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Abstract. We consider elements of linear algebra based on

triangular tables with entries in some number field and their func-

tions, analogical to the classical notions of a matrix, determinant

and permanent. Some properties are investigated and applications

in various areas of mathematics are given.

Introduction

In the past decades the process of implementing of the notions and meth-
ods of linear algebra into combinatorial analysis has been intensified. In
particular, there is a well-known monograph by Babai and Frankl [1], and
also monographs by V.E. Tarakanov [16] and I.V.Protasov, O.M.Khromu-
lyak [2], which discuss this topic.

The present paper is a continuation of this process. The functions
of triangular tables analogical to classical functions of determinant and
permanent are considered. While the idea of a determinant is mainly
based on the notions of a permutation and a transversal (tuple of elements
of a square matrix taken one at a time from each row and each column),
the idea of paradeterminant is based on the notions of an ordered partition
of a positive integer [6] and a monotransversal (tuple of elements of a
triangular matrix taken by one from each column). Mainly due to the
implementation of the notion of ordered partition in the construction
of functions of triangular tables, the latter gained many applications in
combinatorial analysis (see [20]–[22], [24]).

2000 Mathematics Subject Classification: 15A15.
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The author was led to the idea of paradeterminants by the combi-
natorial problem of computing the number P (n1, n2, . . . , nr) of shortest
paths in Ferrer graphs. Originally the following formula was obtained

P (n1, n2, . . . , nr) =

=
∑

{s
k1
1 ,...,s

kl
l
}∈Ξ(r)

(−1)r−(λ1+...+λp)
Πl

j=1Π
kj−1
i=0 (nsj

− kj + i + 2)

Πl
i=1ki!

,

where Ξ(r) is the set of multisets A = {sk1
1 , . . . , s

kl

l } defined on page 112,
and {λ1, λ2, . . . , λp} is a secondary specification [17] of a multiset A. This
result was obtained in 1985. Later on, around 2000, while simplifying this
formula author came to the idea of some functions of triangular tables of
elements, which are called here paradeterminants and parapermanents of
triangular matrices, after a suggestion by A.G. Ganyushkin.

The main notions of the theory of paradeterminants were exposed
by the author in 2002 (see [21],[19],[18]). Later, A.G. Ganyushkin [25]
proved theorem 2, which happened to be useful in applications of pa-
radeterminants to partition polynomials and formal power series. Since
paradeterminants have found their applications in several areas of mathe-
matics, the problem of construction of convenient algorithms for comput-
ing these functions of triangular matrices naturally arose. This problem
was formulated by I.V. Protasov and successfully solved (see theorem 4)
by I.I. Lischinsky [25]. In 2003 I.I. Lishchinsky found the connection be-
tween paradeterminants and some class of determinants (see theorem 18).
Approximately at the same time, during discussion related to some prob-
lem about F–determinants, it was noticed by the author and N.M.Dyakiv
[26] that F–determinants [21] are a special case of paradeterminants.

Since 2002, all the efforts of the author have been devoted to finding
applications of paradeterminants and parapermanents. As a result, their
applications were found in number theory and the theory of continued
fractions. They appeared to be useful in solving linear recurrent equa-
tions, for partition polynomials, operations with formal power series and
also in solving combinatorial and some other problems.

It should be noted here that the theory of paradeterminants is being
developed under a constant communication between the author and the
two Ukrainian mathematicians R.I. Grigorchuk and A.G. Ganyushkin.

1. Definition of a paradeterminant and parapermanent

Let K be a fixed number field.
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Definition 1. A triangular table of numbers from some field K

A =











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











n

(1.1)

is called a triangular matrix, and the number n is called its order.
Note that a triangular matrix in the definition is not a matrix in

the usual sense because it is triangular rather than rectangular table of
numbers.

Definition 2. A matrix of the form

A =











M1

0 M2
...

...
. . .

0 0 · · · Ms











n

, (1.2)

where Mi, i = 1, . . . , s are some triangular matrices and 0’s denote some
rectangular zero matrices, is called a triangular block–diagonal matrix

To every element aij of the matrix (1.1) we correspond the (i− j +1)
elements aik, k = j, . . . , i, which are called the derived elements of the
matrix generated by the key element aij .

