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Abstract. We study Sushchansky p-groups introduced in
[Sus79]. We recall the original definition and translate it into the
language of automata groups. The original actions of Sushchan-
sky groups on p-ary tree are not level-transitive and we describe
their orbit trees. This allows us to simplify the definition and
prove that these groups admit faithful level-transitive actions on
the same tree. Certain branch structures in their self-similar clo-
sures are established. We provide the connection with, so-called,
G groups [BGŠ03] that shows that all Sushchansky groups have
intermediate growth and allows to obtain an upper bound on their
period growth functions.

Introduction

Sushchansky p-groups were introduced in [Sus79] as one of the pioneering
examples of finitely generated infinite torsion groups, providing counter-
examples to the General Burnside problem. Initially, this problem was
solved by E.S. Golod in [Gol64] using the Golod-Shafarevich theorem.
Simpler and easier to handle counter-examples were constructed by
S. V. Aleshin in [Ale72] by means of automata. The use of automata
groups to resolve Burnside’s problem was earlier suggested by V. M. Glush-
kov in [Glu61]. But only after the results of R. I. Grigorchuk from [Gri80,
Gri83] automata groups became the subject of deeper investigation. It
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happened that this class contains groups with many extraordinary prop-
erties, like infinite torsion groups, groups of intermediate growth, groups
of finite width, just-infinite groups, etc.

V.I. Sushchansky used a different language, namely the language of
tableaux, introduced by L. Kaluzhnin to study properties of iterated
wreath products [Kal48]. For each prime p > 2, V.I. Sushchansky con-
structed a finite family of infinite p-groups generated by two tableaux.
Each such a tableau naturally defines an automorphism of a rooted tree
and, as was already noticed in [GNS00], can be represented by a finite
initial automaton. We describe these automata and study Sushchansky
groups and their actions on rooted trees by means of this well-developed
language.

The structure of the paper is as follows. In Section 1 we recall the
original definition of Sushchansky groups. In Section 2 we describe the
corresponding automata. The associated action on a rooted tree is not
level-transitive and in Section 3 we describe its orbit tree and show that
there exists a faithful level-transitive action given by finite initial au-
tomata. The self-similar closure is studied in Section 4. The main re-
sults are presented in Section 5. It was pointed out in [Gri85a] that all
Sushchansky p-groups have intermediate growth, but only the main idea
of the proof was given. Here we provide a complete proof of this fact
together with new estimates on the growth function, thus contributing
to the Milnor question [Mil68], which was solved in [Gri83] by R.I. Grig-
orchuk. Also we give an upper bound on the period growth function. The
main idea is to use G groups of intermediate growth introduced in [BŠ01]
(see also [BGŠ03]). For each Sushchansky p-group we construct a G

group of intermediate growth and prove that their growth functions are
equivalent.

The authors wish to thank Zoran Šunić for fruitful discussions and
important comments, which enhanced the paper.

1. Original definition via tableaux

Let X = {0, 1, . . . , p − 1} be a finite alphabet for some prime p. We
identify X with the finite field Fp.

The set X∗ of all finite words over X has a natural structure of a
rooted p-ary tree. Every automorphisms g ∈ Aut X∗ of this tree induces
an automorphism g|v of the subtree vX∗ by the rule g|v(w) = u if and
only if g(vw) = g(v)u. This automorphism is called the restriction of g
on word v (in some papers the word section or state is used).

The Sylow p-subgroup P∞ of the profinite group Aut X∗ is equal to
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the infinite wreath product of cyclic groups of order p, i.e. P∞ = ≀i≥1C
(i)
p .

Using this description one can construct special “tableau” representa-
tion of P∞. The “tableau” representation was initially introduced by
L. Kaluzhnin for Sylow p-subgroups of symmetric groups of order pm

in [Kal48].

The group P∞ is isomorphic to the group of triangular tableaux of
the form:

u = [a1, a2(x1), a3(x1, x2), . . .],

where a1 ∈ Fp, ai+1(x1, . . . , xi) ∈ Fp[x1, . . . , xi]/〈x
p
1 − x1, . . . , x

p
i − xi〉.

The multiplication of tableaux is given by the formula:

[a1, a2(x1), a3(x1, x2), . . .] · [b1, b2(x1), b3(x1, x2), . . .] =

= [a1 + b1, a2(x1) + b2(x1 + a1), a3(x1, x2) + b3(x1 + a1, x2 + a2(x1)), . . .].

The action of the tableau u on the tree X∗ is given by:

u(x1x2 . . . xn) = y1y2 . . . yn, (1)

where y1 = x1 + a1, y2 = x2 + a2(x1), . . . , yn = xn + an(x1, . . . , xn−1),
where all calculations are made by identifying X with the field Fp.

