Groups associated with modules over nearrings

O. D. Artemovych, I. V. Kravets

Dedicated to V.I. Sushchansky on the occasion of his 60th birthday

ABSTRACT. We construct a group D(I,T) associated with the pair (I,T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I,T) to be a Frobenius group.

0. Let N be a right nearring under two operations "+" and "·" with the identity element 1, i.e. (N,+) is a group with the zero 0, multiplication "·" is associative and $(y+z)\cdot x=y\cdot x+z\cdot x$ for all $x,y,z\in N$. As usual, an additive group (G,+) with the zero e is called a left N-module if (x+y)g=xg+yg and x(yg)=(xy)g for any $g\in G$ and $x,y\in N$. A subgroup H of G is called an N-submodule (or an N-subgroup) of G if $HN\subseteq H$. Recall that an N-module G is abelian if the additive group (G,+) is abelian and x(g+h)=xg+xh for all $g,h\in G, x\in N$. A submodule I of an N-module G will be called distributive with respect to subset T of N if x(g+h)=xg+xh for all $g,h\in G$ and $x\in T$. Moreover, G is unitary if 1g=g for any $g\in G$.

As it is well known $U(N) = \{d \in N \mid d \text{ is invertible in } N\}$ is a group under "·" (which is called the unit group of N).

In this paper we construct a group D(I,T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I,T) to be a Frobenius group.

Throughout this paper, all nearrings are right with an identity element and all modules are left. If H is a group, F its subgroup and $x, y \in H$, then $[x, y] = x^{-1}y^{-1}xy$ is the commutator of x and y, $y^x = x^{-1}yx$ and $F^x = x^{-1}Fx = \{y^x \mid y \in F\}$.

Other general notations and conventions in this paper follow closely those used in [1] and [2].

1. Let N be a right nearring and G be a left N-group. If T is a subgroup of U(N) and I is an N-subgroup of G, then on the set of pairs

$$D(I,T) = \{(a,b) \mid a \in I, b \in T\}$$

we define the algebraic operation by the rule

$$(a,b)(u,v) = (bu + a, bv).$$

$$\tag{1}$$

Lemma 1. Let N be a right nearring with the identity element 1, G an unitary left N-module with the zero e. If T is a subgroup of the unit group U(N) of N, I is an N-subgroup which is distributive with respect to T of G (in particular, I is an abelian N-submodule of G), then D(I,T)is a group with the identity element (e, 1) under the operation given by the rule (1) and, moreover,

$$D(I,T) = E \times F,$$

where a subgroup $E = \{(a, 1) \mid a \in I\}$ is isomorphic to the additive group I^+ of I and $F = \{(0, b) \mid b \in T\}$ is isomorphic to T.

Proof. The proof is immediate. We remark only that $(a,b)^{-1} = (-b^{-1}a,b^{-1})$ for any $a \in I$ and $b \in T$ for any $a \in I$ and $b \in T$.

Remember that a semidirect product $H = E \rtimes F$ of groups E and F is called a Frobenius group with a kernel E and a complement F if

$$F \cap F^g = 1$$

is called a Frobenius group with a kernel
$$E$$
 and
$$F\cap F^g=1$$
 for all $g\in H\backslash F$ and
$$E\backslash \{1\}=H\backslash \bigcup_{h\in H}F^h.$$

The following result extends Theorem 2.3 from [3].

Theorem 2. Let N be a right nearring with the identity element 1 and the zero 0, G an unitary left N-module with the zero e, T a nontrivial subgroup of the unit group U(N), I is a nontrivial N-subgroup of G which is distributive with respect to T. Then

$$H = D(I,T) = E \rtimes F$$

is a Frobenius group with a kernel E and a complement F, where E is isomorphic to the additive group I^+ of I and F is isomorphic to T, if and only if the following conditions hold:

- 1. $ann_{(T-1)}(i) = \{t-1 \in (T-1) \mid (t-1)i = e\} = \{0\}$ for any nontrivial element $i \in I$;
- 2. I = (b-1)I for every nontrivial element b of T.

Proof. (\Rightarrow) Let $H = E \times F$ be a Frobenius group with a kernel $E \cong I^+$ and a complement $F \cong T$. By Lemma 1.1 of [3] for every element $a \in I$ and every element $t \in T$ there exists $a_1 \in I$ such that

$$(a,1) = [(a_1,1), (e,t)].$$

But then

$$(a,1) = (-a_1,1)(e,t^{-1})(a_1,1)(e,t) = (1e-a_1,1t^{-1})(1e+a_1,1t) =$$

$$(-a_1,t^{-1})(a_1,t) = (t^{-1}a_1-a_1,t^{-1}t) = (t^{-1}a_1-a_1,1).$$
This means that
$$a = t^{-1}a_1 - a_1 = (t^{-1}-1)a_1 \in (t^{-1}-1)I.$$

This means that

$$a = t^{-1}a_1 - a_1 = (t^{-1} - 1)a_1 \in (t^{-1} - 1)I.$$

As a consequence $I = (t^{-1} - 1)I$ for each nontrivial element $t \in T$.

