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Abstract. We study associative algebras R over arbitrary
fields which can be decomposed into a sum R = A + B of their
subalgebras A and B such that A2 = 0 and B is ideally finite (is
a sum of its finite dimensional ideals). We prove that R has a
locally nilpotent ideal I such that R/I is an extension of ideally
finite algebra by a nilpotent algebra. Some properties of ideally
finite algebras are also established.

Introduction

Properties of associative rings (and algebras) R which are sums R = A+B
of their subrings A and B were studied by many authors (see, for example,
a survey [6]). Rings which are sums of two nilpotent subrings were studied
by O.Kegel in [2] and many further results about sums of rings were
connected with his results. Rings with zero multiplication are the simplest
nilpotent rings. But even for such rings there exist problems about sums
R = A+B which are quite complicated (for example, a question whether
a sum R = A + B of an algebra A with zero multiplication and a nil-
algebra B is a nil-algebra is equivalent to the famous Koethe problem
which was recently solved by A.Smoctunowicz).

In this paper we study associative algebras R over an arbitrary field,
which can be decomposed into a sum R = A+B of subalgebras A and B
such that A2 = 0 and B contains a nonzero finite dimensional ideal. It
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is proved that the algebra R under such restriction has a nonzero ideal
which is an extension of a nilpotent ideal by a finite dimensional algebra.
Note that some properties of algebras R = A + B, where A2 = 0 and
B is an arbitrary ring, were studied in the paper [5]. One can only state
in this case that R either contains a nonzero nilpotent ideal, or R has an
ideal which lies in B, or R contains an ideal similar to the matrix ring
M2(I) for some ideal I of the subring B.

Notations in the paper are standard. All algebras are associative
(not necessarily with 1) over an arbitrary field K. If A and B are K-
subspaces of R, then AB denotes a K-subspace which is spanned on
elements ab, a ∈ A, b ∈ B. For an arbitrary subset X ⊆ R we denote by
Annl

R(X) the left annihilator of the set X in R, the right annihilator is
denoted by Annr

R(X). The two-sided annihilator AnnR(X) is, obviously,
the intersection of the left and the right annihilators. For shortness, we
will call an associative algebra R over a field nilpotent-by-finite provided
that R has a nilpotent ideal I such that dimR/I < ∞. Further, β(R)
denotes the the prime radical of an associative ring R.

1. Ideally finite associative algebras

On the analogy of the Lie theory where ideally finite Lie algebras were
studied (see, for example [7]) we introduce for convenience the following
definition

Definition 1. An associative algebra R over a field will be called ideally
finite provided that R is a sum of its finite dimensional ideals.

Lemma 1. An associative algebra R is ideally finite if and only if the
two-sided annihilator of every element of R has finite codimension in R.

Proof. If R is an ideally finite associative algebra, then every its element
x lies evidently in some finite dimensional ideal Ix. Since the annihila-
tor Sx = AnnR(Ix) is of finite codimension in R and Sx ⊆ AnnR(x),
then AnnR(x) is of finite codimension in R. Let now the annihilator
AnnR(x) be of finite codimension for every element x ∈ R. Take the
set of coset representatives x1, . . . , xn of AnnR(x) in R. One can im-
mediately check out that the vector subspace of R spanned on elements
x, xix, xxj , xixxj , i, j = 1, . . . , n is an ideal of the algebra R. Therefore
the element x belongs to a finite dimensional ideal of the algebra R.

Remark 1. It was noted in the paper [4] (Lemma 12) that if an element
x ∈ R has left (right) annihilator in R of finite codimension then x belongs
to a left (right) finite dimensional ideal of the algebra R.
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Lemma 2. Let R be an associative algebra over a field K and V be a
K-subspace of R of finite codimension in R. Then for every element
a ∈ R there exists K-subspace Va ⊆ V of finite codimension in V such
that aVa ⊆ V and Vaa ⊆ V.

Proof. Consider the linear map la : R → R/V , defined by the rule x 7→
ax + V. Since dimR/V < ∞, then Ker la has finite codimension in R.
Denote V1 = Ker la ∩ V. Then it holds obviously V1 ⊆ V and aV1 ⊆ V.
Analogously one can define the linear map ra : R → R/V by the rule
x 7→ xa+V and after putting V2 = Ker ra∩V we get V2 ⊆ V and V2a ⊆ V.
Because V1 and V2 are subspaces of finite codimension of R, the subspace
Va = V1 ∩ V2 is of finite codimension in R and satisfies conditions of the
Lemma.