For the duration of the rest of the paper we fix a prime p > 2.

Fix some order λ = {(αi, βi), i = 1, . . . , p2} on the set of pairs
{(α, β)|α, β ∈ Fp}. For j > p2 we define (αj , βj) = (αi, βi) where i ≡ j
mod p2. Define two tableaux

A = [1, x1, 0, 0, . . .], Bλ = [0, 0, b3(x1, x2), b4(x1, x2, x3), . . .],

where the coordinates of Bλ are defined by its values in the following
way:

a) b3(2, 1) = 1;

b) bi(0, 0, . . . , 0, 1) = 1 if βi 6= 0;

c) bi(1, 0, . . . , 0, 1) = −αi
βi

if βi 6= 0 and bi(1, 0, . . . , 0, 1) = 1 if βi = 0;

d) all the other values are zeroes.

The group Gλ = 〈A, Bλ〉 is called the Sushchansky group of type λ.
The following theorem is proven in [Sus79].

Theorem 1. Gλ is infinite periodic p-group for any type λ.
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2. Automata approach

Another language dealing with groups acting on rooted trees is the lan-
guage of automata groups. For a definitions we refer to the survey pa-
per [GNS00]. Many groups related to Burnside and Milnor Problems
happen to be in the class of groups generated by finite automata. The
Sushchansky groups are not an exception and we describe the structure
of the corresponding automata in this section.

The action of every automorphism g of the rooted tree X∗ can be
encoded by an initial automaton whose states are the restrictions of g
on the finite words over X. In the case when this set is finite we call
g a finite-state automorphism. The action of such an automorphism is
encoded by a finite automaton.

It is known that (see [GNS00]) that Aut X∗ ∼= AutX∗≀Sym(X), which
gives a convenient way to represent every automorphism in the following
form:

g = (g|0, g|1, . . . , g|p−1)πg,

where g|0, g|1, . . . , g|p−1 are the restrictions of g on the letters of X and
πg is the permutation of X induced by g.

The multiplication of automorphisms written in this way is performed
as follows. If h = (h|0, h|1, . . . , h|p−1)πh then

gh = (g|0h|πg(0), . . . , g|p−1h|πg(p−1))πgπh.

Now we proceed with an explicit construction of automata associated
to Sushchansky groups. Let σ = (0, 1, . . . , p− 1) be a cyclic permutation
of X. With a slight abuse of notation, depending on the context, σ will
also denote the automorphism of X∗ of the form (1, 1, . . . , 1)σ.

Given the order λ = {(αi, βi)} define words u, v ∈ Xp2
in the following

way:

ui =

{

0, if βi = 0;
1, if βi 6= 0.

vi =

{

1, if βi = 0;
−αi

βi
, if βi 6= 0.

The words u and v encode the actions of Bλ on the words 00 . . . 01∗ and
10 . . . 01∗, respectively. Using the words u and v we can construct auto-
morphisms q1, . . . , qp2 , r1, . . . , rp2 of the tree X∗ by the following recurrent
formulas:

qi = (qi+1, σ
ui , 1, . . . , 1), ri = (ri+1, σ

vi , 1, . . . , 1), (2)

for i = 1, . . . , p2, where the indices are considered modulo p2, i.e. i =
i + np2 for any n.
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Formula (1) implies that qi and ri are precisely the restrictions of Bλ

on the words 00(0)i−1+np2
and 10(0)i−1+np2

, respectively, for any n ≥ 0.

The action of the tableau A is given by:

A = (1, σ, σ2, . . . , σp−1)σ;

while Bλ acts trivially on the second level and the action on the rest is
given by the restrictions:

Bλ|00 = q1, Bλ|10 = r1, Bλ|21 = σ

and all the other restrictions are trivial. In particular, the automorphisms
A and Bλ are finite-state and Sushchansky group Gλ is generated by two
finite initial automata. Denote the union of these two automata by Au,v.
Its structure is shown in Figure 1. The particular automaton for p = 3
and the lexicographic order on {(α, β)|α, β ∈ Fp} is given in Figure 2 (all
the arrows not shown in the figures go to the trivial state 1).
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0=1 p� 1=01
0=00=0 0=0 0=0

0=00=00=00=00=00=00=00=0
0=0

0=00=0 1=1
1=1

1=1 1=12=2
� �p�2 �p�1�2A

B q1r1r2r3r4r5
rp2�1 rp2 q2 q3 q4q5qt�1qt
Figure 1: The Structure of Sushchansky automata

Notice that the word v cannot be periodic since it contains exactly
p−1 zeros and p−1 ∤ p2. On the contrary u may be periodic with period
p. In this case we have qi = qi+p and the minimization of Au,v contains
p2 + 2p + 5 states. If u is not periodic then Au,v contains 2p2 + p + 5
states. Let t be the length of the minimal period in u (thus either t = p
or t = p2).
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Lemma 2. The group 〈q1, . . . , qt, r1, . . . , rp2〉 is elementary abelian p-
group.