Let a be any nontrivial element of I. Suppose that (b-1)a = e for some element $b \in T$. Then

$$(e,b) = ((b-1)a,b) = (ba-a,b) = (-a,b)(a,1) = (1e-a,1b)(a,1) =$$
$$= (-a,1)(e,b)(a,1) = (a,1)^{-1}(e,b)(a,1) \in F^{(a,1)} \cap F.$$

Since

$$F^{(u,v)} \cap F = \langle (e,1) \rangle$$

for each $(u, v) \in H \setminus F$, we conclude that b - 1 = 0.

(⇐) Suppose that the conditions (1) and (2) are true for nontrivial elements $b \in T$ and $a \in I$. Since

$$a = (b-1)a_1$$

for some elements $a_1 \in I$, we deduce that

$$[(a_1,1),(e,b^{-1})] = (-a_1,1)(-be,b)(a_1,1)(e,b^{-1}) = (-a_1,1)(e,b)(a_1,1)(e,b^{-1}) = (1e-a_1,1\cdot b)(1e+a_1,1b^{-1}) = (-a_1,b)(a_1,b^{-1}) = (ba_1-a_1,bb^{-1}) = (a,1).$$

This yields that E = [E, (e, b)] for any nontrivial element $(e, b) \in F$.

Let $x \in I$ and $t, y \in T$, where $t \neq 1$. Then

$$(e,t)^{(x,y)} = ((y^{-1}t - y^{-1})x, y^{-1}ty) \notin E.$$

Suppose that $(c,t) \in H \setminus \bigcup_{(u,v)\in H} F^{(u,v)}$. Inasmuch as (t-1)I = I, there exists an element $x \in I$ such that $c = (t-1)y^{-1}x$ and so $(c,t) = (e,yty^{-1})^{(x,y)}$. Hence

$$E \setminus \{(e,1)\} = H \setminus \bigcup_{(x,y)\in H} F^{(x,y)}.$$

Now if $(u, v) \in H \setminus F$ and $(e, b) \in F \cap F^{(u,v)}$, then there is an element $(e, w) \in F$ such that

$$(e,b) = (u,v)^{-1}(e,w)(u,v)$$

and therefore

$$(e,b) = (-v^{-1}u, v^{-1})(e, w)(u, v) = (v^{-1}e - v^{-1}u, v^{-1}w)(u, v) = (-v^{-1}u, v^{-1}w)(u, v) = (v^{-1}wu - v^{-1}u, v^{-1}wv).$$

Since u = vi for some $i \in I$, we conclude that $e = v^{-1}wu - v^{-1}u = v^{-1}wvi - v^{-1}vi = (v^{-1}wv - 1)i$ and so, in view of (1), $v^{-1}wv - 1 = 0$. But then b = 1. Hence $F \cap F^{(u,v)} = \langle (e,1) \rangle$.

Corollary 3. If P is a skew-field and T is a nontrivial subgroup of the multiplicative group P^* , then $D(P^+,T)$ is a Frobenius group, where P^+ is the additive group of P.

Corollary 4. If G is a nontrivial abelian unitary left module over a right nearfield N, then D(G,T) is a Frobenius group for every nontrivial subgroup T of the multiplicative group N^* .

As in [2, Definition 1.6.34], a nearring N is called subcommutative if aN = Na for each $a \in N$. Recall [2, Definition 1.9.6] that a left N-module G is called strongly monogenic if G = Ng for some $g \in G$ and for all $h \in G$ it is either Nh = G or $Nh = \{e\}$. Moreover, G is faithful if $nG \neq \{e\}$ for any nonzero $n \in N$.

Proposition 5. Let G be a nontrivial faithful abelian strongly monogenic unitary left N-module, N a subcommutative right nearring N with the identity element 1. If T is a nontrivial subgroup of the unit group U(N), then $D(G,T)=E\rtimes F$ is a Frobenius group with a kernel $E\cong G^+$ and a complement $F\cong T$.

Proof. Let us $t \in T$. If $(e, t) \in F \cap F^{(g,1)}$ for some nonzero $g \in G$, then

$$(e,t) = (g,1)^{-1}(e,v)(g,1)$$

for some element $v \in T$ and from this

$$(e,t) = (-g,1)(e,v)(g,1) = (-g,v)(g,1) = ((v-1)g,v).$$

This gives that (v-1)g = e and v = t. Since G = Ng and

$$(v-1)G = (v-1)Ng = N(v-1)g = Ne = \{e\},$$

we obtain by the faithfulness of G that t = 1. Hence $F \cap F^{(g,1)} = \langle (e,1) \rangle$. Now if h is a nonzero element of G and t is a nontrivial element of T,

then

$$(t-1)G = (t-1)Nh = N(t-1)h = G$$

and therefore

$$(t-1)G = (t-1)Nh = N(t-1)h = G$$

$$E \setminus \{(e,1)\} = H \setminus \bigcup_{(u,v)\in H} F^{(u,v)}.$$

A zero-symmetric right nearring N is local if $_{N}L=\{k\in N\mid Nk\neq$ N} is an N-subgroup [4].

