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Dedicated to V.I. Sushchansky on the occasion of his 60th birthday

Abstract. We consider the Zassenhaus conjecture for the

normalized unit group of the integral group ring of the McLaughlin

sporadic group McL. As a consequence, we confirm for this group

the Kimmerle’s conjecture on prime graphs.

1. Introduction, conjectures and main results

Let V (ZG) be the normalized unit group of the integral group ring ZG

of a finite group G. A long-standing conjecture of H. Zassenhaus (ZC)
says that every torsion unit u ∈ V (ZG) is conjugate within the rational
group algebra QG to an element in G (see [26]).

For finite simple groups the main tool for the investigation of the
Zassenhaus conjecture is the Luthar–Passi method, introduced in [22] to
solve it for A5. Later M. Hertweck in [17] extended the Luthar–Passi
method and applied it for the investigation of the Zassenhaus conjecture
for PSL(2, pn). The Luthar–Passi method proved to be useful for groups
containing non-trivial normal subgroups as well. For some recent results
we refer to [5, 7, 16, 17, 18, 19]. Also, some related properties and some
weakened variations of the Zassenhaus conjecture can be found in [1, 23]
and [3, 21].

First of all, we need to introduce some notation. By #(G) we denote
the set of all primes dividing the order of G. The Gruenberg–Kegel graph
(or the prime graph) of G is the graph π(G) with vertices labeled by the
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primes in #(G) and with an edge from p to q if there is an element of
order pq in the group G. In [21] W. Kimmerle proposed the following
weakened variation of the Zassenhaus conjecture:

(KC) If G is a finite group then π(G) = π(V (ZG)).

In particular, in the same paper W. Kimmerle verified that (KC)
holds for finite Frobenius and solvable groups. We remark that with
respect to the so-called p-version of the Zassenhaus conjecture the inves-
tigation of Frobenius groups was completed by M. Hertweck and the first
author in [4]. In [6, 7, 8, 9, 10, 12] (KC) was confirmed for the Mathieu
simple groups M11, M12, M22, M23, M24 and the sporadic Janko simple
groups J1, J2 and J3.

Here we continue these investigations for the McLaughlin simple group
McL. Although using the Luthar–Passi method we cannot prove the ra-
tional conjugacy for torsion units of V (ZMcL), our main result gives a lot
of information on partial augmentations of these units. In particular, we
confirm the Kimmerle’s conjecture for this group.

Let G = McL. It is well known (see [15]) that |G| = 27 · 36 · 53 · 7 · 11
and exp(G) = 23 · 32 · 5 · 7 · 11. Let

C = {C1, C2a, C3a,C3b, C4a, C5a, C5b, C6a, C6b, C7a, C7b, C8a, C9a, C9b,

C10a, C11a, C11b, C12a, C14a, C14b, C15a, C15b, C30a, C30b}

be the collection of all conjugacy classes of McL, where the first index
denotes the order of the elements of this conjugacy class and C1 = {1}.
Suppose u =

∑

αgg ∈ V (ZG) has finite order k. Denote by νnt =
νnt(u) = εCnt

(u) =
∑

g∈Cnt
αg the partial augmentation of u with respect

to Cnt. From the Berman–Higman Theorem (see [2] and [25], Ch.5, p.102)
one knows that ν1 = α1 = 0 and

∑

Cnt∈C

νnt = 1. (1)

Hence, for any character χ of G, we get that χ(u) =
∑

νntχ(hnt), where
hnt is a representative of the conjugacy class Cnt.

Our main result is the following

Theorem 1. Let G denote the McLaughlin simple group McL. Let u be
a torsion unit of V (ZG) of order |u|. Denote by P(u) the tuple

(ν2a, ν3a, ν3b,ν4a, ν5a, ν5b, ν6a, ν6b, ν7a, ν7b, ν8a, ν9a, ν9b,

ν10a, ν11a, ν11b, ν12a, ν14a, ν14b, ν15a, ν15b, ν30a, ν30b) ∈ Z23

of partial augmentations of u in V (ZG). The following properties hold.
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(i) There is no elements of orders 21, 22, 33, 35, 55, 77 in V (ZG).
Equivalently, if |u| 6∈ {18, 20, 24, 28, 36, 40, 45, 56, 60, 72, 90, 120,

180, 360}, then |u| coincides with the order of some element g ∈ G.