Proof. All qi, rj have order p because

qp
i = (qp

i+1, 1, 1, . . . , 1), rp
i = (rp

i+1, 1, 1, . . . , 1),

and therefore qp
i and rp

i act trivially on the tree.
All qi, rj commute with each other, because

qiqj = (qi+1qj+1, σ
ui+uj , 1, . . . , 1), qjqi = (qj+1qi+1, σ

ui+uj , 1, . . . , 1);

rirj = (ri+1rj+1, σ
vi+vj , 1, . . . , 1), rjri = (rj+1ri+1, σ

vi+vj , 1, . . . , 1);

qirj = (qi+1rj+1, σ
ui+vj , 1, . . . , 1), rjqi = (rj+1qi+1, σ

ui+vj , 1, . . . , 1),

so the corresponding pairs act equally on the tree.

The last lemma implies that the order of Bλ is p. Since

Ap = (σ
p(p−1)

2 , σ
p(p−1)

2 , . . . , σ
p(p−1)

2 )

and p is odd, the order of A is also p.
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Figure 2: Sushchansky automaton for p = 3 corresponding to the lexico-
graphic order
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3. Actions on rooted trees

Here we describe the structure of the action of Gλ on a p-ary tree by means
of the orbit tree. This notion is defined in [Ser03] and used in [GNS01]
to establish a criterion determining when two automorphisms of a rooted
tree are conjugate. Here we use it to simplify the definition of Sushchan-
sky groups and show that they admit a faithful level-transitive action on
a regular rooted tree.

Definition 1. Let G be a group acting on a regular p-ary tree X∗. The
orbit tree of G is a graph whose vertices are the orbits of G on the levels
of X∗ and two orbits are adjacent if and only if they contain vertices that
are adjacent in X∗.

Proposition 3. The structure of the orbit tree of Gλ does not depend
on the type λ and is shown in Figure 3.

Figure 3: The Orbit Tree of Sushchansky group

Proof. Let TO be the orbit tree of Gλ. Denote by Orb(w) the orbit of
the word w ∈ X∗ under the action of Gλ. Define the set

V = {xyw ∈ X∗|xy ∈ Orb(00) and w ∈ X∗} ∪ {∅}, (3)

where ∅ is the root of the tree.
The generator Bλ stabilizes the second level of the tree and hence the

orbit Orb(00) coincides with the orbit of 00 under the action of the group
generated by A. The set V and its compliment W = X∗ \V are invariant
under the action of Gλ.
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Notice that {00, 10, 21} ⊂ Orb(00) and the generator Bλ acts trivially
on all words that lie in the set W . Since the restrictions of A on all words
of length ≥ 2 are trivial, every element g ∈ Gλ that acts trivially on the
second level of the tree must stabilize all the vertices of the set W . Hence,
the orbits of Gλ on W coincide with the ones of A. Automorphism A
acts transitively on the first level and has order p. Therefore the orbit
of any word w ∈ W consists of p vertices, namely the images of w under
the action of the cyclic group of order p generated by A. Therefore the
first two levels of TO are exactly as shown in Figure 3 and p − 1 vertices
on the second level of TO are the roots of regular p-ary trees.

Let us prove that Gλ acts transitively on the levels of the set V , i.e.
for every n ≥ 1 the group Gλ acts transitively on the set

Vn = {xyw ∈ Xn+1|xy ∈ Orb(00) and w ∈ Xn−1}.

We use induction on n. For n = 1 there is nothing to prove. Assume
Gλ acts transitively on Vn and consider the (n + 1)-th level. Since by
construction either un−1 = 1 or vn−1 = 1, the restriction of Bλ on either
00 . . . 01 or 10 . . . 01 is equal to σ. Denote this word as s (here s ∈ Vn)
and note that B stabilizes s. To prove the induction step it suffices for an
arbitrary s′z′ ∈ Vn+1, where s′ ∈ Vn and z′ ∈ X, to construct an element
g ∈ Gλ such that g(s0) = s′z′. By the inductive assumption there is an
element h ∈ Gλ such that h(s) = s′. Suppose h−1(s′z′) = sz for some
letter z ∈ X. Then for g = (Bλ)zh (here we consider z as an integer) we
have

g(s0) = h((Bλ)z(s0)) = h(s(Bλ)z|s(0)) = h(s(Bλ|s)
z(0)) =

= h(sσz(0)) = h(sz) = s′z′

as required.