The product of all derived elements generated by the element aij is
denoted by {aij} and called the factorial product of the key element aij ,
i.e.

{aij} =
i
∏

k=j

aik.

Definition 3. A tuple of key elements of the matrix (1.1) is called a
normal tuple of this matrix if the derived elements of these key elements
form a monotransversal, i.e. they form a set of elements of cardinality n,
no two of which belong to the same column in the matrix.

Let P(n) be the set of all ordered partitions (compositions) (see [5],
[6], p. 67) of a positive integer n into positive integer summands. It is
known that

|P(n)| =
n
∑

r=1

(

n − 1

r − 1

)

= 2n−1. (1.3)

It is easy to see that there is a 1 − 1 correspondence between normal
tuples of key elements of matrix (1.1) and compositions of a positive
integer n.
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We associate a sign (−1)ε(a) to every normal tuple a of key elements,
where ε(a) is the sum of all the indices of the key elements of this tuple.

Definition 4. The paradeterminant of a triangular matrix (1.1) is the
number

ddet(A) =

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

=

=
∑

(α1,α2,...,αr)∈P(n)

(−1)ε(a)
r
∏

s=1

{ai(s),j(s)},

where ai(s),j(s) is the key element corresponding to the s-th component
of the partition α = (α1, α2, . . . , αr), and the symbol ε(a) is the sign of
the normal tuple a of key elements.

In analogy to the notion of paradeterminant of a matrix (1.1) we
introduce the notion of a parapermanent of a triangular matrix.

Definition 5. The paradeterminant of a triangular matrix (1.1) is the
number

pper(A) =











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











=
∑

(α1,α2,...,αr)∈P(n)

r
∏

s=1

{ai(s),j(s)},

where ai(s),j(s) is the key element corresponding to the s-th component
of the partition α = (α1, α2, . . . , αr).

Remark 1. According to (1.3) the paradeterminant and the paraperma-
nent of a matrix of order n consist of 2n−1 summands.

Example 1. The parapermanent of a 3-rd order matrix is equal to:

a11

a21 a22

a31 a32 a33

= a11a22a33 − a21a22a33 − a11a32a33 + a31a32a33.

Definition 6. (see [13], [3]) A multiset A is any unordered tuple of
elements of some set [A], which is called a basis of this multiset.

The number k of times an element a of a set [A] occurs in a multiset
A is called the multiplicity of a in A and is denoted as ak ∈ A. Multisets
are mostly written in their canonical form as A = {ak1

1 , . . . , akn
n }.
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Definition 7. Ξ(n)-set is the set of all ordered multisets

ξ = {ξ(1), ξ(2), . . . , ξ(n)}

satisfying the following conditions:
1) ξ(j) satisfies inequality j ≤ ξ(j) ≤ n, j = 1, 2, . . . , n;
2)for each j = 1, 2, . . . , n the following equality holds: ξ(j) = ξ(j +

1) = . . . = ξ(ξ(j)).

Remark 2. If j = n then inequality 1) implies ξ(n) = n.

Proposition 1. (i) The set Ξ(n) contains 2n−1 elements, and Ξ(1) =
{{1}}.
(ii) If Ξ(k) is already constructed, then the elements of Ξ(k + 1) can be
obtained in the following way: 2k−1 elements are obtained by adding k+1
at the (k + 1)-st place in each k–multiset from Ξ(k), and the other 2k−1

elements are obtained by replacing k with k + 1 and adding k + 1 at the
(k + 1)-st place in each k-multiset from Ξ(k).

Theorem 1. If A is a triangular matrix (1.1) then the following equalities
hold:

ddet(A) =
∑

ξ∈Ξ(n)

(−1)n−r · aξ(1),1aξ(2),2 · . . . · aξ(n),n,

pper(A) =
∑

ξ∈Ξ(n)

aξ(1),1aξ(2),2 · . . . · aξ(n),n,

where r is the number of elements in the basis of the multiset ξ, i.e.
number of its distinct elements.