(ii) If |u| = 2, then u is rationally conjugate to some g ∈ G.

(iii) If |u| = 3, then all components of P(u) are zero except possibly ν3a

and ν3b, and the pair (ν3a, ν3b) is one of

{ (−2, 3), (−1, 2), (0, 1), (1, 0) }.

(iv) If |u| = 5, then all components of P(u) are zero except possibly ν5a

and ν5b, and the pair (ν5a, ν5b) is one of

{ (−4, 5), (−3, 4), (−2, 3), (−1, 2), (0, 1), (1, 0) }.

(v) If |u| = 7, then all components of P(u) are zero except possibly ν7a

and ν7b, and the pair (ν7a, ν7b) is one of

{ (ν7a, ν7b) | −86 ≤ ν7a ≤ 87, ν7a + ν7b = 1 }.

(vi) If |u| = 11, then all components of P(u) are zero except possibly
ν11a and ν11b, and the pair (ν11a, ν11b) is one of

{ (ν11a, ν11b) | −9 ≤ ν11a ≤ 10, ν11a + ν11b = 1 }.

As an immediate consequence of part (i) of the Theorem we obtain

Corollary 1. If G = McL then π(G) = π(V (ZG)).

2. Preliminaries

The following result is a reformulation of the Zassenhaus conjecture in
terms of vanishing of partial augmentations of torsion units.

Proposition 1. (see [22] and Theorem 2.5 in [24]) Let u ∈ V (ZG) be of
order k. Then u is conjugate in QG to an element g ∈ G if and only if
for each d dividing k there is precisely one conjugacy class C with partial
augmentation εC(ud) 6= 0.

The next result now yield that several partial augmentations are zero.

Proposition 2. (see [16], Proposition 3.1; [17], Proposition 2.2) Let G

be a finite group and let u be a torsion unit in V (ZG). If x is an element
of G whose p-part, for some prime p, has order strictly greater than the
order of the p-part of u, then εx(u) = 0.
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The key restriction on partial augmentations is given by the following
result that is the cornerstone of the Luthar–Passi method.

Proposition 3. (see [22, 17]) Let either p = 0 or p a prime divisor of
|G|. Suppose that u ∈ V (ZG) has finite order k and assume k and p are
coprime in case p 6= 0. If z is a complex primitive k-th root of unity and
χ is either a classical character or a p-Brauer character of G, then for
every integer l the number

µl(u, χ, p) = 1
k

∑

d|k TrQ(zd)/Q{χ(ud)z−dl} (2)

is a non-negative integer.

Note that if p = 0, we will use the notation µl(u, χ, ∗) for µl(u, χ, 0).

Finally, we shall use the well-known bound for orders of torsion units.

Proposition 4. (see [13]) The order of a torsion element u ∈ V (ZG) is
a divisor of the exponent of G.

3. Proof of the Theorem

Throughout this section we denote McL by G. The character table of
G, as well as the p-Brauer character tables, which will be denoted by
BCT(p) where p ∈ {2, 3, 5, 7, 11}, can be found using the computational
algebra system GAP [15], which derives these data from [14, 20]. For the
characters and conjugacy classes we will use throughout the paper the
same notation, indexation inclusive, as used in the GAP Character Table
Library.

First of all we will investigate units of orders 2, 3, 5, 7 and 11, since
the group G possesses elements of these orders. After this, by Proposition
4, the order of each torsion unit divides the exponent of G, so to prove
the Kimmerle’s conjecture, it remains to consider units of orders 21, 22,
33, 35, 55 and 77. We prove that no units of all these orders do appear
in V (ZG).

Now we consider each case separately.

• Let u be an involution. Using Proposition 2 we obtain that all partial
augmentations except one are zero. Thus by Proposition 1 the proof of
part (ii) of Theorem 1 is done.

