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ABSTRACT. In [4] the authors characterized all clones of Boo-
lean operations (Boolean clones) by functional terms. In this paper
we consider a Galois connection between operations and equations
and characterize all Boolean clones by using of identities. For each
Boolean clone we obtain a set of equations with the property that
an operation f belongs to this clone if and only if it satisfies these
equations.

1. Preliminaries

Let A be the two-element set A = {0,1}. An n-ary Boolean opera-
tion is a map f4 : A" — A. We denote by O,(:) the set of all n-

ary operations defined on A. Let O4 = |J ng) be the set of all
n>1
operations defined on A.  On the set O4 we may define the follow-

n
ing composition operations S,?{A : Ogl) X (Ogm)) — Ogm) by setting

S/;rl{A(fA7glA7 A 797{?) = fA(g]_A7 A 797{?)7 Wllere fA(gll_47 A 797{?) E Oj(4m)
is defined by

fA(gf‘, .. ,g;?)(al, ey Q) = fA(gfl(al, ey Q) ,gé(al, )]

for all m-tuples (ai,...,a,) € A™.
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Further, we consider projections e?’A : A" — A, 1 < i < n, defined
by e?’A(al, ...,Qp) := a;, as nullary operations.

A clone of Boolean operations, for short a Boolean clone, is a class of
Boolean operations that contains all projections and is closed under all
composition operations SQL’A, m,n > 1,m,n € N. 'All clones of Boolean
operations form a lattice, where the lattice operation meet is the intersec-
tion. The second lattice operation applied to clones is defined to be the
smallest clone that contains the union of both clones. Since any clone can
be regarded as a multi-based algebra, all Boolean clones form a complete
lattice which is the lattice of all subclones of the clone Oyq 1y, originally
described in [5], (see also [6]).

Boolean clones can be characterized by relations in the form Pol4p.
Here Polyp is the set of all operations f# defined on A preserving the
h-ary relation p in the sense that from

(an,...,alh)Gp,...,(anl,...,anh)ép

it follows (fA((ar,...,an1),--., fA(a1h,...,ann)) € p. It is easy to see
that all sets of operations which have the form Pol4p are clones. Con-
versely, each clone can be presented in this way by relations.

In this paper we characterize all Boolean clones by equations. This
was also done in [4], but in our paper we will use the equational theory
of Universal Algebra for a description of clones by equations.

If fA4 ¢ O(n)7 then one can consider the algebra A = (A;A,V,=
2, @, -, 04,14, f4) of type T = (2,2,2,2,2,1,0,0,n). To define the
language over this algebra, we use the following notation,

K is the operation symbol corresponding to the conjunction A,

D is the operation symbol corresponding to the disjuction V,

I is the operation symbol corresponding to the implication =,

FE is the operation symbol corresponding to the equivalence <,

M is the operation symbol corresponding to the addition modulo 2,
N is the operation symbol corresponding to the negation —,

0 is the operation symbol corresponding to the constant O,

1 is the operation symbol corresponding to the constant 1,

F is the operation symbol corresponding to the operation f4.

If f4 e O(n), then the dual operation (f4)¢ can be defined by
(fH%ar,. .. an) == ~fA(=ay,...,-ay,) for all (ay,...,a,) € A™.

Let f4 € O%) and ¢ € {1,...,n}. We say that the i — th variable of
fA is essential (or f4 depends essentially on the i — th variable) if there
are n-tuples

a = (CLl,. . .,ai_l,b,aiﬂ,...,an), aflz (al,.. . ,ai_l,c,ai+1,...,an)
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such that b # c and f%(a) # f*(a’). Otherwise the i — th variable is
called fictitious (or non-essential).

We denote by Alg(7) the class of all algebras of type 7. Terms of type
T over a set X of variables are defined as follows,

(i) =z; € X is a term of type 7 and 0, 1 are terms of type T,

(ii) if t1,...,t, are terms of type 7 and if F' is the n—ary operation
symbol, then t = F(t1,...,t,) is a term of type 7, if t1,t2 are
terms, then t1Kto, t1Dtg, t11to, t1Ety, t1Mty, Nt1 are terms of
type 7.

We denote the set of all terms of type 7 by W.(X). If X, =
{z1,...,2m} is a finite set of variables, then by (i) and (ii) the set W (X,,)
of m—ary terms is defined.

For every term ¢ € W;(X,,) and for every algebra A = (A4;A,V,=
, &, ®,,04,14, f4) we define an operation t4 € qum), called term op-
eration, inductively by the following steps,

(i) if t = x; € Xy, then 2! = elm’A (the m—ary projection on the i-th
input, 1 <7 < m),

(ii) if ¢y, to are terms of type 7, then (t; Kt2)?d = t{'Atd', (t; Dto)? = t{'v
9, (t1It)d =t =t (11 Et)A =t & ), (W Mt)4 =t o 14,
(Nt))4 = =t{ and 04 =0, 14 =1,

(iif) ift = F(t1,...,t,) and t§},. .. ¢4 are the term operations which are
induced by t1, ..., t,, then t4 = fA(t4, ... td). Here fA(t, ...t
is the operation defined by

ALt an, . an) = FAEN A, . an), .t an, . an)).

Since later on we will replace only the symbol F' by n—ary elements
of a clone instead of the correct notations t1Kty, t1Dto, t11te, t1Eto,
t1Mty, Nty we will use t1 A to, t1 V tg, t1 = to, t1 & ta, t1 B tg, —ty.

A pair s &~ t of terms from W, (X) is called an identity in the algebra
Aif 4 =4, ie. if the induced term operations are equal. In this case
we write A = s ~ t.

Let Idg A be the set of all identities satisfied in A. For the class
K C Alg(7) we denote by IdgK the set of all identities satisfied by each
algebra A from K. If ¥ is a set of equations s = ¢ consisting of terms from
W, (X), then we denote the class of all algebras satisfying each equation
from 3 as identity by Modp3.
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Then we get a Galois connection (Idg, Modg), i.e. the following
properties are satisfied:
Y1 CY¥e=> MOdBEQ - MOdel,
Cy C Cy = IdpCy C 1dpCh,
S C IdgModg¥,
K C ModgldgC.