Proposition 6. Let G be a nontrivial abelian monogenic unitary left N-module, where N is a local right nearring with the identity element 1 and the zero $0 \neq 1$. If D(G, U(N)) is a Frobenius group, then N is a nearfield.

Proof. By the monogenity G = Ng for some nonzero element $g \in G$. Let j be a nontrivial element of NL. Since D(G,U(N)) is Frobenius, we deduce that G = (1 - (1 - j))G = jG and so g = jng for some $n \in \mathbb{N}$. But then (1-jn)g = e. In view of Corollary 2.6 and Lemma 2.4 from [4] there exists some $t \in N$ such that t(1-jn) = 1 and therefore g = t(1 - jn)g = te = e, a contradiction. This means that $NL = \{0\}$, as desired.

Example 7. Let (G, +) be a group with the zero e. The set $M(G) = \{f : g \in A \mid g \in A \}$ $G \to G \mid f$ is a mapping is a right nearring with the identity element i_G under two operations "+" and "o" defined by the rules

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
 and $(f_1 \circ f_2)(x) = f_1(f_2(x))$

for all elements $x \in G$ and $f_1, f_2 \in M(G)$, where f(x) means an image of x with respect to $f \in M(G)$. Hence G is an unitary left M(G)-module.

- 1) Let G be a torsion-free divisible abelian group. If $s: G \to G$ is a mapping defined by the rule s(g) = 2g for all $g \in G$, then $s^n(g) = 2^n g$ for all $n \in \mathbb{Z}$ and $(i_G s^n)(h) = (1 2^n)h \neq e$ for each nonzero element $h \in G$. Moreover, $(i_G s^n)(G) = G$ for any nonzero $n \in \mathbb{Z}$. By Theorem 2 $D(G, \langle s \rangle)$ is a torsion-free Frobenius group.
- 2) If $f:G\to G$ is a regular automorphism of G and $G=\{g-f^n(g)\mid g\in G\}$ for any nonzero $n\in\mathbb{Z}$, then $D(G,\langle f\rangle)$ is a Frobenius group.
- 3) Let G be a torsion-free abelian group, 2G = G anf $t: G \to G$ is a mapping defined by the rule t(g) = -g for each $g \in G$. Then $t^2 = i_G$, $(1-t)(h) = h+h \neq e$ for any nontrivial $h \in G$ and (1-t)(G) = 2G = G. This means that $D(G, \langle t \rangle)$ is a Frobenius group.
- 4) Let N be a distributive nearring with the identity element 1 and P be a subfield of N with the identity element 1. Suppose that $G = N^+$ is the additive group of N and a is a fixed element from $P \setminus \{0,1\}$. Then a mapping $\phi: G \to G$ given by $\phi(u) = ua \ (u \in N)$ is an automorphism of G and $\phi^n(u) = ua^n$ for any $n \in \mathbb{Z}$.

If $a^n \neq 1$ for any nonzero $n \in \mathbb{Z}$, then $(i_G - \phi^n)(h) = h(1 - a^n) = 0$ if and only if h = 0. Since $1 - a^n \in P^*$, we deduce that $(i_G - \phi^n)(G) = G$. Hence $D(N^+, \langle \phi \rangle)$ is a Frobenius group.

Now suppose that $a^n=1$ and n is the smallest positive integer with this property. Then $(i_G-\phi^s)(h)=h(1-a^s)\neq 0$ for all nonzero $h\in G$ and integers s such that $1\leq s\leq n-1$. Moreover, $(i_G-\phi^s)(G)=G(1-a^s)=G$. From this it follows that $D(N^+,\langle\phi\rangle)$ is a Frobenius group.

References

- [1] G. Pilz, Near-ring (2nd ed.), North-Holland, Amsterdam, 1983.
- [2] C. Cotti Ferrero and G. Ferrero, Nearrings (Some Developments Linked to Semi-groups and Groups), Kluwer, Dordrecht Boston London, 2002.
- [3] O.D. Artemovych, On Frobenius groups associated with modules, *Demonstratio Math.* 31 (1998), 875-878.
- [4] C.J. Maxson, On local near-rings, Math. Zeitschrift, 106 (1968), 197-205.

CONTACT INFORMATION

O. D. Artemovych

Institute of Mathematics, Cracow University of Technology, ul. Warszawska 24, Cracow 31155, POLAND

E-Mail: artemo@usk.pk.edu.pl

I. V. Kravets

Department of Algebra and Logic, Lviv National University of Ivan Franko, University St 1, Lviv 79000, UKRAINE

E-Mail: yana_stud_lviv@rambler.ru