• Let u be a unit of order 3. By (1) and Proposition 2 we get ν3a+ν3b = 1.
Put t1 = 5ν3a − 4ν3b. By (2) we obtain the system of inequalities

µ0(u, χ2, ∗) = 1
3(−2t1 + 22) ≥ 0; µ1(u, χ2, ∗) = 1

3(t1 + 22) ≥ 0,
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from which t1 ∈ {−22,−19,−16,−13,−10,−7,−4,−1, 2, 5, 8, 11}. Now
for each possible value of t1 consider the system of linear equations

ν3a + ν3b = 1, 5ν3a − 4ν3b = t1.

Since
∣

∣

1 1

5 −4

∣

∣ 6= 0, this system always has the unique solution. First
we select only integer solutions, and then using the condition that all
µi(u, χj , ∗) are non-negative integers, we obtain only four pairs (ν3a, ν3b)
listed in part (iii) of Theorem 1.
• Let u be a unit of order 5. By (1) and Proposition 2 we get ν5a+ν5b = 1.
Put t1 = 3ν5a − 2ν5b. By (2) we obtain the system of inequalities

µ0(u, χ2, ∗) = 1
5(−4t1 + 22) ≥ 0; µ1(u, χ2, ∗) = 1

5(t1 + 22) ≥ 0,

so t1 ∈ {−22,−17,−12,−7,−2, 3}. Using the same arguments as in the
previous case, we obtain only six pairs (ν5a, ν5b) listed in part (iv) of
Theorem 1.
• Let u be a unit of order 7. By (1) and Proposition 2 we get ν7a+ν7b = 1.
Put t1 = 4ν7a − 3ν7b. Using BCT(3) and BCT(5), by (2) we have

µ3(u, χ7, 3) = 1
7(t1 + 605) ≥ 0; µ1(u, χ12, 5) = 1

7(−t1 + 3245) ≥ 0;

µ1(u, χ7, 3) = 1
7(−3ν7a + 4ν7b + 605) ≥ 0.

It follows that we have only 174 pairs (ν7a, ν7b), given in part (v) of Theo-
rem 1. Note that using our implementation of the Luthar–Passi method,
which we intended to make available in the GAP package LAGUNA [11],
we checked that it is not possible to further reduce the number of so-
lutions, and the same remark also applies for the remaining part of the
paper.
• Let u be a unit of order 11. By (1) and Proposition 2 we have ν11a +
ν11b = 1. Using BCT(3), by (2) we obtain the system of inequalities

µ1(u, χ3, 3) = 1
11(6ν11a − 5ν11b + 104) ≥ 0;

µ2(u, χ3, 3) = 1
11(−5ν11a + 6ν11b + 104) ≥ 0,

that has only that twenty pairs (ν11a, ν11b) listed in part (vi) of the The-
orem 1.
• Let u be a unit of order 21. By (1) and Proposition 2 we have

ν3a + ν3b + ν7a + ν7b = 1.

Put t1 = 5ν3a−4ν3b−ν7a−ν7b, t2 = 5ν3a+2ν3b and t3 = 3ν7a−4ν7b. Since
|u7| = 3, for any character χ of G we need to consider four cases, defined
by part (iii) of the Theorem. Now we consider each case separately:
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Case 1. Let χ(u7) = χ(3a). Using (2), we obtain the system of
inequalities

µ3(u, χ2, ∗) = 1
21(2t1 + 11) ≥ 0; µ0(u, χ2, ∗) = 1

21(−12t1 + 18) ≥ 0,

which has no integral solution.
Case 2. Let χ(u7) = χ(3b). Again, using (2), we obtain the system

of inequalities

µ0(u, χ2, ∗) = 1
21(−12t1 + 36) ≥ 0; µ7(u, χ2, ∗) = 1

21(6t1 + 24) ≥ 0;

µ0(u, χ3, ∗) = 1
21(36t2 + 243) ≥ 0; µ7(u, χ3, ∗) = 1

21(−18t2 + 225) ≥ 0;

µ1(u, χ16, ∗) = 1
21(−t3 + 8386) ≥ 0; µ9(u, χ16, ∗) = 1

21(2t3 + 8386) ≥ 0;

µ1(u, χ5, ∗) = 1
21(−13ν3a + 5ν3b + 765) ≥ 0.