The set V has a natural structure of a rooted p-ary tree T , where the
root ∅ is connected by an edge with every vertex in Orb(00) and there is
an edge between w and wx for all w ∈ V and x ∈ X. In other words, there
is a natural 1-to-1 correspondence between V and vertices of T given by
xyw 7→ xw for xy ∈ Orb(00) and w ∈ X∗. Since the set V is invariant
under the action of Gλ, the group Gλ acts by automorphisms on the tree
T . This action has simpler structure and the following proposition holds.

Proposition 4. The action of Sushchansky group Gλ on the tree T is
faithful, level transitive and has the following form

A = σ,
Bλ = (q1, r1, σ, 1, . . . , 1),
qi = (qi+1, σ

ui , 1, . . . , 1),
ri = (ri+1, σ

vi , 1, . . . , 1).

(4)
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Proof. The expressions (4) follow directly from the definition of Sushchan-
sky groups.

Let us prove that this action is faithful. Take an arbitrary nontrivial
element g ∈ Gλ. If g acts non-trivially on the second level of X∗, then the
exponent of A in g is not divisible by p. But then g acts non-trivially on
the first level of T as well because it is fixed under Bλ and A acts there
as σ. If g acts trivially on the second level of X∗ then it acts trivially on
the complement of V in X∗ according to Proposition 3. Therefore to be
nontrivial it must act nontrivially on T .

We proved in Proposition 3 that Gλ acts transitively on every set Vn,
which is precisely the nth level of the tree T .

4. Self-similar closure

The Sushchansky group Gλ is not generated by all the states of Au,v and
is not self-similar (see definition below). However, we can embed it into
a larger self-similar group where we can use some known techniques to
derive some important results about Gλ itself. In particular that Gλ is
amenable (Corollary 8) and that the word problem is solvable in poly-
nomial time (Corollary 9). For the definitions not given here and more
information on self-similar groups we refer to [Nek05] and [BGŠ03].

Definition 2. A group G < Aut X∗ is called self-similar if g|u ∈ G for
any g ∈ G and word u ∈ X∗. The self-similar closure of G < Aut X∗

is the group generated by all the restrictions of all the elements of G on
words in X∗.

Let G̃λ be the self-similar closure of Gλ, i.e. G̃λ is generated by all
the states of the automaton Au,v. Consider also the self-similar subgroup
K = 〈q1, . . . , qt, r1, . . . , rp2 , σ〉 of G̃λ.

Lemma 5. The group K is not periodic.

Proof. First, consider the case t = p. Then all ui’s are equal to 1 except
one equal to 0. In particular,

∑p
i=1 ui = p − 1. Then the element g =

q1q2 · · · qtσ
p−1 has representation

g = (q1q2 · · · qt, σ
p−1, 1, . . . , 1)σp−1.

Therefore

gp = (q1q2 · · · qtσ
p−1, ∗, . . . , ∗) = (g, ∗, . . . , ∗).

Since g is nontrivial it must have infinite order.
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In case t = p2, exactly p of ui’s are zeros. We mark the vertices of
the cycle of qi’s in the automaton by the corresponding ui’s. There are
at most

(

p
2

)

different distances between the zeros in the cycle. But the
length of the cycle is p2 so there are

p2 − 1

2
>

p2 − p

2
=

(

p

2

)

possible distances in the cycle, so let d be a distance that is not attained
as a distance between two zeros.

Now consider the element g = q1qd+1σ
up2+ud . It can be written as

g = (q2qd+2, σ
u1+ud+1 , 1, . . . , 1)σup2+ud .

Since the distance between states qp2 and qd in the cycle is exactly d at

least one of up2 and ud is nonzero so σup2+ud is a cycle of length p. Hence

gp = (q2qd+2σ
u1+ud+1 , ∗, . . . , ∗).

Therefore if the order |g| of g is finite, then it is not smaller than
p · |q2qd+2σ

u1+ud+1 |.
Now we repeat this procedure p2 times and on the i-th iteration we

get

qiqd+iσ
ui−1+ud+i−1 = (qi+1qd+i+1, σ

ui+ud+i , 1, . . . , 1)σui−1+ud+i−1 .

Again, the distance between qi−1 and qd+i−1 is exactly d so σui−1+ud+i−1

is a cycle of length p and

(qiqd+iσ
ui−1+ud+i−1)p = (qi+1qd+i+1σ

ui+ud+i , ∗, . . . , ∗).

Therefore

|qiqd+iσ
ui−1+ud+i−1 | ≥ p · |qi+1qd+i+1σ

ui+ud+i |.

But after p2 steps we will meet g again. So its order cannot be finite.