2. A Galois Connection between Operations and Equa-
tions

Let f4 ¢ O;n) be an n-ary operation and let
A - (A7 /\a \/7 :>7 <:>7 EB7 ﬁagAalA) fA)
be an algebra of type 7 = (2,2,2,2,2,1,0,0,n). Let s,t € W-(X) be

terms of type 7. Then s = t is satisfied as identity in A, and we write
A s~ tif s4 =t4. Then we define

Definition 2.1. Let s & t be an equation consisting of terms s, t of type
7,i.e. sa~t€ W-(X)2 Then by

fAl_szt@A:(A;/\g\/7:>7©7@7_‘7QA7lA?fA) ):S%t

we define a binary relation - between O (A) and W, (X). If fAF s~ t
holds, then we say that the operation f# satisfies the equation s ~ t.
For C C O™ (A) we define

CHfAaevfiecl (fAFsat)
and for ¥ C W, (X)? we set
CHFYeVs~teX (Cks~t).

Let C C OXL), A = {0,1}, and let ¥ C W,(X)?. Then we define
two operations FgMod : P(OXL)) — P(W,(X)?) ( where P denotes the
formation of the power set) and Idg : P(W,(X)?) — P(OXL)) by

FBModE:{fAyfAe()g‘) and Vs~ t ey (fAl—szt)},
IdpC = {s~t|s,te W,(X) and Vf'eC (f*rs~t)}.
Then the pair (FpMod, Idg) is a Galois connection, i.e. we have

21 - 22 = FBMOdZQ C FBMOdzl,
C1 C Oy = 1IdgCs C IdpCh,
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Y C IdgFpModX,
C g FBMOdIdBC.

Further, we get two closure operators IdgFgMod and FgModldp on
P(Wn(X)Q) and on P(Of:)), respectively.

Our main question is whether each clone of Boolean operations has
the form FpMod: for a set X of equations. We are especially interested
to find one-element sets X.

3. The Lattice of all Boolean Clones

The set of all clones of Boolean operations, originally described by E. Post
([5], [6]) forms a lattice. These clones and lattice are often called Post’s
classes and the lattice is denoted as Post’s lattice. Post’s lattice is count-
ably infinite, complete, algebraic, atomic and dually atomic. It is also
known that every clone in the lattice is finitely generated. Post’s classes
can be described as follows and the following Hasse diagram illustrates
the lattice of all Boolean clones.

Cl = 0{0,1}.
C3 := Pol{0}, and dually C5 := Pol{1}.
Cy:=CyNCs.

Ay = Pol <, where <:= {(00),(01),(11)}, (monotone Boolean func-
tions).

As:= A1 N (4, and dually As := A3 N Cs.

Ay = A1 NCY.

D3 := PolN, where N := {(01),(10)}, (self-dual Boolean functions).
D := D3N Cy.
Dy := D3N A;j.

Ly := Pol,, where pg := {(az,y,z,u) € {0, 1}4 |z +y==z —}—u},
(linear Boolean functions).

L3 := L1 NC3, dually Ly := L1 N Co.

Ly:=LiNCY.

Ls:=LiNDs.

Fl' := PolD,,, where D, := {0,1}*\ {(1,...,1}, for p > 2, and dually
F}' := PolD,, with D, := {0,1}*\ {(0,...,0}.

FI':= F{' N Ay, and dually F}' := F}' N A;.

Fl' .= F{'n Ay, and dually F' := F}' N Ay.

Fl':= F{' N Cy, and dually F}' := F}' N Cy.
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oo oo
Fg°: () PolD,, and dually F°: () PolD;L.
n=2 n=2
F?° = F¢° N Ay, and dually F3°.

Fg© = F$° N Ay, and dually F3°.
Fg° := F¢° N Cy, and dually F7°.

Py := ({et}), and dually S; := ({vel})

Ps := ({et,0}), and dually S; := ({vel,1})

Ps := ({et,1}), and dually S5 := ({vel,0})

Ps := ({et,0,1}), and dually Sg := ({vel,0,1}).

Og := ({e},0,1,n0n}) = ({non,0}).

Os = ({e},0,1}).

Og := ({e},0}), and dually O5 := ({e},1}).
Oy = {{el,non}) = ({non}).

01 = ({ei}).

Note that 0,1 are the unary constant functions with values 0 and
1, respectively, el is the identity, and vel, et and non are V, A and —,
respectively.

Figure 1: Post’s Lattice of all Boolean Clones
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4. Identities for Clones of Boolean Operations

There are several methods to characterize clones of Boolean operations.
In [4] the authors characterized all clones of Boolean operations by so-
called functional terms. Using the langauge of Universal Algebra for each
clone of Boolean operations we obtain a set of characterizing identities
({0,1};A,V, =, &, @®,—-,04,14 ) f4). The
results are given in the following table. Our notation goes partly back to

satisfied in the algebra A =

E. L. Post [6].

Clones | Identities

Cl 1~1

Cs —F(0) ~

Cy F(1)~1

Ci | ~FO)AF(1)~

Aq F(z) = FlzVvy ~1

A3 ~FO)A(-F(zV F(zVy) ~1

Ay FAAN(-F(z)VF(zVvy)~1

Ay ﬁF(Q)/\F(l)/\( F(z)Vv F(zVy)) ~

Ds F(z)® F(z) ~

Dy ~F(0) A (F(z) @ F(7)) =~ 1

Dy (F(z)® F(@) A (-F(z) vV F(zVy) =~ 1

Ly Lo F0)e F(z)® Fy) @ Flzoy) ~ 1

L3 1o F(z)o F(y) @ Flzoy) =1

Ly FOAN1@F)® F(z)® F(y) @ (x@y)%l

Ly F)A(1@e F(z) @ F(y) @ F(z®y) ~

Ls (FLH @ FO)A(1e F(0)® F(x) © F(y) @F(g@g))
~1

Ps F(z) NF(y) = F(zAy)