This yields t1 ∈ {−4, 3}, t2 ∈ {−5, 2, 9} and t3 ∈ {7 + 21k | −200 ≤ k ≤
399}, but none of possible combinations of ti’s gives us any solution.

Case 3. Let χ(u7) = −2χ(3a) + 3χ(3b). Then using (2), we obtain
the system

µ1(u, χ2, ∗) = 1
21(−t1 − 1) ≥ 0; µ7(u, χ2, ∗) = 1

21(6t1 + 6) ≥ 0;

µ0(u, χ3, ∗) = 1
21(36t2 + 207) ≥ 0; µ7(u, χ3, ∗) = 1

21(−18t2 + 243) ≥ 0;

µ1(u, χ16, ∗) = 1
21(−t3 + 8218) ≥ 0; µ9(u, χ16, ∗) = 1

21(2t3 + 8218) ≥ 0,

from which t1 = −1, t2 ∈ {−4, 3, 10} and t3 ∈ {7 + 21k | −196 ≤ k ≤
391}, and again we have no solution for every combination of ti’s.

Case 4. Let χ(u7) = −χ(3a) + 2χ(3b). Using (2), we obtain the
system

µ7(u, χ2, ∗) = 1
21(6t1 + 15) ≥ 0; µ0(u, χ2, ∗) = 1

21(−12t1 + 54) ≥ 0;

µ0(u, χ3, ∗) = 1
21(36t2 + 225) ≥ 0; µ7(u, χ3, ∗) = 1

21(−18t2 + 234) ≥ 0;

µ9(u, χ16, ∗) = 1
21(2t3 + 8015) ≥ 0; µ1(u, χ16, ∗) = 1

21(−t3 + 8015) ≥ 0,

so t1 = 1, t2 ∈ {−1, 6, 13} and t3 ∈ {14 + 21k | −191 ≤ k ≤ 381}, that
also gives us no solutions.
• Let u be a unit of order 22. By (1) and Proposition 2 we have

ν2a + ν11a + ν11b = 1.

Now by (2) we obtain the system of inequalities

µ0(u, χ2, ∗) = 1
22(60ν2a+28) ≥ 0; µ11(u, χ2, ∗) = 1

22(−60ν2a+16) ≥ 0,

which has no integral solution.
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• Let u be a unit of order 33. By (1) and Proposition 2 we have

ν3a + ν3b + ν11a + ν11b = 1.

Put t1 = 5ν3a−4ν3b, t2 = 5ν3a+2ν3b and t3 = 32ν3a−4ν3b−6ν11a+5ν11b.
Since |u11| = 3, for any character χ of G we need to consider four cases,
defined by part (iii) of the Theorem.

Case 1. Let χ(u11) = χ(3a). Then by (2) we obtain the system of
inequalities

µ11(u, χ2, ∗) = 1
33(10t1 + 27) ≥ 0; µ0(u, χ2, ∗) = 1

33(−20t1 + 12) ≥ 0,

that has no integral solution.
Case 2. Let χ(u11) = χ(3b). Now (2) gives us the system

µ11(u, χ2, ∗) = 1
33(10t1 + 18) ≥ 0; µ0(u, χ2, ∗) = 1

33(−20t1 + 30) ≥ 0,

which also has no integral solution.
Case 3. Let χ(u11) = −2χ(3a) + 3χ(3b). By (2) we obtain that

µ1(u, χ2, ∗) = 1
33(−5ν3a + 4ν3b) ≥ 0; µ11(u, χ2, ∗) = 1

33(50ν3a − 40ν3b) ≥ 0;

µ0(u, χ3, ∗) = 1
33(60t2 + 207) ≥ 0; µ11(u, χ3, ∗) = 1

33(−30t2 + 243) ≥ 0;

µ1(u, χ7, ∗) = 1
33(t3 + 978) ≥ 0; µ3(u, χ7, ∗) = 1

33(−2t3 + 750) ≥ 0.