The next result specifies Lemma 11 from [4].

Lemma 3. Let R be an associative algebra over an arbitrary field and J
be a right (left) finite dimensional ideal of the algebra R. Then the algebra
R has a two-sided idea I with zero square such that I + J is contained
in the smallest two-sided ideal TJ of the algebra R which contains J and
dimTJ/(I + J) < ∞.

Proof. Let J be for example a right ideal. Then S = Annr
R(J) is a

two-sided ideal of the algebra R and dim R/S < ∞. Take a set of coset
representatives x1, . . . , xn of S in R. Then the smallest ideal TJ of the
algebra R containing J is of the form

TJ = J + RJ = J + SJ + x1J + . . . xnJ

Denote I = SJ. It is clear that I is a two-sided ideal of the algebra R and
I2 = 0. The subalgebra J + I is, obviosly, of finite codimension in TJ .

Lemma 4. Let R be an associative algebra over an arbitrary field K and
A be its subalgebra such that the right annihilator I = Annr

R(A) (left
annihilator J = Annl

R(A)) is of finite codimension in R. Then R has a
nilpotent ideal T of nilpotency index ≤ 2 such that dim A/(A ∩ T ) < ∞.

Proof. Consider the case when the right annihilator I is of finite dimen-
sion in R. Let x1, . . . , xn be a set of coset representatives of I in R. Then

A + AR = A + A(
n∑

k=1

(xk + I) = A +
n∑

k=1

Axk

is a right ideal of the algebra R, containing A. For any element xk, k =
1, . . . , n there exists (by Lemma 2) a K-subspace Ik, Ik ⊆ I such that
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xkIk ⊆ I and the subspace Ik is of finite codimension in I. Denote T =
∩n

k=1
Ik. Then T is a subspace of finite codimension in I (and therefore

in R) such that xkT ⊆ I for all k = 1, . . . , n. But then AxkT ⊆ AI = 0
and therefore (A + AR)T = 0. Thus, without loss of generality, one can
assume that the subalgebra A from conditions of Lemma is a right ideal
of the algebra R. In this case, the right annihilator of A is, obvious a
two-sided ideal of R and the intersection I0 = A∩ I is a right ideal of the
algebra R such that I2

0 = 0 and dimA/I0 < ∞. It is easily to see that
S = I0 + RI0 is a two-sided ideal of the algebra R and S2 = 0. Besides,
A ∩ S is of finite codimension in A. Analogously, one can consider the
case of the left annihilator J.

Corollary 1. Under conditions of Lemma 4 the subalgebra A is contained
in some nilpotent-by-finite ideal of the algebra R.

Really, by Lemma 4 the subalgebra (A + T )/T is finite dimensional
and its left (right) annihilator in R/T is of finite codimension. Then by
Remark 1 (A + T )/T is contained in some nilpotent by-by-finite ideal
of the algebra R/T. It follows from this that A is contained in some
nilpotent-by-finite ideal of the algebra R.

In the next Lemma we collect some known results about nilpotent
and finite dimensional ideals.

Lemma 5. (see, for example, [4]). Let A be an associative algebra and
I an ideal of A. If J is an ideal of the subalgebra I then it holds:

(1) if subalgebra J is nilpotent then J lies in a nilpotent ideal JI of
the algebra A and JI ⊆ I;

(2) if subalgebra J is finite dimensional then J lies in an ideal JI of
the algebra A such that JI ⊆ I and JI possesses a nilpotent ideal T of the
algebra A with dimJI/T < ∞.

3) if an associative algebra R has an ideal I which is a nilpotent-by-
finite algebra and the quotient algebra Q/I is the same then the algebra
R is also nilpotent-by-finite.

Proof. 1) See, for example, [1], Lemma 1.1.5; 2) See [4], Lemma 3; 3)
The proof of this part can be easily obtained from the proof of part 3 of
Proposition 1 in [4].