Ps ~FO)A(F(z) ANF(y) < FlzAy)) =1

Ps F)N(F(z)ANF(y) < FlzAy) =1

P | ~F(0) AF()A (B(z) A Fly) & Flz Ay) ~ 1

Se (F(z)V F(y)~FzVy)

S5 | ~FOA(F@)VFy) & Fzvy) ~ 1

S3 F)A((F(z)VF(y) < Flzvy)~1

S ~FO)ANFQ) A ((F(z) vV F(y) & FzVy)) =1
pn—1

F ‘/\1F(J):>_'F(ﬂ/\ ANy Ny) =1
pn—1

F} 4/\1—|F(&):>F(ﬂ\/...\/xu,1\/y)zl
o pu—1

Ege /\(/\ F(z;)) = ~F(zi A Az Ay)) = 1
pn=2 i=1
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oo p—1
Fye AN ~Fzi) = Fzi V.. . Vo, Vy)) ~1
p=2 i=1 B
pn—1
Fl F)AN(N F(zi) = ~F@i A Az Ay) =~ 1
i=1 -
pn—1
FI “FO)A(A ~F(z;)) = Fx V.. Va1 Vy) ~1
i=1 )
oo p—1
Fe [ FOACA (A Fzy) = ~Fz A Az Ay))) =1
=2 i=1 -
=2l
B | SFQA (A (N ~Fla) = F@V - Vi vy) ~ 1
p=2 i=1 B
F? F(z) = -F(@) AF(zVy) ~1
pn—1
FF N F(z;)) = -F(xiAN...ANxu—1)) ANF(x V) =1
i=1 R
F? —F(z) = F(z) AN—F(z Ay)~1
p—1
Fy A ~F(z) = F(z1 V. Vau_1) A ~F (21 A z)
i=1 Y
~1
oo p—1
Fe A (N F(zi) = ~F(zi A Azy)) A F(21V xg))
p=2 i=1 B
~1
oo p—1
E3® A (A ~F(zi) = F(z1 V... Va, 1) A-F(z1 A xg))
p=2 i=1 E—
B2 | FOA(F@) = ~F@) A Favy) ~ 1
pn—1
F! F(1) A F(x;) = ~F(xi A A NT—1)A
i=1 -
FlayV 22))) ~ 1
F3 —F(0) A ~F(z) = F(@) A=F(zAy)) ~ 1
~1
F¥ “FO)A (A ~F(zi) = F(x1 V... VZ,_1)A
i=1 B
RAGRENES
co p—1
Fe | FQA(A (A Fla) = —~F@a- Ad)
p=2 i=1 -
AF(z1V x2))) ~ 1
oo p-1
FQOO ﬁF(Q)/\(/\(/\ ﬁF(ﬁ)iF(ﬂ\/...\/IE“_l)/\
p=2 i=1 B
—F(z1 A1) = 1
Oy (F(z & F(y) = (F(z < FzAy)A
(lef0)@®F(z)®F(y) ® Flzay)) ~1
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Clones | Identities

O4 (F(0) @ F(1)) A ((F(z) & F(y) = (F(z)

& F(z Ay)))A
(1ef0)e ()@ FlyeFlzay)~

Os (F(z) = F(zVvy)A(1®f(0)DF(z)® F(y)
SF(z@y)) ~1

Og (F(z) = FzVy)A(1@®F(z)® F(y) & F(z ®y))

Os FA)AN(F(z) = FzVvy) A1l f0) e F(z)®F(y)
oF(z®y)) ~1

O, FQ)AN(F(z) = Fzvy) (1o F(z)® F(y)
OF(z®y)) ~1

The main result is that every clone of Boolean operations can be
characterized by a set of identities. We will give a complete proof of
this result. We denote the n-tuples (0,...,0) and (1,...,1) by 0 and 1,
respectively. The proof can be shortened using the following observations.

Lemma 4.1. Let ¥ = {s = t}, then FgMod¥X N Cy = FgMod{F(1)
As =t}

Proof. Let f4 € FgMod{s ~ t}NCy, then f4 s ~ tand f4(1,...,1) =
1. Now we get s = ¢4 and then F(1)*As? = t4. Therefore [F(1)As]4 =
t4. Thus f4 € FgMod{F(1) A s ~t}. Let f4 € FgMod{F(1) A s ~ t},
then [F(1) A s]4 = t4. Further F(1)* A s = t4. Therefore f4(1) =1
and s4 = t4. Hence f4 € Cy and fA € FgMod{s =~ t}. O

The following lemma can be proved in a similar way.

Lemma 4.2. Let ¥ = {s = t}, then FpMod¥X N Cs = FgMod{—F(0) A
s~ t}.

Lemma 4.1 and Lemma 4.2 are needed only for the special case when
Y. = {s ~ 1}. Then both follow from the the next lemma.

Lemma 4.3. Let ¥; = {s ~ 1} and ¥y = {t ~ 1}, then FgMod¥; N
FpMod¥y = FgMod{s Nt ~ 1}.

Proof. Let f4 € FgModY1NFpModYs, then fAF s~ 1land fAFt~1.
Further we get s4 = 1 and t4 = 1. Therefore from s4 At4 = [sAt]A =1
implies f4F sAt~1. Hence f4 € FgMod{s Nt ~ 1}.

Let f4 € FgMod{s ANt =~ 1}, then f4 - s At ~ 1. Therefore
[s At]4 = 1. Then from s4 At4 =1 we get s =1 and t4 = 1. Now we
have fAF s~ 1land fAFt~1. Thus f4 € FgModX1NFgModY,. O
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Let F% be a new n-ary operation symbol. Let
L={K,D,E,M,N,0,1,F,F’}.

Instead of these symbols we use L = {A,V, <, @, =,0,1, F, F?}. Let 7
be the type which uses only operation symbols from L.