Definition 3. A group G acting on the tree X∗ is called weakly regular

branch over its subgroup P , if

1. G acts transitively on each level Xn, n ≥ 0;

2. P ≻ P × P × · · · × P as geometric embedding induced by the
restriction on some level Xk.

In case if P is a subgroup of finite index in G, the group G is said to be
regular branch over P .
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Proposition 6. G̃λ is a weakly regular branch group over Kp.

Proof. First of all note that Lemma 5 guarantees that Kp is nontrivial.
At least one (in fact more) of the ui’s is non zero, say u1. Then the
relations (2) and

σq1σ
p−1 = (σu1 , 1, . . . , 1, q2)

show that the set of restrictions of the elements of K, that stabilize the
first level X of the tree, on letter 0 includes the generators of K and
hence the whole group K (therefore conjugating by σ ∈ K yields that K
is self-replicating, i.e. for any x ∈ X the projection of Stx(K) onto the
vertex x coincides with K). Thus for any v ∈ K there is w ∈ K of the
form

w = (v, σi, 1, . . . , 1, qj
2)

for some i and j. But then by Lemma 2

wp = (vp, σip, 1, . . . , 1, qjp
2 ) = (vp, 1, . . . , 1).

Therefore Kp ≻ Kp×1×· · ·×1. Since σ acts transitively on the first level
and belongs to the normalizer of Kp in K (because σ−1vpσ = (σ−1vσ)p)
by conjugation we get

Kp ≻ Kp × Kp × · · · × Kp,

as geometric embedding.
The transitivity of G̃λ on levels follows from the fact that its subgroup

K acts nontrivially on the first level and is self-replicating, and hence,
level transitive. Another explanation comes from the known fact that

a self-similar subgroup of ≀i≥1C
(i)
p acts level-transitively if and only it is

infinite (see [BGK+06]). The proof of the last fact is similar to the proof
of transitivity in Proposition 3.

We summarize some general properties of G̃λ in the following propo-
sition:

Proposition 7. The self-similar closure of Gλ is neither torsion, nor
torsion free, level-transitive group of tree automorphisms. Moreover, it is
generated by a bounded automaton, hence it is contracting and amenable.

Proof. The first three assertions are already proved above. The automa-
ton Au,v is bounded by Corollary 14 in [Sid00] (see the definition there
as well). As a corollary G̃λ is contracting (see [BN03]) and amenable (see
[BKNV06]).

Corollary 8. Gλ is amenable.
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Note also that the last corollary follows from Theorem 16.

Corollary 9. The word problem in Gλ is solvable in polynomial time.

Proof. See Proposition 2.13.10 in [Nek05].

5. Intermediate growth

Let G be a group finitely generated by a set S. The growth function of

G is defined by

γG(n) =
∣

∣{g ∈ G|g = s1s2 . . . sk for some si ∈ S ∪ S−1, k ≤ n}
∣

∣ .

Two functions γ1 and γ2 are called equivalent if there exists a constant
C > 0 such that γ1(

1
C n) ≤ γ2(n) ≤ γ1(Cn) for all n. The growth function

γG depends both on G and on S, but the equivalence class of γG does
not depend on S.

In 1968 John Milnor asked about the existence of finitely generated
groups with growth that is intermediate between polynomial and expo-
nential. The first examples of such groups were provided by R.I. Grig-
orchuk in [Gri83], where he constructed uncountable family of such groups.
In particular, it was shown, that there are groups of intermediate growth
generated by automata with 5 states, namely, Gω for ω = (012)∞ (not to
be confused with Sushchansky groups Gλ). These examples were general-
ized to the notion of G groups [BGŠ03]. Under some finiteness restriction
all G groups have intermediate growth.

Recently it was proved [BP06] that there is a 4-state automaton over
a 2-letter alphabet generating a group of intermediate growth. This
group itself is isomorphic to the iterated monodromy group of the map
f(z) = z2 + i. But it is still an open question whether there is a group
of intermediate growth generated by a 3-state automaton over a 2-letter
alphabet.

In view of the examples above it is not very surprising that the two
of the pioneering examples of infinite finitely generated periodic groups
introduced by S.V. Aleshin in [Ale72] and V.I. Sushchansky in [Sus79]
also have intermediate growth. For Aleshin group it follows from the
intermediate growth of Grigorchuk group and the result of Y.I. Mer-
zlyakov [Mer83], who proved that Aleshin group contains a subgroup of
finite index isomorphic to the subdirect product of four copies of Grig-
orchuk group. Also the relation between these two groups was studied
in [Gri85b].

As was mentioned above in [Gri85a] R.I. Grigorchuk pointed out that
all Sushchansky groups have intermediate growth, but only the idea of
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proof was given. In this paper we give a complete proof of this fact based
on the results from [BŠ01].

