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Abstract. The problem of the research of Mealy automata

growth at iterations is considered in the paper. We describe the

application of the mathematical modelling method to this prob-

lem, and consider properties of growth of Mealy automata. We

show several equivalence relations and automaton sequences that

are used in these investigations.

1. Introduction

The notion of growth was introduced in the 50th of the last century
independently by Švarc [27] and Milnor [15]. Mainly, the growth of geo-
metrical objects was studied, but later growth functions were defined for
various algebraic objects, too [1, 29]. The growth function is a positively
defined function of a natural argument, that characterizes the properties
of original object such as “complexity” or “asymptotical behavior”. For
some objects (for ex., semigroups) different growth functions are consid-
ered simultaneously.

One of the most studied characteristics of growth functions is growth
order that characterizes its asymptotic behavior. Depending on objects
that define growth functions, possible growth orders form different sets.
Growth functions of (semi)groups may have polynomial, intermediate,
and exponential growth. Historically, the most attention is attracted to
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the the objects of intermediate growth. The question on the existence of
groups of intermediate growth was set up by Milnor in 1968 [16], and was
solved by Grigorchuk in 1984 [7] (see also [8]). On the other hand, the
first example of the finitely generated semigroup of intermediate growth
was constructed by Govorov in 1972 [6]. Growth functions of finitely
generated semigroups and the set of their growth orders are characterized
by Trofimov in [28].

The growth function of a Mealy automaton was introduced in 1988
by Grigorchuk [9], and he shown that the growth functions of an invert-
ible automaton and automaton transformation group, defined by it, have
the same growth order. These interrelations allow to apply results that
concern the growth of groups and semigroups to the growth of Mealy au-
tomata (see, for ex., [10]). Therefore various examples of Mealy automata
with polynomial, intermediate and exponential growth were constructed.

In 90th of the last century attention of researchers was attracted to
investigations of the growth of invertible Mealy automata (see, for ex.,
[4, 11, 10, 12]), because in this case automaton transformation group is
considered. But growth properties of groups and semigroups are distinct
in kind, and investigations of the growth of arbitrary Mealy automata
show principal distinctions between the cases of invertible and arbitrary
Mealy automata (see, for ex., [22, 19, 20]).

Despite the fact that the growth of Mealy automata has been actively
studied since it was introduced, at the end of 20th century the growth
of individual invertible automata and some sets were investigated only
(see the list of open problems in the survey [10]). That is why in 1997
Grigorchuk set up the problem “to investigate the growth functions of
all 2-state Mealy automata over a 2-symbol alphabet”. Denote this set
of automata by the symbol An×m. The first step in these investigations
is the list of groups, defined by invertible automata from A2×2, that is
shown in the theorem of [10].

The automaton transformation semigroups defined by all automata
from A2×2 were described, and the growth functions of these automata
and semigroups were calculated in 2002 [22]. The interesting automata in
A2×2 are found (see, for ex., [18, 2]), but this set demonstrates the valu-
able properties as integral object, too. By considering automata with
larger number of states over larger alphabets, new interesting proper-
ties such as non-monotonic growth functions and new growth orders are
found. Many questions concerning the growth of Mealy automata are
still open and seems to be very interesting (see [10, 12]). Therefore the
research of all Mealy automata growth is a natural continuation of these
investigations.

The author is heartily grateful to Professor Vitaliy I. Sushchansky for
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his permanent attention to my work and moral support during all these
years when we had worked together in Kiev.

2. Research scope

2.1. Definitions

We will use definitions from [25]. Here we fix necessary notations.

By N we mean the set of positive integers N = {1, 2, . . .}. For m > 2
the symbol Xm denotes the m-symbol alphabet {x0, x1, . . . , xm−1}. We
denote the set of all finite words over Xm, including the empty word ε,
by the symbol X∗

m, and denote the set of all infinite (to right) words by
Xω

m.

Definition 2.1. [14] A non-initial Mealy automaton is quadruple A =
(Xm, Qn, π, λ), where Qn = {q0, q1, . . . , qn−1} is the finite set of states;
Xm is input and output alphabet; and π : Xm × Qn → Qn and λ :
Xm × Qn → Xm are its transition and output functions, respectively.

We denote the set of all n-state Mealy automata over a m-symbol
alphabet by the symbol An×m. The set of all Mealy automata is denoted
by A.

The automaton transformation fi defined by A at the state qi ∈ Qn,
0 6 i < n, is defined by the equality f(u) = λ(u, qi), u ∈ Xω

m.

The Mealy automaton A = (Xm, Qn, π, λ) defines the set

FA = {f0, f1, . . . , fn−1}

of automaton transformations over Xω
m. The Mealy automaton A is called

invertible if all transformations from the set FA are bijections. It is easy
to show that A is invertible iff the transformation λ(·, f) is a permutation
of Xm for each state f ∈ Qn.

Definition 2.2 ([5]). The Mealy automata Ai = (Xm, Qni
, πi, λi) for

i = 1, 2, are called equivalent if FA1 = FA2 .

Definition 2.3 ([5]). The Mealy automata Ai = (Xm, Qn, πi, λi) for i =
1, 2 are called Q-isomorphic if there exists the permutation θ ∈ Sym(Qn)
such that

θπ1(x, f) = π2(x, θf) and λ1(x, f) = λ2(x, θf)

for all x ∈ Xm and f ∈ Qn.
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Proposition 2.4 ([5]). Each class of equivalent Mealy automata over the
alphabet Xm contains, up to Q-isomorphism, a unique automaton that is
minimal with respect to the number of states (such an automaton is called
reduced).

The minimal automaton can be found using the standard algorithm
of minimization.

The product of automata corresponds to superposition of automa-
ton transformations, or corresponds to sequential applying of automata-
factors. We apply the automaton transformations in right to left order,
that is for arbitrary automaton transformations f, g and for all u ∈ Xω

m

the equality f · g(u) = f(g(u)) holds.
The power An is defined for any automaton A and any positive integer

n. Let us denote the minimal Mealy automaton [5] equivalent to An by
the symbol A(n).