It follows that t1 = 0, t2 = 7 and t3 ∈ {12 + 33k | −30 ≤ k ≤ 11}, and
we have no solutions again.

Case 4. Let χ(u11) = −χ(3a) + 2χ(3b). By (2) we obtain the system

µ11(u, χ2, ∗) = 1
33(10t1 + 9) ≥ 0; µ0(u, χ2, ∗) = 1

33(−20t1 + 48) ≥ 0,

which has no integral solution.
• Let u be a unit of order 35. By (1) and Proposition 2 we have

ν5a + ν5b + ν7a + ν7b = 1.

Put t1 = 3ν5a − 2ν5b − ν7a − ν7b, t2 = 6ν5a + ν5b and t3 = 6ν5a + ν5b +
3ν7a − 4ν7b. Since |u7| = 5, for any character χ of G we need to consider
six cases, defined by part (iv) of the Theorem.

Case 1. Let χ(u7) = χ(5a). By (2) we obtain the system

µ5(u, χ2, ∗) = 1
35(4t1 + 9) ≥ 0; µ0(u, χ2, ∗) = 1

35(−24t1 + 16) ≥ 0,

which has no integral solutions.
Case 2. Let χ(u7) = χ(5b). Now the non-compatible inequalities are

µ7(u, χ2, ∗) = 1
35(6t1 + 26) ≥ 0; µ0(u, χ2, ∗) = 1

35(−24t1 + 36) ≥ 0.
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Case 3. Let χ(u7) = −2χ(5a) + 3χ(5b). By (2) we obtain the system

µ7(u, χ2, ∗) = 1
35(6t1 + 16) ≥ 0; µ0(u, χ2, ∗) = 1

35(−24t1 + 76) ≥ 0,

which has no integral solution.
Case 4. Let χ(u7) = −3χ(5a) + 4χ(5b). By (2) we obtain the system

µ0(u, χ2, ∗) = 1
35(−24t1 + 96) ≥ 0; µ7(u, χ2, ∗) = 1

35(6t1 + 11) ≥ 0;

µ0(u, χ3, ∗) = 1
35(24t2 + 175) ≥ 0; µ7(u, χ3, ∗) = 1

35(−6t2 + 245) ≥ 0;

µ15(u, χ16, ∗) = 1
35(4t3 + 8071) ≥ 0; µ1(u, χ16, ∗) = 1

35(−t3 + 8001) ≥ 0;

µ0(u, χ2, 3) = 1
35(−96ν5a + 24ν5b + 85) ≥ 0,

so t1 = 4, t2 ∈ {0, 35} and t3 ∈ {21+35k | −58 ≤ k ≤ 228}, and we have
no solutions again.

Case 5. Let χ(u7) = −4χ(5a) + 5χ(5b). Using (2), we obtain

µ7(u, χ2, ∗) = 1
35(6t1 + 6) ≥ 0; µ1(u, χ2, ∗) = 1

35(−t1 − 1) ≥ 0;

µ0(u, χ3, ∗) = 1
35(24t2 + 155) ≥ 0; µ5(u, χ3, ∗) = 1

35(−4t2 + 155) ≥ 0;

µ15(u, χ16, ∗) = 1
35(4t3 + 8091) ≥ 0; µ1(u, χ16, ∗) = 1

35(−t3 + 7996) ≥ 0.

Then t1 = 1, t2 ∈ {−5, 30} and t3 ∈ {16 + 35k | −58 ≤ k ≤ 228}, and we
have no solutions as before.

Case 6. Let χ(u7) = −χ(5a) + 2χ(5b). By (2) we have incompatible
inequalities

µ7(u, χ2, ∗) = 1
35(6t1 + 21) ≥ 0; µ0(u, χ2, ∗) = 1

35(−24t1 + 56) ≥ 0.

• Let u be a unit of order 55. By (1) and Proposition 2 we have

ν5a + ν5b + ν11a + ν11b = 1.