Definition 4.4. Let W_(X,,) be the set of all m-ary terms of type T
Now for each t € W_/(X,;,) we define the dual term t% inductively by the
following steps,

(i) if t = 2; € Xy, then 2¢ = 2,1 <i < m,
(i) if tq,...,t, € W_(X,,) and til,...,tﬁ are dual terms of ¢1,..., 1y,
respectlvely, then (t; Ata)? = td vitd, (t1 Vi) =t At (&
t)? =td @ td, (=t1)? = t¢ and F(tl,...,tn) =Fid, ... td).
This gives the set W/ (X;,)? € W_(X). For asubset M C W_r(X,,)
we define M? := {t? |t € M} and for the algebra A = (A; M4, f4) w
define A = (A; (M)A, (f4)4).

)

Lemma 4.5. For each t € W (X,,) we get (t9)4 = (¢t4).

Proof. If t = z; € Xy, then (t)% = (z/)? = (em’A)d = A =

(2 K3 (2 =
(DA Tf 4. ..t are dual terms of ¢4, ..., t,, respectivly and (t{)4 =

()%, () = ()%, then ((t At2) DA = (t{ vid)* = ()4 (7;21) =
~ty

() (tH) = (At = ((tiAt2) e, For t1Vig, ty < to, t1®ta, -ty the
corresponding equations can be proved similarly. If ¢t = (tl, coayty), we
get ((F(t1,. .., ta))")A = (FUt, .t = (FHADA, ..., (a4 =
(FAI((#H% s DY) = (FAE . 50)T = (F (b, tn) )2 O

Lemma 4.6. Let L4 = {A,V,&,®,-,0,1, f4, (f4)?} and let s,t be

. . 1A
terms using only operation symbols from LA. Let L'" C LA be a subset,
then

= ({0, 1}3L/A, M Es~te= A= ({0,1}; (L’d)A, (FHD = o8 g,

Proof. Let ¢+ {0,1} — {0,1} be given by ¢(0) = 1 and ¢(1) = 0, i.e.
p = — is the negation. Let fZA e L. Since

@((f{q)d(xlv s 7xn)) = _'(fiA)d(xlv .. '7‘7;71) =
—(=fA . w)) = A, ) =

(1), plzn)
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and

90((fA)d(x17 cee 7xn)) = _'(fA)d(ala B an) =
—(=fA . w)) = fARr, . ) =

fA((p(l'l), s ,(p(l’n)),

o has the properties of an isomorphism exchanging each operation by the
dual one. Since A F s ~ t, then A% I s¢ ~ t? and vice versa. O

Corollary 4.7. (FgMod{s ~ t})? = FgMod{s? ~ t¢}.

Proof. Let (f4)¢ € (FgMod{s ~ t})?, then f4 € FgMod{s ~t}. From
Lemma 4.4 we get (f4)% F s% ~ t¢. Therefore (f4)? € FgMod{s? ~ t¢},
i.e. (FpMod{s ~t})¢ C FgMod{s® ~ t}.

Let f4 € FgMod{s? ~ t?}, then A = ({0,1}; K4, f4) | s¢
t?. From Lemma 4.4 we get A% = ({0,1};K/A, (fHY E (s
(t19 = s ~ t. Further (f4)% € FgMod{s ~ t}. Therefore ((f4)%)?
(FgMod{s ~ t})?. Hence f4 € (FgMod{s ~ t})¢, i.e. FgMod{s®
t?} C (FgMod{s ~ t})?.

%

Oam&

Proposition 4.8.

C1 = FpMod{l ~1},

Cs FpMod{—-F(0) ~ 1},

Cy FpMod{F(1) =~ 1},

Cy = FpMod{-F(0)ANF(1)~1}.

Proof. Obviously, for C1, the equation 1 ~ 1 is satisfied by all Boolean
operations f4 since F does not occur in our equation. Since C3 = C1NC3,
Cy = C1NCy and Cy = C3NCo, then one can apply Lemma 4.1, Lemma
4.2 and Lemma 4.3, respectively. O

We set & = (z1,...,2y,). If ; <y; for all 1 < i <n, where < denotes
the usual order on the set {0, 1}, then we write z < y.

Proposition 4.9.

Ay = FpMod{F(z) = F(zVy) =1},

Az = FpMod{—~F(0) A (—F(z)V F(zVy))~1},

Ay = FpMod{F(1) A (=F(z)V F(zVy))~ 1},

Ay = FpMod{—~F(0)ANF(1)A(=F(z)V F(zVy))~1}.
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Proof. Let f4 € A; and let & = {F(z) = F(z Vy) ~ 1}, then f4(z) <
fA(y) for every z < y. Assume fA(z) =0, then (fA(z) = fA(z)Vy)) =
(0= fAz)Vy)) = 1. Assume f4(z) =1, then fA(zVy) = 1since f4is
monotone and z < z V y. Moreover (f4(z) = f4(z Vy)) = 1. Therefore
AR X

Let f4 € FgModS, then (fA(z) = f4(zVy)) =1. Let z < y and
assume that f4(z) > f4(y), then f4(z) > fA(z Vy) since fA(zVy) =
fA(y). Therefore f4(z) = 1 and fAz Vv y) = 0. Hence (f4(z) =
fAxVy) =0 # 1, a contradiction. Thus f4(z) < f4(y). Therefore
fAe A

Since A3 = A1 N C3,A2 = A1 N Cy and Ay = A N C3, then we can
apply Lemma 4.1, Lemma 4.2 and Lemma 4.3, respectively. O

For x = (z1,...,2,) we write T = (—x1,...,Tp).
Proposition 4.10.
D3 = FpMod{F(z)® F(x

)
Dy = FpMod{~F(0) A (F(z
Dy = FpMod{(F(z) @ F(z)

~ 1},
)& F(7)) ~ 1},
)N (RF(z) Vv F(zVvy))~1}.

Proof. Let f4 € D3 and let ¥ = {F(z) ® F(Z) ~ 1}, then f4(z) =
fAxy,.. m,) = fA(=2y,. .., owy) = fAT). Assume fA(z) = 0,
then —f4(Z) = 0, i.e. f4(F) = 1. Therefore f4(z)® f4(Z) = 1. Assume
fA(z) =1, then =f4(F) = 1, i.e. fAT) =0. Then f4(z) ® f4(T) = 1.
Therefore f4 + 3.