Definition 2.5 ([9]). The function γA of a natural argument, defined by
the equality

γA(n) =
∣

∣

∣
Q

A(n)

∣

∣

∣
,

where n ∈ N, is called the growth function of the Mealy automaton A.

Definition 2.6. Let A = (Xm, Qn, π, λ) be a Mealy automaton. A
semigroup

SA = sg (f0, f1, . . . , fn−1)

is called the automaton transformation semigroup defined by A.

Let S be an arbitrary semigroup with the finite set of generators U .
The growth function γS of S relative to the system U of generators is
defined [13] by the following equality

γS(n) =
∣

∣

{

s ∈ S ℓ(s) 6 n
}∣

∣ , n ∈ N.

Proposition 2.7 ([9]). For any n ∈ N the value γA(n) equals the number
of those elements of SA that can be presented as a product of length n of
the generators {f0, f1, . . . , fn−1}.

2.2. Growth of Mealy automaton set

The growth of the set A of all Mealy automata is investigated. An arbi-
trary Mealy automaton A unambiguously defines the growth function γA

and the automaton transformation semigroup SA with the growth func-
tion γS . We consider the set of automaton growth functions ΓA and the
set of automaton transformation semigroups S, defined by all automata
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Figure 1: Considered objects

from the set A, and the set of semigroup growth functions ΓS, defined by
all semigroups from S (see Fig. 1). Obtained sets A, S, ΓA and ΓS are
close related each other, and it’s useful to consider them together. The
natural mappings between them are not bijective, and they define the
mappings from ΓA and ΓS to B(A), B(S), respectively, and from S to
B(A), where B(Y ) denotes the boolean of the set Y . In the sequel text
we will refer on the last mappings as “backward” mappings.

We are interested in regularities of the sets ΓA and ΓS, and try answer
the question why certain automaton A and corresponding semigroup SA

show one or another growth properties. In addition, we study properties
of “backward” mappings, that is the question how Mealy automaton sets,
that define the same semigroups or growth function, are constructed.
Sometimes, the special subsets of A are separated and investigated as
independent cases.

According to the main objects, considered questions can be sort into
the following categories:

A: studying how relations between Mealy automata influence on the
properties of their growth functions, and investigating structure
of the subsets of A with predefined growth function properties.

S: characterizing semigroups from S, structure of their defining relation
sets and the properties (semigroup identities, ideals, Green relations
and subsemigroups, etc.) depending on growth functions.

ΓA, ΓS: investigating the construction of growth functions from ΓA and
ΓS, their possible growth orders, asymptotical behavior and vari-
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ous numerical properties, describing the statistical distribution in
these sets by various characteristics such that degree ration, growth
orders.

A and S: determining structure of automaton sets that define the same
semigroups, researching relations between the properties of such
automata and properties of the corresponding semigroup (structure
of the defining relation set, normal form, etc.).

A and ΓA, S and ΓS: studying relations between the various proper-
ties of growth functions (that are mentioned above) and the prop-
erties of corresponding automata (semigroups).

ΓA and ΓS: investigating correlation between these sets, determining
functions that belong to ΓA, but not to ΓS, and vice versa.

Moreover, the research includes questions how properties of growth
interrelated with properties of close objects such as graphs, acceptor au-
tomata and so on.

2.3. Useful properties of automaton set

In this section we considered several properties of a Mealy automaton,
that are used by investigations of a certain automaton. Let A be an
arbitrary automaton, SA be the automaton transformation semigroup,
defined by A. Here we use notions and definitions of semigroup objects
from [13].

Let A = (Xm, Qn, π, λ) be an arbitrary Mealy automaton. Let k > 1,
and for arbitrary k-tuple of indexes (i1, i2, . . . , ik), where 0 6 ij < n, the
following objects can be considered:

• the state f = (qi1 , qi2 , . . . , qik) of the automaton Ak;

• the automaton transformation f = fi1 · fi2 · . . . · fik over the set Xω
m

defined by the automaton Ak;

• the semigroup word s = fi1fi2 . . . fik in the semigroup SA .

It follows from the definition of automaton transformation semigroup,
defined by a Mealy automaton, that the transformation f is defined by
A at the state f, and this transformation is defined by the semigroup
word s. These objects are close related, and in the sequel text we freely
interchange them.

Let the set of all semigroup words is ordered by lexicographical ho-
mogeneous order, i.e. words are ordered by length, and then ordered in
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lexicographical order. Two semigroups words s1 and s2 are equal in SA

iff they define the same automaton transformation over Xω
m (or X∗

m). On
the other hand, it means that corresponding automaton states are equiv-
alent. The algorithm that determine equivalent states is considered in
[5]. Therefore each class of equivalent semigroup words contains a unique
element that is minimal in the mentioned above order.

Proposition 2.8. Each semigroup word s ∈ SA can be reduced to the
normal form.

Proof. Let s ∈ SA be an arbitrary semigroup word

s = fi1fi2 . . . fit ,

where t > 1, 0 6 ij < n. The corresponding to s automaton transfor-
mation f belongs to At. Therefore it’s enough to apply the minimiza-
tion algorithm to the automaton, that equals the direct sum [5] of the
automata A1, A2, . . . , At. It provides the automaton transformation f ′

defined by Ak at the state f
′ for some 1 6 k 6 t, that is the equivalent

transformation to fi1fi2 . . . fit . Assume that f
′ = qj1 . . . qjk

. Then the
semigroup word s

′ = fj1fj2 . . . fjk
corresponds to the minimal semigroup

element that is equal to s. Thus, s
′ is the normal form of s.

Theorem 2.9. For any automaton A there exists the rewriting system
in the semigroup SA .

Proof. Describe the following approach to the investigations of the au-
tomaton A.

Let us consider the sequential degrees Ap, p = 1, 2, . . .. We form the
set of relations, and relations are ordered by applying the lexicographical
homogeneous order first to left, and then to right parts. We start from
p = 1 and the empty set of relations R. Each iteration provides the
minimized automaton A(p).