Theorem 2. (Ganyushkin O.G.) If A is a triangular matrix (1.1), then
the following equalities hold:

ddet(A) =

n
∑

r=1

∑

α1+...+αr=n

(−1)n−r
r
∏

s=1

{aα1+...+αs,α1+...+αs−1+1}, (1.4)

pper(A) =
n
∑

r=1

∑

α1+...+αr=n

r
∏

s=1

{aα1+...+αs,α1+...+αs−1+1}, (1.5)

where the summation is over the set of positive integer solutions of the
equation α1 + . . . + αr = n.

Let us define product of a vector (b1, b2, . . . , bn) with a matrix parade-
terminant (1.1), using equality (1.4) by

(b1, b2, . . . , bn) · ddet(A)
def
= (1.6)
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=
n
∑

r=1

br ·
∑

α1+...+αr=n

(−1)n−r
r
∏

s=1

{

aα1+...+αs,α1+...+αs−1+1

}

.

Analogously define product of a vector (b1, b2, . . . , bn) with a matrix
parapermanent using equality (1.5) by

(b1, b2, . . . , bn) · pper(A)
def
= (1.7)

=
n
∑

r=1

br ·
∑

α1+...+αr=n

r
∏

s=1

{

aα1+...+αs,α1+...+αs−1+1

}

.

To each element aij of a triangular matrix (1.1) we associate the
triangular table of elements of this matrix that has aij in the bottom left
corner. We call this table a corner of the matrix and denote it by Rij .
Obviously, the corner Rij is a triangular matrix of order (i − j + 1), and
it contains only elements ars of matrix (1.1) whose indices satisfy the
inequalities j ≤ s ≤ r ≤ i.

In the sequel we will assume that

ddet(R01) = pper(R01) = ddet(Rn,n+1) = pper(Rn,n+1) = 1.

Definition 8. A rectangular table, denoted T (i), i = 1, 2, . . . , n, of ele-
ments of a triangular matrix (1.1) is inscribed in this matrix if one of its
vertices coincides with the element an1, and the opposite one coincides
with the element aii. We will denote this table by T (i).

Remark 3. According to definition 8, T (1) is the fist column and T (n)
is the last row of the matrix.

In order to compute paradeterminants and parapermanents it is con-
venient to use algebraic complements.

Definition 9. The numbers

Dij = (−1)i+j · ddet(Rj−1,1) · ddet(Rn,i+1),

Pij = pper(Rj−1,1) · pper(Rn,i+1),

where Rj−1,1 and Rn,i+1 are corners, are called the algebraic complements
to the factorial product {aij} of the key element aij of the triangular
matrix (1.1).

More detailed information about the notions in the first section can
be found in [18].
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2. Properties of paradeterminants and parapermanents of

triangular matrices

Although the definitions of paradeterminants and parapermanents sig-
nificantly differ from the classical definitions of determinants and perma-
nents, their properties are similar in many ways.

Proposition 2. [18] Let each elements ari, r = i, i + 1, . . . , n of the
i-th column of the triangular matrix (1.1) be a sum of two elements
bri + cri. Then the paradeterminant of this matrix equals the sum of two
paradeterminants corresponding to matrices whose elements are equal to
the elements in A, except for the elements in the i-th column, which are
equal to bri and cri, r = i, i + 1, . . . , n, respectively.

Analogous statement is true for parapermanents.

Proposition 3. [18] For a block-diagonal triangular matrix (1.2) the
following is true:

ddet(A) = ddet(M1) · ddet(M2) · . . . · ddet(Ms)

pper(A) = pper(M1) · pper(M2) · . . . · pper(Ms)

A proposition on differentiation of paradeterminants and paraperma-
nents analogous to the one for determinants and permanents of a square
matrix holds.

Theorem 3. [18] ( Decomposition of paradeterminant and paraperma-
nent by elements of an inscribed rectangular table) Let A be triangular
matrix (1.1) and T (i) be some inscribed rectangular table. Then the
following equalities hold:

ddet(A) =
i
∑

s=1

n
∑

r=i

{ars} · Drs, (2.1)

pper(A) =
i
∑

s=1

n
∑

r=i

{ars} · Prs, (2.2)

where Drs and Prs are the algebraic complements to the factorial product
of the key element ars, which belongs to the inscribed rectangular table
T (i).
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Corollary 1. For i = 1 by formulae (2.1)–(2.2) and 3, obtain the de-
composition of paradeterminant and parapermanent by elements of their
first column

ddet(A) =
n
∑

r=1

(−1)r+1 · {ar1} · ddet(Rn,r+1),

pper(A) =
n
∑

r=1

{ar1} · pper(Rn,r+1).