Let f4 € FgModY, then f4(z) ® (*) =1 for every z € {0,1}".
Assume fA(z) =0, then 1 = f4(z) @ fA@) = 0@ fA(T). Therefore
fA@) =1, 1ie. —|fA( ) = 0. Hence f4(z) = =f4(Z). Assume f4(z) = 1,
then 1 = fAz) @ f47) = 1@ fA4T). Now we get fA(Z) = 0, i.e.
-f4(Z) = 1. Hence f4(z) = —fA4(Z). Therefore f4 € Ds.

Since Dy = D3N Cy = D3N C3 and Dy = D3N Ay, then the proof
can be given using Lemma 4.1 and Lemma 4.3, respectively. O

Instead of x A y we will also write zy.
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Proposition 4.11.

L= FpMod{l& F(0)& F(z) & F(y) & Flz&y) ~ 1},

Ly = FpMod{l1® F(z)® F(y) ® F(z®y) =~ 1},

Lo FpMod{F(1) N(1® F(0) ® F(z) ® F(y) ® F(z ®y) =~ 1},

Ly= FpMod{F(1)N(1® F(z)® F(y) ® F

Ly = FpMod{(F(1) ® F(0)) A (1© F(0) © F(z) ® F(y) ®
Flzoy)) ~1}.

Proof. Let f4 € Ly andlet & = {18 F(0)® F(z)®F(y) @ F(zdy) ~ 1},
then there are ag,ay, ... ,a, € {0,1} such that f4(z) = fA(21,...,2,) =
ag ® a1r1®, ... ® apx,. If a; = 0, then a;z; D ay; = 090 =0
ON(z; ®y;) = a; A(x; @y;). If a; = 1, then a;z; ® azy; = (1a;) B (Ly;)
z;®y; = IN(2;®y;) = a; N (z;Dy;). Therefore (a;x;)®(a;y;) = aLZ(a:ZEByZ
Then 1@ f4(0) ® fA(z) @ fA(y) @ fAzoy) = 1@ (a ® a1 @ ..
anxn)@(a()@alyl D.. -@anyn)GB(aO@al(wl EByn)EB. . @an(xn®yn)) =
Therefore f4+ X.

Let f4 € FgModY, then 1® f4(0) @ f4(z )@fA( )@fA(x@y) =1.
Assume that f# is essentially depending on n variables. If n = 0, then
fA is constant. Now we have that f4 is linear. Suppose n > 1. Let
a = (a1,...,ap),0 = (—ai,ag,...,a,) and e; = (1,0,...,0). Since
f4 %, then 1 =1o 0 e fid)efeef) =1e (0o
(@) FA(B) @ fA(er). Therefore f4(a) = FA(B) iff £4(0) = fA(en).
Since aj is an essential variable, then there exist zo,...,z, € {0,1}"
such that f4(ay,zo,...,2,) # fA(-a1, 29,...,2,). Therefore f4(0) #
fA(e1). Hence fA(a) # fAB) for any as,...,a, € {0,1}". Thus
fAa,...,a,) = a1 ® f4(0,az,...,a,). Applying the same argument
to the remaining variable we get fA(al, cesap) =a1 Day® ... Da, d
fA4(0,...,0). Therefore f4 € L.

For the proof of the equations for Ly = L1 N Cy, Ly = L1 N Cy,
Ly=LiNCy, and Ls = Ly N D3, we can apply Lemma 4.1, Lemma 4.2
and Lemma 4.3. [

&
¥

=
X
—_
>

t—‘@vll

Proposition 4.12.

Ps = FpMod{F(z) NF(y) = F(z Ay)},

Py = FpMod{—=F(0) A (F(z) A F(y) < F(z)
Py= FpMod{F(1) A (F(z) A F(y) < F(z) A Fly
P = FgMod{~F(0) A F(1) A (F(z) A F(y)) < F

Proof. Let f4 € Ps and let & = {F(z) A F(y) ~ F(z Ay)}. If f4is con-
stant, then f4 F X. If f4 € Ps/{0,1}, then f4(z) = fA(zy,...,2,) =
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1A ... ATy, Assume fA(zAy) =0, then (21 Ay) A... A (T Ayn) = 0.
Then there exists z; A y; = 0 for some i € {1,...,n}. Therefore from
z; = 0Vy; = 0it follows fA(2)AfA(y) = (1A .. Azp) A(y1 A- - Ayn) = 0.
Thus fA(z) A fA(y) = fA(z Ay). Assume fA(z Ay) = 1, now we get
(@i Ay1) Ao Aoy Ayp) = 1. Then z; = y; = 1 for all i € {1,...,n}.
Therefore fA(i) =21 A.. Azp=1and fAY) =1 A Ay, = 1. Thus
(fA(z) A fAy)) = fAz Ay). Therefore f4+ X.

Let f4 € FpModS, then f4(z) A fA(y) = fA(z Ay). Assume f4 is
not constant. Let z < y, then z; Ay; = z; for all i € {1,...,n}. Now we
have fA(z/Ay) = fA(z). Therefore fA(z)A fA(y) = fA(z). I fA() = 1,
then f4(y) = 1. Therefore f*(z) < f4(y). Hence f is monotone.

Let B = {QE{O,I} |fA(g):1/\Vg(y<g:>fA(g):0) } We
will show that |B| = 1. Assume that |B| > 1. We have a,b € B, a # b,
and then f4(a) =1 and fA(b) = 1. Since a # b, a A b and b £ a, then
there exist 4,5 € {1,...,n} and i # j such that a; > b; and b; > a;.
Then a; Ab; = b; < a; and aj Abj = aj. Consider k € {1,...,n}
such that k& # i,5. If ap = by, then ap A by = ar. If ap # by, then
ap Abr, = 0 < ay. Therefore a A b < a. Further f4(a A b) = 0. Therefore
fA(a) A fAD) # fA(a Ab), a contradiction. Therefore |B| < 1.