Let p be fixed, and consider the automaton Bp that equals the product
of A(p) and A. Any automaton transformation f = fi1fi2 . . . fip of length
p is checked against the set R. Relations are considered as they ordered,
and if there exists the relation u = w such that semigroup word u contains
in the semigroup word s, defined by f , then u is replaced by v. It gives
the semigroup element s′ that is equivalent to s, but is lesser. If s has
length p, then it is checked against the set R once again. Because each
applying of relations from R gives lesser element than previous one, then
this process will end. At the end, it gives the semigroup words s

′′ that is
equivalent to s, but any relations from R can not be applied to s

′′.
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After all states of Bp of length p are reduced by applying the rela-
tions from R, the resulting automaton is minimized by the minimization
algorithm. It provides the set of additional relations that are added to
the set R.

Now, let us show that the relations set R is the terminating confluent
rewriting system. This system is terminating, because each applying
gives the smaller semigroup word, and all words are ordered. Below we
show that the applying relations in two different ways till any relations
can not be applied provide the same result. It follows from the algorithm,
described above, that there exists the sequence of applying relations from
R, that reduce the element s to its normal form. Thus, the rewriting
system R is confluent.

Let s be an arbitrary semigroup word, s = fi1fi2 . . . fik , and let it is
reduced to the semigroup words s1 and s2 by applying relations from R

in different ways. Assume that s1 = fi1fi2 . . . fik1
and s2 = fj1fj2 . . . fjk2

,
1 6 k1, k2 6 k, 0 6 il, jl < n. The automaton transformation fi, defined
by si, is included in ki-th power of A. At ki iteration of the algorithm it
is checked against the set R, respectively. If any of relations from R can
not be applied to s1 and s2, that is after the applying the minimization
algorithm both elements were determined as irreducible. Because both
of them equal s, and the normal form is a unique, then s1 = s2.

Thus, the set R is the terminating confluent rewriting system. Note,
that this rewriting system contains the set of defining relations.

It is possible to reduce number of words that are used for testing
semigroup elements for equivalence by using notions of dual automata.

Definition 2.10 ([5]). Let A = (Xm, Qn, π, λ) be an arbitrary Mealy
automaton. The automaton A =

(

Qn, Xm, π, λ
)

such that

π(f, x) = λ(x, f) and λ(f, x) = π(x, f)

for any x ∈ Xm, f ∈ Qn, is called the dual automaton to A.

Definition 2.11. We say that two words u1, u2 ∈ X∗
m are equivalent for

the automaton A, if the equality u1 = u2 holds in the semigroup SA ,

defined by the dual automaton A.

Proposition 2.12. Let u1, u2 be equivalent words for A. Then for any
semigroup element s ∈ SA the equality π(u1, s) = π(u2, s) holds.

Proof. Let s ∈ SA be an arbitrary semigroup element. It can be consid-
ered as a word over the alphabet Qn. It follows from Definition 2.11, that
the equality

λ(s, u1) = λ(s, u2)
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holds. As λ(s, u1) = π(u1, s), then the equality π(u1, s) = π(u2, s) holds,
that proves the proposition.

Theorem 2.13. Two semigroup words s1 and s2 are equal in the semi-
group SA iff for all elements u ∈ SA and all symbols x ∈ Xm the following
equality holds:

s1(ux) = s2(ux). (2.1)

Proof. Let s1, s2 be arbitrary semigroup words such that the equality s1 =
s2 holds in SA . Then they define the same automaton transformation,
and for any word v ∈ X∗

m the equality s1(v) = s2(v) holds.

As Xm is the set of generators of SA , then this semigroup can be
considered as the set of words over the alphabet Xm, whence SA ×Xm ⊆
X∗

m. Therefore for any u ∈ SA and x ∈ Xm the equality (2.1) follows
from s1(w) = s2(w) for w = ux.

Now, let the equality (2.1) holds, and assume by contradiction that
s1 and s2 are non-equivalent. Then there exists the word v = wx ∈ X∗

m,
w ∈ X∗

m, x ∈ Xm, of minimal length such that

s1(w) = s2(w) and s1(v) 6= s2(v),

whence

λ(x, π(w, s1)) 6= λ(x, π(w, s2)).

The word w can be considered as the semigroup word, and there exists
the equivalent element u ∈ SA , u = w. It follows from Proposition 2.12
that for all elements s ∈ SA the equality

π(u, s) = π(w, s)

holds. Then

si(ux) = λ(u, si) · λ(x, π(u, si)) = λ(u, si) · λ(x, π(w, si)),

where i = 1, 2, and therefore the outputs s1(ux) and s2(ux) differ at least
in the end symbol. Hence, the inequality s1(ux) 6= s2(ux) holds that
contradicts the conditions of the theorem.

In addition, the following proposition show that semigroup of origin
and dual automaton are infinite simultaneously.

Proposition 2.14. Let A be an arbitrary automaton. Then the semi-
group SA is infinite if and only if the semigroup SA is infinite.
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3. Method and techniques of the research

Let O be some object, and we denote a model of O by the symbol M(O).

3.1. Application of mathematical modelling method

The investigated sets are countable infinite sets of discrete objects. On the
one hand, it is unknown how to find automata that demonstrates interest-
ing properties. On the other hand, the studying of particular automata
can’t show patterns of relationship in the set of all Mealy automata.
Therefore we propose to use the mathematical modelling method in the
research of growth of the set A. The mathematical modelling method
requires to construct a model of the growth of A, that have lesser com-
plexity but preserve investigated properties [17]. As the sets S, ΓA, ΓS is
defined by A, then the model M(A) defines in the same way the models
M(S), M(ΓA), M(ΓS) of the corresponding objects.

The research starts from studying some Mealy automata. Investi-
gating examples, we study properties of these automata, and it leads
us to hypotheses that concern the properties of the growth of the set
A. Considering the growth of all Mealy automata, we check up these
hypotheses, and it may produce new examples of automata and corre-
sponding semigroups with interesting properties of growth. Therefore,
the investigations of the growth of certain automata and the growth of
the set A should be carried out simultaneously and exchange by results
and hypotheses.

