivial
order of Sα, e = 1α, that is, E(Sα) = {1α}. Since 1ωφω,α ∈ E(Sα) it
follows that 1ωφω,α = 1α. Therefore, 1ω ∈ Sω is the identity of all of S.
Also, S is E-inversive by condition (ii), since ax = (aϕα,αβ)(xϕβ,αβ) =
(aϕα,β)x ∈ ES .

We proceed to show that for any a ∈ S there exists a unique maximal
m ∈ S such that a ≤S m. Let a ∈ S, a ∈ Sα say. If a is not maximal
in (S,≤S) then a <S b for some b ∈ S. Note that b /∈ Sα since Sα is
trivially ordered and ≤S restricted to Sα coincides with ≤α (see the proof
of Theorem 3.8 in [9]). Hence b ∈ Sβ for some β >Y α. If b is not maximal
in (S,≤S) then going on this way by the ascending chain condition on
(Y,≤Y ), there exists a maximal ξ ∈ Y such that α <Y β <Y · · · <Y ξ,
and m ∈ Sξ with a <S b <S · · · <S m. This m ∈ Sξ is maximal in
(S,≤S) since m <S x, x ∈ Sγ say, implies that ξ <Y γ: contradiction.
Furthermore, m ∈ Sξ is unique: let a ≤S n for some maximal n ∈ S,
n ∈ Sη say. Then again α ≤Y η and a ≤α nφη,α. But a <S m implies
that α <Y ξ and a ≤α mφξ,α. Since Sα is trivially ordered we obtain
that mφξ,α = a = nφη,α, contradicting (iii).

It follows by Theorem 11. that S is an F–semigroup.

Since every group is trivially ordered and E-inversive we obtain



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.E. Giraldes, P. Marques-Smith, H. Mitsch 85

Corollary 13. Let S = [Y, Sα, φα,β ] be a strong semilattice of groups
such that (Y,≤Y ) satisfies the ascending chain condition (in particular,
Y is finite). Then S is an F–semigroup if and only if

(i) (Y,≤Y ) has a greatest element,

(ii) if a, b ∈ S are maximal in (S,≤S), a ∈ Sα, b ∈ Sβ say, then aφα,γ 6=
bφβ,γ for every γ ≤Y α, β.

References

[1] T. Blyth – M. Janowitz, Residuation Theory, Pergamon Press (Oxford 1972).

[2] L. Fuchs, Partially ordered algebraic systems, Pergamon Press (Oxford 1963).

[3] E. Giraldes – P. Marques-Smith – H. Mitsch, Generalized F–semigroups, Math.
Bohemica 130 (2005), 203–220.

[4] P. Higgins, Techniques of Semigroup Theory, Oxford University Press (Oxford
1992).

[5] J. Howie, Introduction to semigroups, Academic Press (London 1976).

[6] M. Lawson, Inverse semigroups, World Scientific (Singapore 1998).

[7] R. McFadden – L. O’Caroll, F–inverse semigroups, Proc. London Math. Soc. 22
(1971), 652–666.

[8] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 97
(1986), 384–388.

[9] H. Mitsch, Semigroups and their natural partial order, Math. Slovaca 44 (1994)
445–462.

[10] M. Petrich, Introduction to Semigroups, Ch. Merill (Columbus/Ohio 1973).

[11] M. Petrich, Inverse Semigroups, J. Wiley and Sons (New York 1984).

[12] V. Wagner, Generalized grouds and generalized groups with the transitive compat-

ibility relation, Uchenye Zapiski, Mechano-Math. Series Saratov State University
70 (1961) 25–39.

Contact information

E. Giraldes UTAD
Dpto. de Matematica
Quinta de Prados
5000 Vila Real
Portugal
E-Mail: EGS@utad.pt

URL: http://home.utad.pt/~matemat



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.86 F–Semigroups

P. Marques-Smith Universidade do Minho
Centro de Matematica
Campus de Gualtar
4700 Braga
Portugal
E-Mail: psmith@math.uminho.pt

URL: www.cmat.uminho.pt

H. Mitsch Universität Wien
Fakultät für Mathematik
Nordbergstrasse 15
1090 Wien
Austria
E-Mail: heinz.mitsch@univie.ac.at

URL: www.mat.univie.ac.at

Received by the editors: 20.10.2004
and in final form 28.01.2008.