Assume |B| = ¢, then there is no z € {0,1}" such that f4(z) =
if there is an z such that f4(z) = 1, then there is a y with y < z d
fAy) =

If there is no z € {0,1}” such that f4(z) = 1, then f4(z) = 0 for all
z € {0,1}™. Therefore f4 is constant 0, a contradiction.

If there is an z such that f4(z) = 1, then there is a y with y < z and
fA(y) = 1. Assume y = 0, then f%4(0) = 1. Therefore f* is constant 1,
a contradiction.

Assume y # 0, now we have f4(y) = 1 and since |B| = ¢, then
there exists 21 with 21 < y and f4(z1) = 1. If z; = 0, then f4(0) = 1.
Therefore f4 is constant 1, a contradiction. If 21 # 0, then there exists
2z with 29 < 2 and fA(Q) = 1 otherwise 2z € B. Applying the same
argument then we get the chain zx < 2,1 <,...,< 21 < y for some

k. Since this chain is finite, then z; = 0. Therefore f4 is constant 1, a
contradiction. Therefore |B| # ¢. Hence |B| = 1.

Hence f4 is monotone and has the property |B| = 1. Since f4 is
not constant 0, then f4(1) = 1. Therefore B = {1}. Hence f4(z) = 0
for all x # 1. Therefore fA(g) = fAz1,...,2,) = 21 A ... Azy,. Since
P3 = PsnNCs, Ps = PsNCy and P, = PsNCy, then one can apply Lemma
4.1, Lemma 4.2 and Lemma 4.3. [
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Proposition 4.13.

S¢ = FpMod{F(x)V F(y) ~ F(zVy)},

Sy = FpMod{~F(0) A (F(z) V F(y)) « F(zVy))) ~ 1},
Sz = FpMod{F(1) A ((F(z)V F(y)) & F(zVy))) =~ 1},
Sy = FMod{~F(0) AF(1) A ((F(z)V F(y)) < F(zVy))) ~1}.

Proof. Since Sg = (Ps)?, then by Corollary 4.5 Sg = FgMod{F(z) Vv
Fy) = F(z vy}

Since S5 = Sg N Cs, S3 = Sg N Cy and S1 = Sg N Cy, one can apply
lemmas 4.1, 4.2 and 4.3. O

Let x; be the n-tuple z; = (x;,,...,;,).

Proposition 4.14. For each y > 2,

p—1
Ff = FpMod{ \ F(z;) = ~F(z A AZu1 Ay) ~ 1},
=1
pn—1
FY' = FpMod{F(1) A (N F(z:) = ~F(@L A AzuiAy) =1},
=1
pn—1

Pt = FgMod{ \ F(z;) = ~F(@i /... Azu_1) AN F(z1V 25) ~ 1},
=1
pn—1
= FgMod{F(1)A(/\ F(z:) = ~F(@i A Au_1) A
=1

~1
Proof. Let fA € Fi' andlet & = { \ F(2;) = ~F(Z1 A-.. ATp_1A\Y) &
i=1 E—
1}, then for any aq,...,a, € {0,1}" ¢ if fA(a1) = -+ = fAH ) = 1,
then a3 A ... Ay, # (0,...,0). Assume fA(aq) = - = fAHau 1) =
1, and let B = a1t A..7AQu—1 A oy, then A (a1 Ao AN apr) =
ar A N o1 Ao ANoa A Aay—1) = (0,...,0). Therefore by the con-
trapositive of the implication which defines the elements from FY' we get
fA(B) = 0. Then fA(c)A...AfA(au-1) = ~fA@1 A - Aau_1Aay,) =
1. If there exists ; such that f4(a;) = 0 for some i € {1,...,u— 1},
then f4(ar) A AfA(au—1) = ~fA(ar A Aau—1Aa,) = 1. Therefore
fAFX.

pn—1
Let f4 € FgModS, then A fA(z;) = ~fA@1A ... Azu Nay) =

=1
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pn—1
1. Assume fA(0) # 0, ie. f4(0) = 1. Since A f4(0) = 1 and
i=1
—1
SPAOATAOAD) = 2£A(0) = -1 =0, then A FA(0) =
i=1
-fAONA...AOQ0AQ) =0, a contradiction. Therefore f4(0) =
Let ai,...,a, € {0,1}" such that f4(a;) = ... = f4(a ) 1.
Because of (f4(a1)A. .. AfA(au—1)) = ﬂfA(m/\:L‘) =1 for all
z € {0,1}" we have ~fA(ar A a1 Aay) =1, ie fA(@1 A a,_ 1 A
ay) = 0. Assume (a1 A...Aay—1) Aoy, =0, then ar A AN a—1 Aoy =
. Therefore f4(a,) = fA(ar A-..au—1 A ay) = 0, a contradiction.
Hence (a1 A ...apu—1) Aoy, # 0. Therefore fAe Fl.
Since FY' = F{'NCy, FI' = F{' N Ay, Fi' = F{' N A4, one can apply
Lemma 4.3. O

Proposition 4.15. For each p > 2,

pn—1
Fff = FgMod{ )\ ~F(z;) = F(z1V... Va1 Vy) ~ 1},
=1

p—1
F{' = FgMod{=F(0) A (/\ =F(z;) = F(z1 V... Vz,1Vy)) ~ 1},
i=1

p—1
Ff = FpMod{ \ ~F(z;) = F(z1 V... VZ,_1) A~F(z1 Axy) ~ 1},
=1

p—1
FY = FpMod{~F(0) A (\ ~F(z;) = F(zi V... Va,_1) A
i=1
—F(x1 Axg)) =~ 1}.