For i = n obtain the respective decompositions by elements of last row

ddet(A) =
n
∑

s=1

(−1)n+s · {ans} · ddet(Rs−1,1),

pper(A) =
n
∑

s=1

{ans} · pper(Rs−1,1).

It is known that the question of Polia ”Does there exist a way to assign
+ and − sign to each element of a square matrix of order n, n ≥ 3, in
such a way that its permanent would be equal the determinant?” doesn’t
have a positive answer. Moreover, Markus and Minc proved [9] that for
n ≥ 3 there is no linear transformation T on the set of all matrices of
order n such that per(T (A)) = det(A).

But this is not the case for paradeterminants and parapermanents.
Proposition.[18] If A is a triangular matrix (1.1), then the following

equality holds

ddet((−1)δij+1 · aij)1≤j≤i≤n = pper(aij)1≤j≤i≤n. (2.3)

Remark 4. Using multiplication of vectors by paradeterminants (see
(1.6), p. 112), equality (2.3) can be written as

((−1)n−1, (−1)n−2, · · · , (−1)0) ·

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

=

=











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











.
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The following theorem provides a convenient way of computing pa-
radeterminants and parapermanents.

Theorem 4. (Lishchinsky I.I.) The following equalities hold:

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

= (−1) ·

(a21 − a11) · a22

(a31 − a11) · a32 a33
...

...
. . .

(an1 − a11) · an2 an3 · · · ann

,











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











n

=











(a21 + a11) · a22

(a31 + a11) · a32 a33
...

...
. . .

(an1 + a11) · an2 an3 · · · ann











n−1

.

Remark 5. To find the value of a paradeterminant (parapermanent)

it is enough to perform n·(n−1)
2 multiplications and the same number

of additions. Since a triangular matrix contains n·(n+1)
2 entries and all

of them affect the value, the proposed algorithm cannot be essentially
improved.

Note that we listed only a few established paradeterminant and para-
permanent properties. Other properties can be found in the paper [18].

3. Applications of parapermanents in the investigation of

linear recurrent sequences of k-th order

Parapermanents of triangular matrices are convenient tools for investi-
gation of linear recurrent sequences. They can be used to solve linear
recurrent equations of k-th order, and to establish some important func-
tional relations between the terms of sequences generated by recurrent
equations. Also they are used to define an important class of so called
normal initial conditions in linear recurrent equations.

Theorem 5. [18] Consider a linear equation of k-th order

un = a1 ·un−1 + . . .+ak ·un−k, a1 6= 0, 1 ≤ k ≤ n, n = k+1, k+2, . . . ,

(3.1)
with initial conditions

ui = a
(0)
i , a

(0)
i ∈ R, i = 1, . . . , k. (3.2)
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Then the following equality holds

un =































a1x1x2
a2
a1

x1 a1x3

· · · · · ·
. . .

ak−1

ak−2
x1

ak−2

ak−3
· · · a1xk

ak

ak−1
x1

ak−1

ak−2
· · · a2

a1
a1

0 ak

ak−1
· · · a3

a2

a2
a1

a1

· · · · · · · · · · · · · · · · · ·
. . .

0 0 · · · 0 ak

ak−1
· · · a2

a1
a1































n−1

, (3.3)

u1 = x1, n = k + 1, k + 2, · · · ,

where the corrections xi are defined by the equalities

x1 = a
(0)
1 , xi =

a
(0)
i

a1a
(0)
i−1 + a2a

(0)
i−2 + · · · + ai−2a

(0)
2 + ai−1a

(0)
1

, i = 2, . . . , k,

The following is also true

a
(0)
1 + a

(0)
2 · (1 − 1

x2
) · x1 + . . . + a

(0)
k · (1 − 1

xk
) · xk−1

1 − a1x − . . . − akxk
=

∞
∑

i=1

uix
i−1.