Proposition 1. Let R be an associative algebra over an arbitrary field
and RF (R), (LF (R)) be the sum of all finite dimensional right (respec-
tively, left) ideals of R. Then RF (R) and LF (R) are two-sided ideals
of the algebra R and the sum F (R) of all finite dimensional (two-sided)
ideals of R is F (R) = RF (R) ∩ LF (R).
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Proof. We can write the sum I = RF (R) of all right ideals of R in
the form RF (R) =

∑
λ∈Λ

Iλ where {Iλ}, λ ∈ Λ is the set of all finite
dimensional right ideals of R. Then for any element a ∈ R we have that
aI =

∑
λ∈Λ

aIλ is a sum of finite dimensional right ideals aIλ. Therefore
aRF (R) ⊆ RF (R) i.e. RF (R) is a two-sided ideal of the algebra R.
Analogously one can show that LF (R) is a two-sided ideal of R.

Let now x ∈ RF (R) ∩ LF (R) be an arbitrary element. Then its left
and right annihilators in R are of finite codimension in R and hence its
two-sided annihilator in R is of finite codimension. By Lemma 1 the
element x is contained in some two-sided finite dimensional ideal of R,
i.e. x ∈ F (R). The inclusion F (R) ⊆ LF (R) ∩ RF (R) is clear.

Corollary 2. Let I be an ideal of the algebra R which is an ideally finite
algebra. Then I + β(R)/β(R) is contained in F (R/β(R)). In particular,
the ideal F (R) of a semi-prime algebra R contains all ideals which are
ideally finite algebras.

2. On sum of an algebra with zero square and an ideally

finite algebra

Theorem 1. Let R be an associative algebra over an arbitrary field,
which is a sum R = A + B of its subalgebras A and B with A2 = 0. If
the subalgebra B possesses a nonzero finite dimensional ideal J then the
algebra R has a nilpotent ideal I such that (J +I)/I is contained in some
finite dimensional ideal of the quotient algebra R/I.

Proof. 1. Without loss of generality, one can assume that ABA ⊆ A.
Indeed, denote A1 = A + ABA. Then, obviously, R = A1 + B and
A2

1 = 0. Besides,

A1BA1 = (A + ABA)B(A + ABA) = ABA + ABABA + ABABABA.

Note that ABABA ⊆ A(A+B)A = ABA (because ABA ⊆ R = A+B),
analogously ABABABA ⊆ ABA. Since ABA ⊆ A1, it follows from above
relations that A1BA1 ⊆ A1.

2. Show that the subalgebra T = A + AJ + JA + J of R possesses
a nilpotent ideal S (of the subalgebra T ) such that dimA/(A ∩ S) < ∞.
Note first that the subspace T is a subalgebra because of conclusions

AJA ⊆ A, JAJ ⊆ RJ = (A + B)J ⊆ AJ + J.

Besides, the subalgebra T has a subalgebra T1 = A + AJ + JA of finite
codimension in T (because dimJ < ∞). Then as well known (see for
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example, [3]) the subalgebra T1 contains an ideal I1 of the subalgebra
T of finite codimension in T. As the subalgebra A is a nilpotent ideal
of the subalgebra T1 then A ∩ I1 is a nilpotent ideal of the subalgebra
I1. By Lemma 5 A ∩ I1 is contained in some nilpotent ideal S of the
subalgebra T which lies in I1 (since I1 ⊆ T1 , then S ⊆ T1). As I1 is of
finite codimension in T and A ⊆ T , then A ∩ I1 is of finite codimension
in A. It follows from this (taking into account the inclusion (A∩ I1) ⊆ S)
that dimA/(A ∩ S) < ∞.

3. Prove on this step that R has a nilpotent ideal N such that
dimJAJ/(JAJ∩N) < ∞. Take the least ideal M = J +JR+RJ +RJR
of the algebra R containing J . After inserting A + B instead R in the
expression for M we obtain

M = J +(A+B)J +J(A+B)+(A+B)J(A+B) = J +AJ +JA+AJA

(because J is an ideal of the algebra B). By the first step of the proof
AJA ⊆ A and therefore M ⊆ T where T is the subalgebra of R defined
on the step 2. Because the subalgebra S from the step 2 is a nilpotent
ideal of the subalgebra T then M∩S is a nilpotent ideal of the subalgebra
M and therefore by the Lemma 5 M ∩ S is contained in some nilpotent
ideal N of the algebra R which is contained in M. By the previous step
of the proof the subalgebra A∩S is of finite codimension in A and taking
in account the inclusion AJA ⊆ A we see that S ∩ (AJA) is of finite
codimension in AJA.