Proof. Let f4 € E}f and let 0 = {/\ -F(z;) = -F(x1V... V2,1V

y) =~ 1}, then for any aq,..., 0, € {0 1} Cif fA () == fA(ay) =
0, then a1 V...V o, # (1,...,1). If fAa;) = ... = fA(a#_l) =0,
we get ~f4(a;) = 1 for all i € {0,1}". Let 8 = aq V... Va,_1 V
ay, then V(a1 V...Vau,1) = (@ V... Vo1 Va,) V(e V...V
au—1) = (1,...,1) Vay, = (1,...,1). Then by the contrapositive of the
implication which defines the elements from F}* we get f4(8) = 1, i..
we have f4(8) = fA(a1 V... Va,_1 Va,) = 1. Then ~f4(a1) V...V
—fAoyu-1) = fAa1 V.. Va,1Va,) = 1. If there exists a; such
that f4(a;) = 1 for some i € {1,...,u— 1}, then —f4(e;) = 0. Thus
—fAar) A A afAaum1) = AV Va1 Vay,) = 1. Therefore
fAF X
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pn—1
Let f4 € FgMod¥, then A ﬁfA(ﬁ) = fAz V...V Ty—1Vxy)=

=1

pn—1
1. Assume fA(1) # 1,ie. f4(1) =0,then \ —~f41) = fAAV... V1V

i=1

1) = 0, a contradiction. Therefore f4(1) = 1.
Let a1, ...,qa, € {0,1}" such that f4(a;) =... = fA(oz“) = 0. Then
—fA(cy) =1 foralli € {1,...,u}. Therefore ﬂfA(al) A=A ()

= fA(a1 V. ~ap_1Vz)=1forall z € {0,1}". This gives

fA(a1 V.o iou—1Vay,) =1

Assume (o1 V...V oyu—1) Va, =1, then a1 V... Vo,-1) Va, = o
Therefore f4(a,) = f4(a1 V... au—1) Va,) = 1, a contradiction. Hence
(a1 V...Vau_1)Va, #1. Therefore fAe Fl.

Since F' = Fj' N Cy, FY' = F}' N Ay, and F§ = Fj' N A4, one can
apply Lemma 4.3. O

Proposition 4.16. Oy = FpMod{((F(z) < F(y)) = (F(z < F(z A
YHALSF0) & Fy) @ Fzoy)) =1}

Proof. Let f4 € Ogandlet £ = {((F(z) < F(y)) = (F(z < F(zAy)))A
(leF)® F(y) ® F(z@y)) ~ 1}. If f4is the constant, then f4F X.
If f4 is the identity mapping, then ((f4(z) & f4(y)) = (fA(2) &
fAlany)=(rey) = (@s (@ry) =(rsy) = (s (@Ay)
and this is a tautology. Since 1 @ f4(0) @ fA( ) D fA(g) &) fA(QEBg) =
1o0@say® (z@y) = 1, then (f1(2) & f(y) = (F) <
FAlary) Qe fA0) e fA)efiy) e fzey) =1 If f4 s the
negation, then ((f4(z) & fA(y)) = (f1(2) & fAeAry) A1 fA0)®
fAalefilyefieey)=er)= e -@ry)r(lels
yord-(zdy) =((yer)=We V) yere-(zoy) =1
Therefore f4+ X.
Let f4 € FgModY, then ((f4(z) & f4(y) = (f(z) & fA(z A
y) A (L@ fA0) @ fA2) e fAy) ® fAz®y) =1 Then 1& f4(0) @
fAz) @ fA(y) @ fA(z ®y) = 1. Therefore f4 is linear.

Next we will show that f# depends essentially on at most one vari-
able. If f4 does not depend on any varaiable, then f4 is the constant
0 or 1. Then fA € Og. If fA is essentially depending on one vari-
able, then f4 € {z,-z}. Then f4 € Oy. Assume f* depends es-
sentially on more than one variable, i.e. f4 has at least two essen-
tial variables. Let x1,z2 be essential variables of f4, then fA(g) =
fAx1, .. xn) =21 ©22® fA0,0,23,...,2,). Let o = (0,1, 23,...,2,)
and § = (1,0,z3,...,2,), then f4(a) = 00 1@ f40,0,23,...,2,) =
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190® £40,0,3,...,2,) = fA(B). Therefore f4(a) = f4(B). Since
fAE X, then (f4(a) & fA(8) = (f4a) & fA(a A B)) = 1. Therefore
fA(a) = fA(anB). Since fA(anB) = fAOAL 1N, z3A3, . .., 2pATy) =
fA(0707x37 R l’n) = _'fA(O‘)7 then fA(@) # fA(a/\/B) N _'fA(a)v a con-

tradiction. Therefore f* depends essentially on one variable. O

Proposition 4.17. Oy = FpMod{(F'(0) © F'(1)) A ((F(z) & F(y)) =
(F(z) = FlzAy) N1 F0) @ F(z)® Fly) © Flzdy)) ~ 1}

Proof. Let f4 € Oy and let © = {(F(0) ® F(1)) A (F(z) & F(y)) =
(F(z) & FlzAy)AN1@F0)® Fz)® F(y) ® F(z®y)) ~ 1}, then
fAF((F(£)©F(y)):>(F(-?C@F(w/\y))) (1o FO) e F(z) &
F(y) ® F(z ® y)) ~ 1}. Since f4 is the identity or the negation, then
FA0) & fAQ) = 1. Further (f4(0) & fAQ) A (fA(2) & fA1) =
(fAz) & fAlzry) Ao A0 e Ao fiy o fzoy) =1
Therefore fA DI

Let f4 € FgpModY, then (f4(0)@ f4(1) A ((fA(2) & fA(y) =
Az e Aary)rde fA0)s Fa)s Ay e faey) =1

(

Now we get f4(0) & fA(1) = 1 and ((fA(z) & f(y) = (f(z) &
FAlary) e fA0) e fAa) @ fAy) ® fAz®y) = 1. Then
fA € 0g. Since fA(0) ® f4(1) =1, then fAe {z,~x}. O

Proposition 4.18. Og = FpMod{(F(z) = F(z) Vy)) AN (1® F(0) ®
F(z)® F(y) ® Flz®y) =1}

Proof. Let f4 € Ogandlet ¥ = {(F(z) = F(z)Vy))A(1&F(0)&F(z)®
F(y) ® F(z ®y)) ~ 1}. Since Oy C A; and Og C Ly , then f4(z) =
fA(x\/y) =land 1& f40)® fA(2) ® fA(y) ® fA(zdy) = 1. Therefore
(FA@) = v y) A0S FA0) o fA) o Ay o fAEoy) =1
Hence f4+ X.