(3.4)

Remark 6. For k = 1 equality (3.3) is of the form

un =











a1x1

0 a1

· · · · · ·
. . .

0 0 · · · a1











n−1

.

Remark 7. If some coefficient ai, i = 2, . . . , k− 1 in the recurrent equa-
tion (3.1) equals zero, then the zeros cancel out in the evaluation of
paradeterminants or parapermanents and the indefiniteness disappears.

Let us denote

ui = a1a
(0)
i−1 + a2a

(0)
i−2 + . . . + ai−1a

(0)
i , i = 2, . . . , k.

The differences ui − ui will be called defects. The equality (3.4) can then
be written as

u1 +
∑k

i=2(ui − ui) · x
i−1

1 − a1x − . . . − akxk
=

∞
∑

i=1

uix
i−1 (3.5)
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Definition 10. Let us call initial conditions

u1 = 1, ui =











a1
a2
a1

a1

· · · · · ·
. . .

ai−1

ai−2

ai−2

ai−3
· · · a1











i−1

, i = 2, . . . , k (3.6)

of the recurrent equation (3.1) normal initial conditions.

Remark 8. If initial conditions in the equation (3.1) are normal, then
all corrections xi, i = 1, . . . , k, in the equality (3.3) are equal to one, and
all defects in the equality (3.5) are equal to zero. Then equality (3.5)
may be written as

1

1 − a1x − . . . − akxk
=

∞
∑

i=1

uix
i−1.

As noted before, it is easy to establish general functional relations
between terms of sequences generated by linear recurrent equations of
k-th order by using parapermanents, which are relatively hard to prove
even in the case k = 2.

Theorem 6. If sequences {u∗
n}

∞
n=1, {un}

∞
n=1 satisfy the recurrent equa-

tion (3.1) of k-th order with initial conditions (3.2) and (3.6) respectively,
and k < r, then

u∗
r+s =

k
∑

i=1

ai





r
∑

j=r−i+1

u∗
jur+s−i−j+1



 . (3.7)

Corollary 2. If a sequence {un}
∞
n=1 satisfies the recurrent equation (3.1)

with normal initial conditions (3.6), then

ur+s =
k
∑

i=1

ai





r
∑

j=r−i+1

ujur+s−i−j+1



 . (3.8)

To establish relation (3.8) it is enough to decompose the paraperma-
nent which is the solution of equation (3.1) with normal initial conditions,
by elements of some inscribed rectangular table.

The next two theorems illustrate application of parapermanents in in-
vestigating number-theoretic properties of sequences generated by linear
recurrent equation of second order.

We essentially use relations (3.7), (3.8) for k = 2.
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Theorem 7. Let the sequence {uk}
∞
k=1 satisfy the recurrent equation of

second order
un+2 = a1un+1 + a2un (3.9)

with integer non-zero coefficients and normal initial conditions

u1 = 1, u2 = a1.

Then
1) the following equalities hold:

ur+s = ur+1us + a2urus−1, r = 1, 2, . . . ; s = 2, 3, . . . ,

usr ≡ 0(mod ur), s, r = 1, 2, . . . ;

2) if the coefficients in (3.9) are relatively prime, i.e. (a1, a2) = 1,
then

(us, ur) = u(s,r).

Corollary 3. If the sequence {uk}
∞
k=1 satisfies the conditions of theorem

7 and uk 6= 1, 2 ≤ k, then us is a prime if and only if s is a prime.

Corollary 4. Let the sequence {uk}
∞
k=1 satisfy conditions of theorem 7

and p be a prime. Then up is relatively prime with all previous terms of
this sequence.

Corollary 5. Let the sequence {uk}
∞
k=1 satisfy the conditions of theorem

7. If a2 = b2, where b is an integer, then each term u2m+1, 1 < m of this
sequence can be represented as a sum of squares of two natural numbers

u2m+1 = u2
m+1 + (bum)2.