At the present moment the main method of obtaining the upper
bounds for growth functions of groups was originated by R.I. Grigorchuk
in [Gri84]. Different modifications of this method in [Bar98, MP01, BŠ01]
allowed to improve existing estimates and to prove the estimates for new
groups.

As for the lower bounds for growth functions, there are several tech-
niques. In [Gri84] R.I. Grigorchuk uses self-similarity to obtain the lower
bound of the form e

√
n for most of his groups. Moreover, he shows that

any group G that is abstractly commensurable with its own power Gk

for some k ≥ 2 has a growth function not smaller that enα
for some

0 < α ≤ 1.
In [Gri89] R.I. Grigorchuk used bounds on the coefficients of Hilbert-

Poincaré series of graded algebras associated with groups to bound their
growth functions. Namely, it was obtained that any residually p-group
whose growth function is not bounded above by polynomial, must grow
at least as e

√
n.

Y.G. Leonov [Leo01], L. Bartholdi and Z. Šunić [Bar98, BŠ01] used
more advanced techniques (common in spirit to the ones used in [Gri84])
also based on certain self-similarity of the groups acting on trees. In
obtaining the lower bounds for the growth functions of these groups the
important role was played by the property, which is in some sense opposite
to contraction. The main idea is that the restrictions of elements can not
be much shorter than the elements themselves.

A. Erschler used random walks and Poisson boundary to approach
to this question. In particular, in [Ers04] it was shown that the growth
function of Grigorchuk group Gω for ω = (01)∞, which is generated by 5-
state automaton, grows faster than enα

for any α < 1. The upper estimate
of the same sort was obtained for this group in spirit of [Gri84], which
shows that groups Gω for ω = (012)∞ and ω = (01)∞ have essentially
different growth functions.

Recall the definition of a G group.

Definition 4. Let R be a subgroup of Sym(X), D be any group with a
sequence of homomorphisms wi : D → Sym(X), i ≥ 1. Then R acts on
the first level of X∗ and D acts on X∗ in the following way. Each d ∈ D
defines the automorphism d̂ that acts trivially on the first level and is
given by its restrictions

d̂
∣

∣

0i1
= wi(d), i ≥ 1

and all the other restrictions act trivially on X. Denote D̂ = {d̂ | d ∈ D}.
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The group G = 〈R, D̂〉 is called a G group if the following conditions
are satisfied:

(i) The groups R and wi(D), i ≥ 1, act transitively on X.

(ii) For each d ∈ D the permutation wi(d) is trivial for infinitely many
indices.

(iii) For each nontrivial d ∈ D the permutation wi(d) is nontrivial for
infinitely many indices.

The groups R and D are called the root part and the directed part of G
correspondingly.

Note that in [BGŠ03] the definition of a G group is given in slightly
more general settings. The results in [BŠ01] and [BGŠ03] imply the
following theorem.

Theorem 10. All G groups with finite directed part have intermediate
growth.

There is a lower bound for the growth of such groups given in [BGŠ03]:

γG(n) � enα
, (5)

where α = log(|X|)
log(|X|)+log(2) .

The sequence of homomorphisms wi in the definition of a G group
is called r-homogeneous, if for every finite subsequence of r consecutive
homomorphisms wi+1, wi+2, . . . , wi+r every element of D is sent to the
identity by at least one of the homomorphisms from this finite subse-
quence. In particular, if the sequence of homomorphisms {wi, i ≥ 1}
defining a G group is periodic with period r, it is also r-homogeneous.

It is proved in [BŠ01] that in case of r-homogeneous sequence of defin-
ing homomorphisms there is an estimate of the upper bound on the
growth function. Moreover, in this case if the directed part has finite
exponent there is an upper bound on the torsion growth function π(n)
(the maximal order of an element of length at most n).

Theorem 11 (η-estimate). Let G be a G group defined by an r-homoge-
neous sequence of homomorphisms. Then the growth function of the
group G satisfies

γG(n) � enβ
, (6)

where β = log(|X|)
log(|X|)−log(ηr) < 1 and ηr is the positive root of the polynomial

xr + xr−1 + xr−2 − 2.
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If the directed part D of G has finite exponent q, then the group G is
torsion and there exists a constant C > 0, such that the torsion growth
function satisfies

π(n) ≤ Cnlog1/ηr
(q). (7)

Sushchansky groups Gλ are not G groups, because the automorphism
Bλ cannot be expressed as d̂ for some homomorphisms wi. On the other
hand, the automorphisms qi and ri can, and the following proposition
shows that the self-similar closure of Gλ contains a subgroup which is a
G group. Since the simplified definition of Gλ from Proposition 4 does
not simplify considerably the proofs in this section, we use the original
definition in order to make this section independent.