Let f4 € FpMod3, then (f4(z) = fA(zVvy) A (1@ fH0) @ fA(z)®
fAy) @ fAz ®y)) = 1. Therefore fA4(z) = fAHzVy) =1and 1 &
) & FA2)® () & FAz@y) = 1. Honce A € Ay and £ € L.
Thus f4 € {0,1,z}. O

Proposition 4.19. Oy = FpMod{(F(z) = F(zVy)) A (1® F(z) ®
Fly) e Flzoy) =1}

Proof. Let f4 € Og and let & = {(F(z) = F(zVy) A (1@ F(z) ®
F(y) ® F(z ®y)) ~ 1}. If f4 is the constant, then f4 F . If f4
is the identity, then fA(z) = fA(zVy) =2 = (zVy) =1land 1 &
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fAa)efiy e fzey =1eraya (z@y) = 1. Then (f4(z) =
fA(i\/y)) Ale fA~z )@fA( )@fA(x@y)) = 1. Therefore fAF %.
Let f4 € FpMods, then (fA(z) = fA(zVvy) A(1® fA(2)®fA(y) ®

fAz®y)) =1 Thus fA(z) = fAlzVy) =1 and 1 & fA(z) & fA(y) &
fA(QEBg) = 1. Therefore f4 € A; and f4 € L3. Hence f4 € Og. O

Proposition 4.20. O5 = FpMod{F(1)\(F(z) = F(zVy))A1®F(0)®
Fz)®e F(y) o Fz®y)) ~ 1}.

Proof. Let f4 € Os and let & = {F(1) A (F(z) = FzVy) Al
F(0)® F(z) ® F(y) @ F(z ® y)) ~ 1}. If f4 is the constant 1, then
fAE X, If f4 is the identity, then f4(1) =1 and (f4(z) = fA(g\/g)) A
(1o 40 ® fz) o Ay @ fAzoy) =1. Then FA4(1) A (f4(z) =
Favy) e ) e e e Ay e fAzey) =1A1A1=1
Therefore f4+ X.

Let f4 € FgModX, then fA4(1) A (fA(x) (:U\/y)) Al® fA0) @
fAa)e Ay e feoy) =1 Thenf (1) =1, f(z) = fHzVvy) =1
and 1@ f4(0) @ fA(z) ® fA(y) ® fA(z ®y) = 1. Therefore f4 € Cs,
fA € Ay and f4 € Ls. Hence f4 € Og O

Proposition 4.21. O; = FgMod{F(1) A (F(z) = F(zVy) AN (1
Flz)e Fly) ® Flzoy)) =1}

Proof. Let fA € Oy and let {F(1)A(F(z) = F(zVy))A(1&F(2)®F (y)&
F(z®y)) ~ 1}, then f4(1) = 1 and (fH2) = f[Azvy)r (e fA@)e
Ay e fiazey)) = 1. Then FAA(fA(2) = fAlzvy)r(e fAa)®
fAy) @ fAz ®y)) = 1. Therefore f - . Let f4 € FgModY, then
FAOA(fA2) = fAlavy)re fAa)e fAy e fzey) =1 Theﬂ
FAQ) =1and fA(2) = fAzvy)) A1 fAz) @ fAy)e fA(zey) =

Therefore f4 € Cy and fA € Og. Assume fA(0) # 0, ie. fA4(0) = 1,
then 1@ f4(0)® f4(1) ® fA(0@ 1) = 0, a contradiction. Then f4(0) = 0.
Therefore f4 € Oy. O

Proposition 4.22.

pn—1
Fg° =FgMod{ [\ P(z;) = ~F(@iA. .. Azg1Ay) ~1]|p> 2},
=1

F§° =FgMod{F(1) /\ )= —F@iA AT Ay)) R

| p> 2},
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pn—1
PP =FgMod{ \ F(z;) = ~F(@i A ... Au_1) A FlzaVzg) = 1
=1
| =2},

F° =FgMod{F(1) /\ = —F(@i A AZp1)

/\F(:Zil\/l’g)) 1|/j,>2}

pn—1
Proof. Let f4 € Fg° and let & = { A\ F(2;) = ~F@ A... Azu_1 A
i=1 -

pn—1
y)) ~ 1| p>2} Since A F(z;)) = ~F(ziAN...Azy—1 Ay)) = 1is
Y JAR L1 Y
satisfied by any operation from FY for all > 2 and f4 € Fg° = (N FY,
H>2

pn—1

then f4 = A F(z;) = —F@A...Az,—1 Ay)) ~ 1 for all u > 2.
i=1 B

Therefore f4+ X.

pn—1
Let f4 € FgModS, then A\ fAx;) = ~fA@i A Azpminy)) =1
i=1 —
for all 2 > 2. Therefore f4 € Ff forall u > 2. Hence f4 € (| F{ = F5°.
H>2
Since FP° = F° N Ay, F7° = Fg° N Ay, and F§° = FZ° N Ay, then one

can apply Lemma 4.3. ]

Proposition 4.23.

pn—1

F* = FpMod{ [\ =F(z;) = F(z1 V... VZ;_1Vy)
i=1
~1|p=25,

pn—1
Fo = FpMod{~F(0) A ( /\ ~F(z;) = F(@1 V... V&1V
=1

y)~1|p=2},
pn—1
F§° = FgMod{ /\ =F(z;) = ~F(z1 V... VZu_1) A ~F(z1
=1
Azg) ~ 1| p =2},
pn—1
F3® = FpMod{~F(0) A (/\ ~F(z;) = F(@1 V... VZ,_1) A
=1
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The proof is similar to the proof of Proposition 4.22.
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