Further, by construction AJA ⊆ M and (M ∩ S) ⊆ N and there-
fore (S ∩ AJA) ⊆ N. It follows from the previous consideration that
dimAJA/(AJA ∩ N) < ∞ i.e. the subalgebra (AJA + N)/N of the
quotient algebra R/N is finite dimensional.

4. Show that the algebra R has such a nilpotent ideal I that (J +I)/I
is contained in some finite dimensional ideal of the quotient algebra R/I.
Denote for convenience R = R/N, A = (A + N)/N, B = (B + N)/N.
Then R = A + B and B contains a finite dimensional ideal J = (J +
N)/N. By the previous step R contains a finite dimensional subalgebra
AJA = (AJA + N)/N. Consider the right annihilator Annr

R
(AJ). Since

J = (J + N)/N is a finite dimensional ideal of the algebra B then AJ
is annihilated on the right by some subalgebra B0 of the algebra B of
finite codimension in B. Further, the subalgebra AJA = AJ · A is finite
dimensional and therefore for any element g ∈ AJ by Lemma 2 there
exists a subspace Ag of finite codimension in A such that gAg = 0. But
then the right annihilator of the element g is of finite codimension in
R (because it contains the sum B0 + Ag) and hence by Remark 1 the
element g belongs to a finite dimensional right ideal of the algebra R.
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It follows easily from this that the finite dimensional subalgebra AJA is
contained in some finite dimensional right ideal of the algebra R. But
then the subalgebra AJA is contained by Lemma 3 in some nilpotent-
by-finite ideal T = T/N of the algebra R = R/N . After passing on to
the algebra R one can easily see that the subalgebra AJA is contained
in the nilpotent-by-finite ideal T of the algebra R (because ideal N is
nilpotent).

Consider now the quotient algebra R̃ = R/T. This algebra is obviously
a sum of two its subalgebras Ã = (A + T )/T and B̃ = (B + T )/T and
it holds by above ÃJ̃Ã = 0 in R̃. As J̃ is a finite dimensional ideal of B̃
then ÃJ̃ has evidently the right annihilator in R̃ of finite codimension in
R̃. By Lemma 4 the product ÃJ̃ is contained in some nilpotent-by-finite
ideal Ũ of the algebra R̃. Denote by U the complete preimage of Ũ in
R. Then this ideal nilpotent-by-finite by Lemma 5 and therefore the left
annihilator of the subalgebra (J + U)/U of the quotient algebra R/U is
of finite codimension in R/U. Then by Lemma 4 J is contained in some
nilpotent-by-finite ideal of the algebra R.

Theorem 2. Let R be an associative algebra over an arbitrary field which
is a sum R = A + B of a subalgebra A with zero square and an ideally
finite subalgebra B. Then R possesses a locally nilpotent ideal I such that
the subalgebra B = (B+I)/I of the quotient algebra R = R/I is contained
in the ideal F (R) which is generated by all finite dimensional ideals of R.

Proof. Since B is ideally finite then for a set Λ of indices it holds B =∑
λ∈Λ

Bλ where Bλ are finite dimensional ideals of the subalgebra B. For
any ideal Bλ denote by Iλ a nilpotent ideal of the algebra R such that
(Bλ + Iλ)/Iλ is contained in some finite dimensional ideal Rλ = Rλ/Iλ

of the quotient algebra R = R/Iλ (such an ideal does exist by Theorem
1). Denote by I the sum I =

∑
λ∈Λ

Iλ. It is easily shown that I is a
locally nilpotent ideal of the algebra R and every subalgebra (Bλ + I)/I
of the quotient algebra R/I is contained in a finite dimensional ideal of
the algebra R/I. Therefore (B + I)/I is contained in the ideal F (R/I)
of the algebra R/I which is generated by all finite dimensional ideals of
R/I.

Corollary 3. If the algebra R in the Theorem 2 is semiprime then the
subalgebra B is contained in the ideal F (R) which is generated by all finite
dimensional ideals of the algebra R.

Really the ideal I in the proof of the Theorem 2 is zero because all
ideals Iλ are zero by the semiprimity of R.
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