But, many questions should be considered and answered until the
start of modelling:

• what is the accuracy of adequate model;

• how the automata that demonstrate the most “typical” properties
should be selected;

• what properties (excepting tabulated values of functions) should be
simulated;

• how the data should be analyzed;

• how hypotheses can be constructed and proved.

It follows from the notes above, that two parallel modelling are carry-
ing out: it’s necessary to construct the model M(A) of the set A, and the
model of the growth of M(A). The last model will be correct, if M(A)
contains elements with the most “typical” growth properties.
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The set A can be presented as the infinite join of the finite sets

A =
⋃

n>1

⋃

m>1

An×m.

But the set A is not just a join of the sets An×m. Many properties is
appeared only if the set A (or the model M(A)) is considered as a whole
object. For example, the investigations of A2×2 discover several “basic”
properties of growth [22]. We mark out some of these properties:

• A2×2 includes automata of all “main” (polynomial, intermediate,
and exponential) growth;

• all growth functions of automata from A2×2, excluding the growth
function of intermediate growth, can be described by finite recurrent
relations;

• the growth function of the automaton I2 of intermediate growth
has the growth order [exp

√
n] [23, 2].

Therefore, the model M(A) can be constructed as a join of the models
M(An×m). Obviously, more accurate models M(An×m) provides more
adequate model for A.

In order to construct the model of An×m, we should consider automata
from this set. The set An×m contains finite count of automata, but it’s
not necessary consider all of them. In Section 4 we describe equivalence
relations, that allows choose representatives in An×m. Each of this repre-
sentatives should be modelled in order to obtain its growth function and
semigroup. We propose to model the automaton by considering sequen-
tially its degrees. Depending of the number considered powers and the
complexity of the automaton, the model with some degree of certainty
describes the properties of the automaton.

Note, that each set An×m can be modelled separately, but automata
from sets with different parameters may have interrelation. Therefore
the modelling of a particular automaton may use previously obtained
information.

3.2. Modelling of automata and automaton set

The properties and data that describe investigated objects are separated
into three categories: the initial data, the structural properties and the
asymptotical behavior.

The initial data includes data that describe an object, and is used
as a basis for the studying of particular object. An arbitrary Mealy
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automaton is fully described by the number of states, the cardinality
of the alphabet, and the Moore diagram. The transition and output
functions can be used instead of Moore diagram. Investigated sets of
Mealy automata are described by the fixed initial set of automata, and
the construction algorithm that produce the next automaton.

An arbitrary semigroup is defined by the set of generators and defining
relations, and a growth function is fully defined by close formulae or by
the growth series. Let’s note, that when the researcher starts to consider
some automaton A, then the set of defining relations of the corresponding
semigroup and close formulae for growth functions are objectives of the
investigations. That is why the initial data of SA is the set of generators,
compounded from all automaton transformations of A, and initial data
of the growth function γA is some number of tabulated values.

The structural properties describe inner structure of an object, if it is
considered independently of close related objects. For example, automa-
ton transformation semigroups are considered as abstract semigroups,
and growth functions are considered as positively defined functions of
a natural argument. These properties are used for the studying corre-
lations between the properties of related objects. Mainly, we consider
those, that can be used in the studying of asymptotical behavior and the
growth properties.

The structural properties of an semigroup include the normal form
of semigroup elements, the reduction algorithm, ideal structure of semi-
group, semigroup identities. The structural properties of a Mealy au-
tomaton include the properties of its automaton transformations, that
are already included into the structural properties of the corresponding
semigroup, and the properties of the Moore diagram when it is considered
as a labelled oriented graph.

The structural properties of growth functions includes different clas-
sifications of functions: monotonic or non-monotonic, composite or non-
composite, bounded or unbounded, and so on. Depending on these prop-
erties, various numerical properties of functions are considered. One of
the most interesting questions are the questions when the close formulae
can be constructed, which partitions of positive integers are used for it,
when the growth function can be described by recurrent relations.

The properties of asymptotical behavior include the asymptotical be-
havior of particular object and the asymptotical properties of indexed sets
of objects as its index tends to infinity. As we study growth, then primary
asymptotics properties for all investigated objects are its growth orders.
The asymptotical behavior of growth functions also include asymptotics,
growth series. For the set ΓA of automaton growth functions the stati-
cal distribution by degree ratio and growth orders is investigated. The
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asymptotical properties of semigroups include Hausdorff dimensions, and
the properties of semigroup word actions over the boundary of X∗

m. The
notion of n-state automata sequences (see Section 5) allow consider the
limit of sequences of semigroups and growth functions.

3.3. Implementation of the method

We propose the following implementation of mathematical modelling
method to the investigations of the growth of A. Results of the modelling
of automata, semigroups and growth functions are collect in data ware-
house. The researcher analyze obtained data, and set up various hypothe-
ses concerning the properties of particular automata and the automaton
sets. Each hypothesis is checked against the set of already considered
automata, and, if necessary, additional automata are considered. Inves-
tigations of these automata are added to the main investigation. Also,
basing on the proved facts, the process of modelling may be changed.

During last years information technologies are successfully applied in
various branches of mathematics, and various specialized programming
system (for ex., GAP for groups, Singular for algebraic geometry) or
general-purpose programming system (for ex., MathLab, Mathematica)
are widely used. But such approach were not applied to the investigations
of Mealy automata growth. Therefore the key point of the research is the
using of specialized programming system. But the programming complex
is just a tool that implements the method of investigations.

Thus, the method applying contains three stages: collecting data;
analyzing obtained data and setting up various hypotheses; and proving
hypotheses or constructing contrary.