Proposition 12. The group H = 〈q1, r1, σ〉 is a G group with finite
directed part defined by a periodic sequence of homomorphisms with
period p2.

Proof. We prove that the subgroups 〈q1, r1〉 and 〈σ〉 are the directed and
the root parts of H.

First observe that 〈q1, r1〉 ≃ Zp ⊕ Zp. Indeed, the group 〈q1, r1〉 is
elementary abelian p-group by Lemma 2. Suppose that r1 ∈ 〈q1〉, r1 = qk

1 .
Comparing restrictions on words 0 . . . 01 we get vi = kui. Contradiction,
since ui = 0 and vi = 1 for i with βi = 0.

Consider the periodic sequence of homomorphisms wi : 〈q1, r1〉 →
Sym(X) with period p2 given by wi(q1) = σui and wi(r1) = σvi . Then
for any d ∈ 〈q1, r1〉 the associated d̂ from the definition of a G group
coincides with the automorphism d. To complete the proof we need to
check the conditions (i)–(iii) from the definition of a G group.

(i) The root part generated by σ acts transitively on X. Furthermore,
for any i ≥ 1

wi(q1) = σ, if βi 6= 0;

wi(r1) = σ, if βi = 0.

In any case wi(〈q1, r1〉) contains σ and thus acts transitively on X.

(ii),(iii) Let d = qk
1rl

1, k, l ∈ Zp, be an arbitrary nontrivial element of
〈q1, r1〉. Since the sequence wi is periodic it suffices to show at least one
occurrence of trivial and one occurrence of nontrivial wi(d).

Find i such that

(αi, βi) = (1, 0), if l = 0;

(αi, βi) = (k, l), if l 6= 0.
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Then

wi(d) =

{

wi(q
k
1 ) = σkui = 1, if l = 0;

wi(q
k
1rl

1) = σkui+lvi = σk+l(−k/l) = 1, if l 6= 0.

For a nontrivial occurrence find i such that

(αi, βi) = (0, 1), if l = 0;

(αi, βi) = (1, 0), if l 6= 0.

Then

wi(d) =

{

wi(q
k
1 ) = σkui = σk, if l = 0;

wi(q
k
1rl

1) = σkui+lvi = σl, if l 6= 0.

The last proposition shows that the growth function of H satisfies
inequalities (5) and (6), for r = p2. Also note that it is proved in [BGŠ03]
that a G group is torsion if and only if its directed part D is torsion.
Therefore, the group H is torsion. The next proposition exhibits another
branch structure inside G̃λ.

Proposition 13. The group H = 〈q1, r1, σ〉 is regular branch over its
commutator subgroup H ′.

Proof. Let Hk = 〈qk, rk, σ〉, k = 1, . . . , p2 be the subgroups of G̃λ. First
we show that

H ′
k � H ′

k+1 × H ′
k+1 × · · · × H ′

k+1 (8)

for all k. Indeed, at least one of uk and vk is nonzero. Suppose uk 6= 0.
Then relations qk = (qk+1, σ

uk , 1, . . . , 1) and rk = (rk+1, σ
vk , 1, . . . , 1)

imply

[qk, rk] = ([qk+1, rk+1], 1, . . . , 1),

[qk, (q
σ−1

k )1/uk ] = ([qk+1, σ], 1, . . . , 1),

[rk, (q
σ−1

k )1/uk ] = ([rk+1, σ], 1, . . . , 1).

Since the projection of the stabilizer of the first level in Hk on the leftmost
vertex coincides with Hk+1 we get H ′

k � H ′
k+1 × 1×· · ·× 1. Conjugation

by σ ∈ Hk implies inclusion (8). Since H1 = Hp2+1 = H, we obtain
H ′ � H ′×H ′×· · ·×H ′ as geometric embedding induced by the restriction
on Xp2

.
The transitivity of H on the levels is proved by the method used in

Proposition 3.
Now H is a torsion p-group, hence, so is H/H ′, which is abelian.

But each torsion finitely generated abelian group is finite. Thus, H ′ is a
subgroup of finite index in H.
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When we deal with a group G of automorphisms of X∗, it is sometimes
difficult to say something about the whole group, but we know something
about the group P generated by all the restrictions of the elements in G
on some level k of the tree. In case G is self-similar, P is a subgroup of
G and if G is self-replicating, P coincides with G. Some properties of P
are inherited by G itself. In particular, if P is finite or torsion then so is
G (the converse is not true). But what we are interested in here is that
the growth of G can be estimated in terms of the growth of P .

Let S be a finite generating set of G. Then P is generated by the set
S̃ of the restrictions of all elements of S on all vertices of k-th level Xk

of the tree. The following lemma holds.