Corollary 6. For each natural number m > 0 the following holds:

m
∑

i=0

(−1)i

(

2m − i

i

)

a2(m−i)b2i =

=





[m/2]
∑

i=0

(−1)i

(

m − i

i

)

am−2ib2i −

−

[(m−1)/2]
∑

i=0

(−1)i

(

m − i − 1
i

)

am−2i−1b2i+1



×

×





[m/2]
∑

i=0

(−1)i

(

m − i

i

)

am−2ib2i +

+

[(m−1)/2]
∑

i=0

(−1)i

(

m − i − 1
i

)

am−2i−1b2i+1
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Example 2. For m = 7 and m = 11 identity (2) can be written as:

a6 − 5a4b2 + 6a2b4 − b6 = (a3 − 2ab2 − a2b + b3) · (a3 − 2ab2 + a2b − b3),

a10 − 9a8b2 + 28a6b4 − 35a4b6 + 15a2b8 − b10 =

= (a5 − a4b − 4a3b2 + 3a2b3 + 3ab4 − b5)·

·(a5 + a4b − 4a3b2 − 3a2b3 + 3ab4 + b5).

Remark 9. Since the recurrent equation un+2 = un+1 + un generates
the Fibonacci sequence, theorem 7 can be considered as generalization of
some relations between Fibonacci numbers (see [7], p. 325-327).

Theorem 8. Let the sequences {un}
∞
n=1 and {u∗

n}
∞
n=1 satisfy a recurrent

equation of second order

un+2 = a1un+1 + a2un

with initial conditions

u1 = 1, u2 = a1; u∗
1 = k, u∗

2 = a1,

respectively. Then:

(1)for each n, n ≥ 3, the following holds

u∗
n = un + (k − 1)a2un−2;

(2) If

k = a2 = s2 + 1,

and 0 < a1, then for each n, n ≥ 3, the number u∗
2n−1 is a sum of three

squares:

u∗
2n−1 = (un)2 + ((s2 + 1) · un−1)

2 + ((s3 + s) · un−2)
2; (3.10)

(3) If

k = s2 + 1, a2 = b2,

then for each n, 2 ≤ n the number u∗
2n+1 is a sum of four squares:

u∗
2n+1 = u2

n+1 + (bun)2 + (sbun)2 + (sb2un−1)
2. (3.11)

Example 3. Let a1 = 4, s = 2 in theorem 8 . Then u1 = a2 = k = 5,

u∗
n =

1

2
· (3 · 5n−1 + 7 · (−1)n−1), un =

1

6
· (5n + (−1)n−1)
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and equality (3.10) can be written as

1

2
· (3 · 52n−2 + 7) ==

(

1

6
· (5n + (−1)n−1)

)2

+

(

5

6
· (5n−1 + (−1)n−2)

)2

+

(

5

3
· (5n−2 + (−1)n−3)

)2

.

In particular, for n = 13 the last equality provides a decomposition of
the prime number 89406967163085941 into sum of three squares:

89406967163085941 = 2034505212 + 2034505202 + 813802102.

Example 4. If in theorem 8, (3) we put a1 = 3, a2 = b = 2, s = 1,
then u∗

n = 4n−1 + (−1)n−1, un = 1
5 · (4n + (−1)n−1) and equality (3.11)

transforms to

24m + 1 =

(

4m+1 + (−1)m

5

)2

+

(

22m+1 + (−1)m−1 · 2

5

)2

+

+

(

22m+1 + (−1)m−1 · 2

5

)2

+

(

22m + (−1)m−2 · 4

5

)2

.

Since Fermat numbers Fn = 22n

+ 1 can be written as 24m + 1 for
all n ≥ 2, they can be decomposed into sum of four squares of positive
integers for all n ≥ 3.

4. Applications of parapermanents to the study of contin-

ued fractions

Suppose we are given some continued periodic fraction

δ = a0 +
b1

a1 +

b2

a2 +···+

bn

an +···

= a0 +
∞
K
i=1

(

bi

ai

)

,

where

ask+m = am > 0; bsk+m = bm > 0; m = 1, . . . , k; s = 0, 1, . . . ; k ≥ 2

and its n-th approaching fraction

δn ==
Pn

Qn
= a0 +

b1

a1 +

b2

a2 +···+

bn

an
= a0 +

n
K
i=1

(

bi

ai

)

,

where
Pn = anPn−1 + bnPn−2, P−2 = 0, P−1 = 1,
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Qn = anQn−1 + bnQn−2, Q−2 = 1, P−1 = 0, b0 = 1.

