Number 3. (2007). pp. 15-17
(c) Journal "Algebra and Discrete Mathematics"

Open problems in Radical theory (ICOR-2006)

B. J. Gardner, Jan Krempa and R. Wiegandt

1. The Zhevlakov radical J of the free alternative ring F on a countably infinite set of generators is the set of nilpotent elements (and $\neq 0$). This result was obtained independently by Shestakov and Slater, and an account can be found on pp.268-274 of K.A.Zhevlakov et al.: Rings that are nearly associative (trans H.F.Smith), Academic Press, New York etc., 1982. Thus J is a T-ideal and defines a non-trivial variety. What exactly is this variety and does it have any relevance for radical theory?
2. For a subring S of a ring A (associative this time, though the problem can be generalized) the idealizer $I(S)$ of S is $\{a \in A: a S+S a \subseteq$ $S\}$. This is the largest subring of A which has S as an ideal. Now let \mathcal{R} be a radical class, $S \in \mathcal{R}$.
(i) When is $S=\mathcal{R}(I(S))$?
(ii) For which radical classes \mathcal{R} is it true that for every \mathcal{R}-subring T of every ring A, there is an \mathcal{R}-subring S such that $S=\mathcal{R}(I(S))$ and $T \subseteq S$?

It has been observed by Szász (On the idealizer of a subring, Monatshefte Math. 75(1971), 65-68) that maximality of S as an \mathcal{R}-subring is sufficient in (i), though it is not necessary. If \mathcal{R} is strict, then in (ii) we always have $T \subseteq \mathcal{R}(A)=\mathcal{R}(I(\mathcal{R}(A))$.
3. All necessary information on (associative) rings, modules and radicals considered here one can find for example in [1].

A ring R is right U-primitive if there exists a right, faithful, uniform, prime R-module. Left U-primitive rings one can define in an analogous way.

Clearly, right (left) primitive rings are right (left) U-primitive. Commutative domains and prime rings with no nonzero prime ideals are left and right U-primitive. The class of all right (left) U-primitive rings is a special class of rings. It can be proved that the upper radical defined by this class coincides with the lower nil-radical.

Question 1. Is every prime ring right U-primitive? The case of rings with ACC and/or DCC condition on prime ideals seems to be of special interest.

Question 2. Is every right U-primitive ring left U-primitive?

Agata Smoktunowicz proved in [2] that over every countable field F there exists a simple nil-algebra.

Question 3. Can the above result be extended to the case of an arbitrary field?

Further a ring R will be called totally nil if for every $n \geq 1$ the polynomial ring $R\left[t_{1}, \ldots, t_{n}\right]$ is a nil-ring. Totally nil rings form an important radical class, contained strictly between locally nilpotent radical and upper nil-radical. Algebras over uncountable fields are known to be totally nil.

Question 4. Let F be any field. Does there exist a simple algebra over F being totally nil?
3. A (Kurosh-Amitsur) radical γ is said to be hereditary, if $I \triangleleft A \in \gamma$ implies $I \in \gamma$ for every ring A and ideal I of A. A radical γ has the Amitsur property, if

$$
\gamma(A[x])=(\gamma(A[x]) \cap A)[x]
$$

for every ring A and polynomial ring $A[x]$.
If a radical γ has the Amitsur property, then its semisimple class $\mathcal{S} \gamma=\{A \mid \gamma(A)=0\}$ is polynomially extensible, that is, $A \in \mathcal{S} \gamma$ implies $A[x] \in \mathcal{S} \gamma$.
Problem: Does there exist a (hereditary) radical γ with polynomially extensible semisimple class $\mathcal{S} \gamma$ such that γ does not have the Amitsur property?

References

[1] B.J. Gardner and R. Wiegandt, "Radical theory of rings", Marcel Dekker Inc., New York 2004.
[2] A. Smoktunowicz, A simple nil-algebra exists, Comm. Algebra 30(2002), 27-59.
[3] N. V. Loi and R. Wiegandt, On the Amitsur property of radicals, Algebra and Discrete Math., 3(2006), 92-100.

CONTACT INFORMATION
B. J. Gardner

Jan Krempa
R. Wiegandt

Discipline of Mathematics, University of Tasmania, Private Bag 37, Hobart, Tas. 7001, Australia
E-Mail: gardner@hilbert.maths.utas.edu.au

Institute of Mathematics,
Warsaw University,
ul. Banacha 2,
02-097 Warszawa, Poland
E-Mail: jkrempa@mimuw.edu.pl
A. Rényi Institute of Mathematics, P. O. Box 127, H-1364 Budapest, Hungary E-Mail: wiegandt@renyi.hu