The first stage can be implemented by the special interactive pro-
gramming complex. Possible structure of the programming complex are
considered in [22, 24]. It models Mealy automata, starting from the ini-
tial data on automata, semigroup and growth functions, forms aggrega-
tive data, and made predictions. All these data are stored in databases.
In addition, sometimes the researcher don’t know exactly what kind of
automata he/she is looking for. That is why such programming com-
plex should be constructed as the interactive programming system, that
quickly responds on user’s challenges, allow easy change modelled sets,
set or remove restrictions of the research.

Preliminary analysis of data, predicting, and hypothesis formulating
can be implemented by mathematician who used intellectual software
with adaptive and self-trained algorithms. Mainly, the researcher studies
the structural and asymptotics properties, basing on the aggregate data,
obtained by the complex. He/she looks over these data, considers various
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diagrams and graphs, and then sets up hypotheses concerning the current
questions. The programming complex may check these hypothesis over
the set of modelled automata and semigroups, but it can’t prove them.

The last stage is not formalized and therefore is the most complex.
The mathematician should prove these hypotheses by mathematical meth-
ods. Checks by the programming systems at the most may produce the
contrary. The rest of proving is made by the researcher.

4. Equivalence relations over the set A, defined by growth

In this section we introduce some equivalences that are used in the growth
investigations.

4.1. Definitions

Recall, that two Mealy automata A1 and A2 is called equivalent if FA1 =
FA2 .

Definition 4.1. The Mealy automata Ai = (Xm, Qn, πi, λi) for i = 1, 2
are called similar if there exist permutations ξ ∈ Sym(Xm) and θ ∈
Sym(Qn) such that

θπ1(x, f) = π2(ξx, θf), ξλ1(x, f) = λ2(ξx, θf)

for all x ∈ Xm and f ∈ Qn.

Proposition 4.2. [18] Let Ai = (Xm, Qn, πi, λi), i = 1, 2, be two similar
Mealy automata. Then these automata define the isomorphic automatic
transformation semigroups and have the same growth function.

Using technique from [26], we prove the formula of the number of
classes of the similarity.

Proposition 4.3. The maximal number E(n, m) of pairwise non-similar
automata from the set An×m is defined by the following equality:

E(n, m) =
1

n! · m!
·

∑

ξ∈Sym(Xm)

θ∈Sym(Qn)

m
∏

p=1

n
∏

q=1





∑

s,t | [p,q]

s t js

(

ξ−1
)

jt

(

θ−1
)





jp(ξ)jq(θ)〈p,q〉

where [p, q] is the minimal common multiple of the numbers p and q,
〈p, q〉 is the maximal common divider, and js(σ) — the number of loops
of length s of the permutation σ.
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4.2. Equivalences

We introduce several equivalence relations over the set of Mealy automata
that are defined by growth functions. Let A1 and A2 be arbitrary Mealy
automata. Let Si be automaton transformation semigroup, defined by
Ai, and the symbol Ai

′ denotes the result of applying the minimization
algorithm to Ai, i = 1, 2.

The following table contains the list of the relation notations and
conditions where the pair (A1, A2) belongs to the particular equivalence
relation.

AI: the automata A1 and A2 are Q-isomorphic;

AS: the automata A1 and A2 are similar;

AE: the minimized automata A1
′ and A2

′ are similar;

SI: the semigroups S1 and S2 are isomorphic, and the identity is included
to the system of generators if S1, S2 are monoids;

GE: the growth functions γA1 and γA2 of the automata A1 and A2, re-
spectively, are coincide for all values n > 1;

GC: there exists N ∈ N such that the growth functions γA1 and γA1 are
coincide for all values n > N ;

GO: the growth orders of automata coincide, that is the equality [γA1 ] =
[γA2 ] holds.

These relations concern the main questions that are studied in the
research of growth. The first three equivalence are close related each
other. The most used of them is the equivalence AS, and the equivalence
AE obtained as the expanding of AS from An×m to the set A. Below we
consider these interrelations in details. It follows from Proposition 4.2
that similar automata have the same growth functions, and therefore
pairwise non-similar automata can be selected as representatives of the
set An×m for the research of the growth of A. Proposition 4.3 provide the
formulae for count of pairwise non-similar automata. It gives E(2, 2) =
76, E(2, 3) = E(3, 2) = 4 003, E(3, 3) = 10 766 772, and so on. It much
lesser than the cardinality |An×m| = n!·m!. Unfortunately, the numerical
characteristics of other relations from this list are unknown.

The structure of the relation SI shows the relations between the sets A

and S. Empirical results provide several hypotheses that describe these
relations. One of them is that ratio of the count of classes of relations
AS and SI that contains only automata from the set An×m tends to one
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Figure 2: The automaton B1���� �� �� ��� �� ��� �� ��  ! !
Figure 3: The automaton B2

as n, m tends to the infinity. It means that for large enough n, m almost
all non-similar automata define non-isomorphic semigroups.

The investigations of the relation GE is a objective of the research of
ΓA, because the classes of GE is in one-to-one correspondence with the
functions from ΓA. But construction of these classes isn’t well investi-
gated.

The classes of the equivalence GO discover the behavior of growth
function at initial values of arguments. Experiments provide many ex-
amples of growth functions that differ for N first values, and then coincide
for all n > N . We call this number N by stable period. This definition
is substantiated by the observation that such functions are describe by
close formulae exactly for all n > N .

One of the first question concerning the set ΓA is what growth orders
are demonstrated by growth functions. Classes of the equivalence GO

corresponds to the set of all possible growth orders of Mealy automata.
Also, construction of these classes answers the questions such as what is
the maximal power of polynomial growth functions depending on initial
parameters, what intermediate growth orders may have automata from
some set An×m, others.

4.3. Examples

In the section we consider several automata that show interrelations be-
tween introduced equivalences.

Let B1, B2 and B3 be Mealy automata, shown on Fig. 2, 3 and 4
respectively, and let SBi

be the automaton transformation semigroup,
defined by Bi, i = 1, 2, 3. Let Φn denote the Fibonacci numbers, defined
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Figure 4: The automaton B312334 56 67 77 78889 :; :: 9< << << <=>?@ @A A
Figure 5: The automaton C1

by Φn = Φn−1 + Φn−2, Φ1 = Φ2 = 1. The following theorem holds.