It is easy to see that

Pn =

















a0
b1
a1

a1

0 b2
a2

a2

· · · · · · · · ·
. . .

0 . . . 0 bn

an
an

















, n = 0, 1, . . . ;

Qn =

















a1
b2
a2

a2

0 b3
a3

a3

· · · · · · · · ·
. . .

0 . . . 0 bn

an
an

















, n = 1, 2, . . .

Theorem 9. [23] The sequence

δr = a0 + b1 ·
Br−1

Ar
,

where

Ar = b1 · α · Br−2 + β · Ar−1, Br−1 = b1 · γ · Br−2 + λ · Ar−1,

α =

















a1
b2
a2

a2

0 b3
a3

a3

· · · · · · · · ·
. . .

0 . . . 0
bk−1

ak−1
ak−1

















, β = A1 =

















a1
b2
a2

a2

0 b3
a3

a3

· · · · · · · · ·
. . .

0 . . . 0 bk

ak
ak

















,

γ =

















a2
b3
a3

a3

0 b4
a4

a4

· · · · · · · · ·
. . .

0 . . . 0
bk−1

ak−1
ak−1

















, λ = B0 =

















a2
b3
a3

a3

0 b4
a4

a4

· · · · · · · · ·
. . .

0 . . . 0 bk

ak
ak

















,

such that the following inequality is satisfied

ω =
b1

β2
· |βγ − αλ| < 1,

converges to δ, and moreover there is an error bound of the form

|δ − δr| < σ ·
ωr

1 − ω
,
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where

σ =
b1λβ

b1λα + β2
.

Remark 10. When k = 2 we assume γ = 1.

Analogous theorem on combined continued fractions is proved in [23].

5. Paradeterminants and partition polynomials

The notion of partition polynomials introduced by Bell [8] has wide range
of applications in discrete mathematics. They appear in differentiation
of composite functions [10], [12], in number theory [11], algebra, etc. In
this section identities between some important partition polynomials and
paradeterminants of triangular matrices are established.

Consider a triangular matrix of the form

A =









k11 · x1

k21 ·
x2
x1

k22 · x1

· · · · · · · · · · · · · · · · · · · · · · · ·
kn1 ·

xn

xn−1
kn2 ·

xn−1

xn−2
· · · knn · x1









n

=

(

kij ·
xi−j+1

xi−j

)

1≤j≤i≤n

,

(5.1)
x0 = 1, where kij is some rational function of i and j.

Let M be a fixed multiset with primary specification of Sachkov [17]
of the form

[

1λ1 , 2λ2 , . . . , nλn
]

.

If the exponents of the primary specification of a multiset M satisfy
the equation λ1 + 2λ2 + . . . + nλn = n then such a multiset is called an
unordered partition of the positive integer n and is denoted by π(n).

The sum of all elements of the primary specification of a partition
π(n) is denoted by λ(π), i.e.

λ(π) = λ1 + λ2 + . . . + λn.

Note that λ(π) has certain combinatorial sense, namely it is the number
of components of the partition π(n).

Let Π(n) be the set of all multisets π(n), and Πk(n) be the set of
all multisets π(n) such that the exponents of their primary specifications
satisfy the equality λ(π) = k.

Definition 11. Partition polynomials are polynomials of the form

P (x1, . . . , xn) =
n
∑

k=1

yk ·
∑

π(n)∈Πk(n)

c(n; λ1, . . . λn) · xλ1
1 · . . . · xλn

n , (5.2)

where yk, c(n; λ1, . . . , λn) are some rational numbers.
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Remark 11. If all yk in the equality (5.2) are equal to 1, then it can be
transformed to the following form

P (x1, . . . , xn) =
n
∑

k=1

∑

π(n)∈Πk(n)

c(n; λ1, . . . , λn) · xλ1
1 · . . . · xλn

n =

=
∑

π(n)∈Π(n)

c(n; λ1, . . . λn) · xλ1
1 · . . . · xλn

n . (5.3)

Polynomials of the form (5.3) are called primary partition polynomials.