Lemma 14. The growth function γG(n) of the group G with respect to
S is bounded from above by

γG(n) �
(

γP (n)
)|X|k

, (9)

where γP (n) is the growth function of the group P with respect to S̃.
In particular, the growth type of G (finite, polynomial, intermediate or
exponential) cannot exceed the one of P .

Proof. Let g ∈ G be an element of length n with respect to the generating
set S. This element induces a permutation πk of the k-th level of the
tree and |X|k restrictions g|v, v ∈ Xk, on words of length k. Moreover,
different automorphisms correspond to different tuples (πk, {g|v, v ∈ Xk})
of restrictions and permutations. Each such a restriction is a word of
length not greater than n with respect to the generating set S̃ of P . So
for each vertex v ∈ Xk the number of possible restrictions on v is bounded
from above by γP (n).

The following corollary shows an easy way to construct new examples
of groups with intermediate (finite, polynomial, exponential) growth.

Corollary 15. Let F be a finite set of automorphisms from Aut X∗,
whose restrictions on some level k belong to G (in particular, F could be
a set of finitary automorphisms). Then

γG(n) - γ〈G,F 〉(n) -
(

γG(n)
)|X|k

.

where γ〈G,F 〉(n) is the growth function of the group 〈G, F 〉 with respect
to S ∪ F .

In particular the previous corollary shows that if a group G is gener-
ated by a finite automaton, then the growth type of this group depends
only on the nucleus (see definition in [Nek05]) of this automaton.
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An interesting question is whether it is true that if G grows faster
than polynomially then γG(n) ∼ γ〈G,F 〉(n).

We are ready to prove the main results.

Theorem 16. All Sushchansky p-groups have intermediate growth. The
growth function of each Sushchansky p-group Gλ satisfies

enα
� γGλ

(n) � enβ
,

where α = log(p)
log(p)+log(2) , β = log(p)

log(p)−log(ηr) and ηr is the positive root of

the polynomial xr + xr−1 + xr−2 − 2, where r = p2.

Proof. The group generated by all the restrictions of elements of Gλ on
the second level is H = 〈q1, r1, σ〉, which is a G group of intermediate
growth by Proposition 12 and Theorems 10 and 11, whose growth function
satisfies inequalities (5) and (6). Therefore by Lemma 14 the Sushchansky
group Gλ has subexponential growth function, which satisfies inequality

γG(n) - (γH(n))p2
- γH(n). (10)

The last part of this inequality follows from Proposition 13, where it is
proved that H is regular branch over H ′.

Now consider the subgroup L = 〈Bλ, ABλAp−1, A2BλAp−2〉 of Gλ.
This subgroup stabilizes the second level of the tree and the restrictions
of the generators on the second level look like:

Bλ = (q1, ∗, . . . , ∗),
ABλAp−1 = (r1, ∗, . . . , ∗),
A2BλAp−2 = (σ, ∗, . . . , ∗).

Each word of length n in L will be projected on the corresponding
word of length n in H. Therefore γL(n) ≥ γH(n) for all n ≥ 1. But L is
a finitely generated subgroup of Gλ. Thus

γH(n) - γL(n) - γG(n). (11)

Inequalities (10) and (11) imply

γG(n) ∼ γH(n). (12)

Finally, it was mentioned above that the group H is torsion as a G

group with torsion directed part. But periodicity of H implies that Gλ

is periodic as well. This gives a different proof of Theorem 1 proved by
V.I. Sushchansky. The theory of G groups allows to sharpen this result.
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Theorem 17. There is a constant C > 0, such that the torsion growth
function of each Sushchansky p-group Gλ satisfies inequality

πGλ
(n) ≤ Cnlog1/ηr

(p),

where ηr is the same as in the previous theorem.

Proof. By Proposition 12 the group H is a G group defined by a p2-
homogenous sequence of homomorphisms, whose directed part 〈q1, r1〉 is
an elementary abelian p-group (see Lemma 2). Therefore by Theorem 11
the torsion growth function πH(n) satisfies inequality

πH(n) ≤ C1n
log1/ηr

(p)

for some constant C1.
For any element g of length n in Gλ, gp stabilizes the second level of

the tree and the restrictions of gp at the vertices of the second level are
the elements of H, whose length is not bigger than pn. Hence, the order
of gp cannot be bigger than the least common multiple of the orders of
g|v, v ∈ X2. Since the orders of these restrictions are the powers of p,
the least common multiple coincides with the maximal order among the
restrictions. This implies

Order(g) = p · Order(gp) ≤ pπH(pn) ≤ pC1(pn)log1/ηr
(p) ≤ Cnlog1/ηr

(p)

for C = C1p
log1/ηr

(p)+1.
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