Put t1 = 3ν5a − 2ν5b, t2 = 6ν5a + ν5b and t3 = 4ν5a − ν5b + 6ν11a − 5ν11b.
Since |u11| = 5, for any character χ of G we need to consider six cases,
defined by part (iv) of the Theorem.

Case 1. Let χ(u11) = χ(5a). Then by (2) we obtain incompatible
inequalities

µ5(u, χ2, ∗) = 1
55(4t1 + 10) ≥ 0; µ0(u, χ2, ∗) = 1

55(−40t1 + 10) ≥ 0.

Case 2. Let χ(u11) = χ(5b). Using (2) we obtain the system

µ11(u, χ2, ∗) = 1
55(10t1 + 20) ≥ 0; µ0(u, χ2, ∗) = 1

55(−40t1 + 30) ≥ 0;

µ0(u, χ3, ∗) = 1
55(40t2 + 235) ≥ 0; µ11(u, χ3, ∗) = 1

55(−10t2 + 230) ≥ 0;

µ5(u, χ7, ∗) = 1
55(4t3 + 939) ≥ 0; µ1(u, χ7, ∗) = 1

55(−t3 + 934) ≥ 0,



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.V. A. Bovdi, A. B. Konovalov 51

so t1 = −2, t2 ∈ {1, 12, 23} and t3 ∈ {−1 + 55k | −4 ≤ k ≤ 17}, and in
every case we have no integer solution.

Case 3. Let χ(u11) = −2χ(5a) + 3χ(5b). By (2) we obtain that

µ11(u, χ2, ∗) = 1
55(10t1 + 10) ≥ 0; µ0(u, χ2, ∗) = 1

55(−40t1 + 70) ≥ 0;

µ0(u, χ3, ∗) = 1
55(40t2 + 195) ≥ 0; µ11(u, χ3, ∗) = 1

55(−10t2 + 240) ≥ 0;

µ5(u, χ7, ∗) = 1
55(4t3 + 946) ≥ 0; µ1(u, χ7, ∗) = 1

55(−t3 + 891) ≥ 0.

From this follows that t1 = −1, t2 ∈ {2, 13, 24} and t3 ∈ {11+55k | −4 ≤
k ≤ 16}, and for every combination of ti’s we have no solution.

Case 4. Let χ(u11) = −3χ(5a)+4χ(5b). By (2) we obtain the system

µ11(u, χ2, ∗) = 1
55(10t1 + 5) ≥ 0; µ0(u, χ2, ∗) = 1

55(−40t1 + 90) ≥ 0,

which has no integral solution.

Case 5. Let χ(u11) = −4χ(5a) + 5χ(5b). By (2) we have that

µ11(u, χ2, ∗) = 1
55(10t1) ≥ 0; µ1(u, χ2, ∗) = 1

55(−t1) ≥ 0;

µ0(u, χ3, ∗) = 1
55(40t2 + 155) ≥ 0; µ11(u, χ3, ∗) = 1

55(−10t2 + 250) ≥ 0;

µ5(u, χ7, ∗) = 1
55(4t3 + 986) ≥ 0; µ1(u, χ7, ∗) = 1

55(−t3 + 881) ≥ 0,

so t1 = 0, t2 ∈ {3, 14, 25} and t3 ∈ {1 + 55k | −4 ≤ k ≤ 16}, and again
we have no solutions in every combination of ti’s.

Case 6. Let χ(u11) = −χ(5a) + 2χ(5b). Using (2) we obtain the
system

µ11(u, χ2, ∗) = 1
55(10t1 + 15) ≥ 0; µ0(u, χ2, ∗) = 1

55(−40t1 + 50) ≥ 0,

which has no integral solution.

• Let u be a unit of order 77. By (1) and Proposition 2 we have

ν7a + ν7b + ν11a + ν11b = 1.

Then using (2) we obtain the non-compatible system of inequalities

µ0(u, χ2, ∗) = 1
77(60(ν7a + ν7b) + 28) ≥ 0;

µ11(u, χ2, ∗) = 1
77(−10(ν7a + ν7b) + 21) ≥ 0.
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