Theorem 4.4. 1. The semigroups SB1 and SB2 coincide, and has the
following presentation:

SB =
〈

f0, f1 f2
1 f0 = f0f1f0

〉

.

2. The semigroups SB3 has the following presentation:

SB3 =
〈

f0, f1 f2
1 f0 = f1f

2
0

〉

.

3. The automata B1, B2 and B3 define the same growth function γB

of exponential growth, that is defined by the following equality:

γB(n) = Φn+3 − 1, n > 1.

Obviously, all automata B1, B2 and B3 are minimized, and not sim-
ilar. But it follows from Theorem 4.4 that these automata define just
two different semigroup. That is why the pair (B1, B2) belongs to SI, but
doesn’t belong to AE. In addition, the pair (B2, B3) belongs to GE, but
doesn’t belong to SI.

Let C1 and C2 be Mealy automata, shown on Fig. 5 and 6 respectively,
and let SCi

be the automaton transformation semigroup, defined by Ci,
i = 1, 2. The following theorems describe properties of these automata.

Theorem 4.5. 1. The semigroup SC1 has the following presentation:

SC1 =
〈

f0, f1 f2
i fj = fj , i, j = 0, 1

〉

.
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Figure 6: The automaton C2

2. The growth function γC1 of C1 have the linear growth, and is defined
by the equality:

γC1(n) = 2n, n > 1.

Theorem 4.6. 1. The semigroup SC2 has the following presentation:

SC2 =

〈

f0, f1
fif

2
j f1−j = fif

3
0 , f2

i f1−ifj = f4
0 ,

fif
4
0 = fif

3
0 , fif

5
1 = fif

3
1 , i, j ∈ {0, 1}

〉

.

2. The growth function γC2 of C2 have the linear growth, and is defined
by the equality:

γC2(n) = 2n, n = 1, 2, 3 and γC2(n) = 2n, n > 4.

The growth functions of C1 and C2 coincide for all n > 4, but differs
for value of argument n = 3. Therefore the pair (C1, C2) belongs to the
equivalence GC, but doesn’t belong to GE.

4.4. The properties of relations

The main result of this section is the theorem of inclusions between in-
troduced equivalences.

Theorem 4.7. The following inequalities hold

AI ( AS ( AE ( SI ( GE ( GC ( GO.

At first, consider the properties of similar automata:

Proposition 4.8. Let Ai = (Xm, Qn, πi, λi), i = 1, 2, be two similar
Mealy automata such that

θπ1(x, f) = π2(ξx, θf) and ξλ1(x, f) = λ2(ξx, θf)

for permutations ξ ∈ Sym(Xm) and θ ∈ Sym(Qn). Then the following
equality

ff,A1(u) = ξ−1fθf,A2(ξu) (4.2)

holds for any f ∈ Qn and u ∈ X∗
m.
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Proof. The transition and the output functions of A1 and A2 satisfy the
following equalities:

π1(x, f) = θ−1π2(ξx, θf), λ1(x, f) = ξ−1λ2(ξx, θf), (4.3)

π2(x, f) = θπ1(ξ
−1

x, θ−1
f), λ2(x, f) = ξλ1(ξ

−1
x, θ−1

f)),

for all x ∈ Xm, f ∈ Qn.
Let f ∈ Qn be an arbitrary state and u ∈ X∗

m be an arbitrary word,
u = u0u1 . . . uk−1. Using an induction on the length of the word u, let’s
prove that the equality (4.2) holds. For k = 1 from (4.3) immediately
follows

ff,A1(u0) = λ1(u0, f) = ξ−1λ2(ξu0, θf) = ξ−1fθf,A2(ξu0),

and (4.2) holds. Let k > 1 and denote u0u1 . . . uk−2 by the symbol v. It
follows from the induction hypothesis and (4.3) that the equalities

ff,A1(u) = λ1(u0u1 . . . uk−2uk−1, f) = λ1(vuk−1, f)

= λ1(v, f) · λ1(uk−1, π1(v, f))

= ξ−1λ2(ξv, θf) · ξ−1λ2(ξuk−1, θθ
−1π2(ξv, θf)) =

= ξ−1λ2(ξ(vuk−1), θf) = ξ−1fθf,A2(ξu),

holds, whence (4.2) is true.

Let’s note, that statement of the proposition can be inverted, whence
the following equality holds

ff,A2(u) = ξfθ−1f,A1
(ξ−1u)

for all u ∈ X∗
m.

Proof of Theorem 4.7.
It follows from Definitions 2.3 and 4.1 that Q-isomorphic automata

are similar for ξ = e, where e is the identical permutation, whence AI (

AS.
By definition, similar automata contains the same number of states.

Let qi and qj be the equivalent states of A1. Then for any u ∈ X∗
m the

equality fqi,A1(u) = fqj ,A1(u) holds. Therefore the equality

ξfθ−1qi,A1
(ξ−1u) = ξfθ−1qj ,A1

(ξ−1u)

holds, and it follows from Proposition 4.8 that the equality fθqi,A2(u) =
fθqj ,A2(u) holds. Thus, the states θqi and θqj are equivalent states of
A2, and the equivalence AS is included in AE. As two automata that



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.I. Reznykov 149

belongs to the equivalence AE may have different number of states, then
the inequality AS ( AE is true.

The equivalent automata define the same semigroup, and it follows
from Proposition 4.2 that similar automata define isomorphic semigroup.
Therefore if A1 and A2 such that (A1

′, A2
′) belongs to AS, then they

define isomorphic semigroups. Let us consider automata B1 and B2,
shown on Fig 2 and 3, respectively. The inequality AE 6= SI follows from
the notes after Theorem 4.4. Thus, the inequality AE ( SI is proved.

Let us denote the count of semigroup words of the semigroup S, that
can be presented as a product of n generators, by the symbol δS(n). It
follows from Proposition 2.7 that γA(n) = δSA

(n). Let us assume, that
A1 and A2 define the isomorphic monoid. Then any semigroup word of
length k, k 6 n, can be expand to the word of length n by the product
of (n − k) identities. Therefore γSAi

(n) = δSAi
(n) for all n > 1. As by

definition isomorphic semigroups define the same growth functions, then
δSA1

(n) = δSA2
(n) for all n > 1, and the growth functions of A1 and A2

are equal.

Now let SAi
, i = 1, 2 be isomorphic semigroups without identity.

Then there exists the isomorphism φ : SA1 → SA2 , φ(g1g2 . . . gn) =
φ(g1)φ(g2) . . . φ(gn), where n > 1 and gi are generators of S. The iso-
morphism φ maps generators of SA1 to generators of SA2 . Therefore
φ sets a bijection between the sets of semigroup elements of the both
semigroup that can be presented as a product of n generators. Hence,
δSA1

(n) = δSA2
(n) for all n > 1. The inclusion SI ⊆ GE is proved. Above

we consider the automata B2 and B3. It follows from Theorem 4.4 that
these automata have the same growth function, but don’t define the iso-
morphic semigroups.

If present the growth functions as arbitrary positively defined func-
tions of a natural argument, then the inclusions GE ⊆ GC ⊆ GO are
obvious. It follows from Theorems 4.5 and 4.6 that GE 6= GC. The
growth order doesn’t depend on particular values of functions, and, for
example, all functions of exponential growth order has the growth order
[expn]. Therefore stated inequalities GE ( GC ( GO are correct.

The theorem is completely proved.

5. The Mealy automaton sequences

5.1. Definitions

Let n > 2 and k > 2 are fixed. We call the sequence A = {Am, m > k}
of Mealy automata such that the automaton Am belongs to An×m by the
n-state Mealy automaton sequence. In the sequel text, we use notion “an
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automaton sequence”.
The transition and output functions of each Am are discrete functions,

and we may consider their pointwise limits as m tends to infinity. It allows
define the pointwise limit of automaton sequence as the automaton over
the infinite alphabet.

Definition 5.1. [21] Let A = {Am = (Xm, Q, πm, λm), m > k}, k >

2, be an arbitrary n-state Mealy automaton sequence. The automaton
A∞ = (X, Q, π, λ) is called the limit automaton of the sequence A, if for
any state q ∈ Q and any symbol x ∈ X there exists the number M > k

such that the equalities

πm(q, x) = π(q, x) and λm(q, x) = λ(q, x)

hold for all m > M .

Each automaton Am defines the automaton transformation semigroup
SAm , where we fix the natural set of generators, and the growth func-
tion γAm . Hence the automaton sequence A defines the sequence of the
semigroups S = {SAm , m > k} and the sequence of the growth functions
G = {γAm , m > k}. The limit function γA of G is defined as the point-
wise limit of γAm as m → ∞, if it exists. Otherwise, we say that the limit
of G doesn’t exist.

Similarly, we define the limit of the semigroup sequence S, if semi-
groups compose increasing (SAm is a factor-semigroup of SAm+1) or de-
creasing (SAm+1 is a factor-semigroup of SAm) sequence. Let Ri be the
set of relations of the semigroup SAi

, i > k. Then the following relations

Rk ⊇ Rk+1 ⊇ . . . ⊇ Rm ⊇ . . .

or
Rk ⊆ Rk+1 ⊆ . . . ⊆ Rm ⊆ . . .

hold, and the semigroup SA is defined as the semigroup with the set of
defining relations equals the join or the intersection of semigroups from
S respectively.

Studied examples of automaton sequences provide finite automata,
that define the same semigroup as the limit automaton. Therefore let us
introduce notion of the finite limit automaton.

Definition 5.2. [21] Let A = {Am, m > k}, k > 2, be an arbitrary n-
state Mealy automaton sequence. We say that the n-state automaton B

over the finite alphabet is the finite limit automaton of the sequence A,
if the equalities γB = γA and SB

∼= SA hold.

Note, that in general case the finite limit automata form some set.
The question is appeared how define those of them that are related to
the sequence A.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.I. Reznykov 151

5.2. Expanding sequences

Let A = (Xm, Q, π, λ) ∈ An×m be an arbitrary automaton. The n-state
automaton A1 = (Xm+1, Q, π1, λ1) over the (m + 1)-symbol alphabet
such that the equalities

π1(x, f) = π(x, f) and λ1(x, f) = λ(x, f)

hold for all x ∈ Xm, f ∈ Q, is called the extension of A [3]. Note that for
all f ∈ Q and u ∈ Xω

m the equality holds

ff,A1(u) = ff,A(u).

Definition 5.3. We say that the n-state Mealy automaton sequence is
expanding if the automaton Am+1 is an extension of the automaton Am

for all m > k.

Let A be an expanding automaton sequence. The following proposi-
tion show some useful properties of expanding sequences.

Proposition 5.4. 1. The semigroup SAm is a factor-semigroup of the
semigroup SAm+1 for all m > k.

2. There exists a unique finite or infinite sequence

k = m1 < m2 < m3 < . . .

such that for all i > 1 the automata Ami
and Ami+1 have different

growth functions, and all automata Am for mi 6 m < mi+1, have
the same growth function and define the same semigroup.

This Proposition allows describe the limit of S and G.

Proposition 5.5. For any expanding automaton sequence exist the limits
of the sequences of semigroups S and growth functions G. In addition,

1. There exists the sequence of integers

1 6 Nm1 < Nm2 < Nm3 < . . .

such that the pointwise limit of G is defined by the equality

γA(n) =















γAm1
(n), if 1 6 n < Nm1 ;

γAm2
(n), if Nm1 6 n < Nm2 ;

γAm3
(n), if Nm2 6 n < Nm3 ;

. . . , . . .
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Figure 7: Automata Pm

2. For i > 1 there exists the set Ri of defining relations in the semi-
group SAmi

such that

R1 ⊇ R2 ⊇ R3 ⊇ . . . ,

whence the defining relation set of the semigroup SA is defined by
the equality

RSA
=

⋂

i>1

Ri.

Below we considered several examples. First two examples are ex-
panding automaton sequences P and E of automata of polynomial and
exponential growth orders. The third example demonstrates the non-
expanding automaton sequence I of automata of intermediate growth
order. In the last case the sequence of growth functions is monotonic
decreasing growth functions that tends to polynomial function.

5.3. Examples

1. Let P = {Pm, m > 3} be automaton sequence such that the automaton
Pm is shown on Fig. 7.

Theorem 5.6 ([19]). For any m > 3 the semigroup SPm, defined by Pm,
has the following presentation:

SPm =

〈

f0, f1
f1f

p1
0 f1

m−2
∏

i=2
(fpi

0 f1) = f
p1+1
0 f1

m−2
∏

i=2
(fpi

0 f1)

p1 = 1, 2; p2, p3, . . . , pm−2 > 0

〉

.

All semigroups SPm for m > 4 are infinitely presented.

Theorem 5.7 ([19]). 1. For m > 3 the growth function γPm is defined
by the following equality:

γPm(n) =
m−1
∑

i=0

Ci
n, n > 1,

where Ci
n is a binomial coefficient.
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Figure 9: Automata Lm

2. The pointwise limit of the sequence {γPm , m > 3} of polynomial
growth functions is the exponential function 2n, that is for any pos-
itive integer n > 1 the equality holds

lim
m→∞

γPm(n) = 2n.

The sequence P is the expanding sequence of automata of polynomial
growth order. But it follows from Theorem 5.7 that the pointwise limit
of increasing sequence of polynomial growth orders is not polynomial
growth order. Also, there exist plenty of 2-state automata that define free
semigroup, and it is not easy to separate those that can be considered as
finite limit of P, and relate to the sequence. Some of 2-state automata
that define free semigroup are consider in [10], [18], etc.

2. Let Lm for m > 3 be the automaton, shown on Fig. 9, and E =
{Em, m > 3} be automaton sequence such that the automaton Em is
shown on Fig. 8.

For p > 1 the symbol rp denotes semigroup relation rp : f2
1 f

p
0 f1 =

f0f1f
p
0 f1. Recall that Φn denote the Fibonacci numbers, defined by Φn =

Φn−1 + Φn−2, Φ1 = Φ2 = 1. The following theorems follow from results
of [21].

Theorem 5.8. 1. The automaton Em for any m > 3 defines the au-
tomaton transformation semigroup

SEm =
〈

f0, f1 rp, 1 6 p 6 m − 2; f2
1 fm−1

0 = f0f1f
m−1
0

〉

.
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Figure 10: Automata Im

2. The automaton Lm for any m > 3 defines the semigroup

SL =
〈

f0, f1 rp, p > 1
〉

.

Theorem 5.9. 1. The growth function γEm of Em is defined by the
equality

γEm(n) = Φn+4 −
{

(n + 2), if 1 6 n 6 m;
Φn+4−m + (m − 1), if n > m.

2. The growth function γLm of Lm is defined by the equality

γL(n) = Φn+4 − (n + 2), n > 1.

3. The functions γL is the pointwise limit of the functions γEm as m

tends to the infinity, that is for each n > 1 the equality hold

γEm(n) −−−−→
m→∞

γL(n).

According to Definition 5.3, {Em, m > 3} is the expanding sequence
of automata of exponential growth orders. The pointwise limit of corre-
sponding growth functions is the function of exponential growth order,
and the semigroup SL may be considered as the limit of the sequence
{SEm , m > 3}. It follows from Theorem 5.9 that any automaton Lm is
the finite limit automaton for the sequence {Em, m > 3}.

3. Let I = {Im, m > 2} be automaton sequence such that the automa-
ton Im is shown on Fig. 10. Here [[p]] denotes the parity of nonnegative
integer p, m1 = m − [[m − 1]], and m2 = m − [[m]]. Let L be automaton
shown on Fig. 11.

Theorem 5.10. The automaton Im, m > 2 has intermediate growth such
that [γIm ] 6 [exp(

√
n)].
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Figure 11: Automaton L

Theorem 5.11. 1. The automaton L defines the following semigroup

SL =

〈

f0, f1

f1 (f0f1)
p1 (f1f0)

p1 f2
1 = f1 (f0f1)

p1 (f1f0)
p1 ,

(f1 (f0f1)
p1 (f1f0)

p2)2 = ((f0f1)
p2 (f1f0)

p1 f1)
2
,

f2
0 = 1; p1 > 0, p2 > 0

〉

2. The growth function γL of the automaton L is defined by the equality

γL(n) =
1

96













n3 + 21n2 + 92n +























96, n = 4l,

15n + 63, n = 4l + 1,

108, n = 4l + 2,

3n + 75, n = 4l + 3.













.

for all n ∈ N.

3. The functions γL is the pointwise limit of the functions γIm as m

tends to infinity, that is for each n > 1 the equality hold

γIm(n) −−−−→
m→∞

γL(n).

The sequence I is not expanding. Empirically shown, that the se-
quence of the growth functions is the monotonic decreasing sequence, that
pointwisely tends to the polynomial growth function γL. In addition, the
semigroup SL equals the limit of the semigroup sequence {SIm , m > 2}.

6. Conclusion

The problem of the investigations of Mealy automata growth at iterations
is considered in the paper. We mark out the main studied objects, con-
sider the interrelations between them. Moreover we formulate the basic
questions and problems that are researched, and consider those properties
that are studied by investigations.

The studied objects are infinite countable sets, and their investiga-
tions have the large complexity. In the paper we consider the applying
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of the method of mathematical simulation to these investigations. It
includes formalized parts, that can be covered by specialized software,
and non-formalized part that requires speculations of mathematicians.
In order to reduce the complexity of the research, there were considered
several equivalence relations that allow to choose representatives of stud-
ied sets, and the using of automaton sequences. But there are many open
questions concerning these approaches.
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