Theorem 10. Paradeterminants and parapermanents of triangular ma-
trices of the form (5.1) are primary partition polynomials, i.e. the equal-
ities

pper(A) =
∑

π(n)∈Π(n)

c(n; λ1, . . . , λn) · xλ1
1 · . . . · xλn

n , (5.4)

ddet(A) =
∑

π(n)∈Π(n)

(−1)n−λ(π) · c(n; λ1, . . . , λn) · xλ1
1 · . . . · xλn

n . (5.5)

are satisfied.

If the equalities (5.4)-(5.5) are satisfied, then the partition polynomi-
als

n
∑

k=1

yk ·





∑

π(n)∈Πk(n)

c(n; λ1, . . . , λn) · xλ1
1 · . . . · xλn

n



, (5.6)

n
∑

k=1

yk ·





∑

π(n)∈Πk(n)

(−1)n−k · c(n; λ1, . . . , λn) · xλ1
1 · . . . · xλn

n



,

according to the definition (1.6) of a product of a vector and a parade-
terminant and the definition (1.7) of a product of a vector and a parap-
ermanent, may be written in the form of products:

(y1, . . . , yn) ·

τ11 · x1

τ21 ·
x2
x1

τ22 · x1

... · · ·
. . .

τn1 ·
xn

xn−1
τn2 ·

xn−1

xn−2
· · · τnn · x1

(y1, . . . , yn) ·









τ11 · x1

τ21 ·
x2
x1

τ22 · x1

· · · · · · · · · · · · · · · · · · · · ·
τn1 ·

xn

xn−1
τn2 ·

xn−1

xn−2
· · · τnn · x1
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Definition 12. A triangular matrix of the form

Bn(a1, a2, . . . , an) =

=





















a1
1
1 · a2

a1
a1

1
2 · a3

a2

2
1 · a2

a1
a1

... · · · · · ·
. . .

1
n−2 · an−1

an−2

2
n−3 · an−2

an−3

3
n−4 · an−3

an−4
· · · a1

1
n−1 · an

an−1

2
n−2 · an−1

an−2

3
n−3 · an−2

an−3
· · · n−1

1 · a2
a1

a1





















n

=

=

(

j

i − j + j · δij
·
ai−j+1

ai−j

)

is called a triangular Bell matrix.

Proposition 4. The right part of the Faa di Bruno formula

dn

dxn
f(g(x)) =

n
∑

m=1

dm

dgm
f(g(x))

∑

π(n)∈Πm(n)

n!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
×

×(g′(x))λ1 · . . . · (g(n)(x))λn

is a partition polynomial and the formula can be expressed in the form

dn

dxn
f(g(x)) = (f

′

g, f
′′

g , . . . , f (n)
g ) · pper(B(g

′

x, g
′′

x , . . . , g(n)
x ).

Proposition 5. For a triangular matrix of the form

Z (x1, x2, . . . , xn) =









x1
x2
x1

x1

· · · · · · · · ·
xn

xn−1

xn−1

xn−2
· · · x2

x1
x1









n

=

(

xi−j+1

xi−j

)

1≤j≤i≤n

(5.7)
the next identities hold:

pper (Z(x1, . . . , xn)) =
∑

π(n)∈Π(n)

(λ1 + . . . + λn)!

λ1! · . . . · λn!
· xλ1

1 · . . . · xλn
n , (5.8)

ddet (Z(x1, . . . , xn)) = (5.9)

=
∑

π(n)∈Π(n)

(−1)n−(λ1+...+λn) ·
(λ1 + . . . + λn)!

λ1! · . . . · λn!
· xλ1

1 · . . . · xλn
n .
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By replacing xi, i = 1, . . . , n,, in identities (5.8), (5.9) by yi

i and yi

i! ,
respectively, we obtain new important identities:

pper
(

Z
(y1

1
,
y2

2
, . . . ,

yn

n

))

=

[

i − j + δij

i − j + 1
·
yi−j+1

yi−j

]

1≤j≤i≤n

=

=
∑

Π(n)

(λ1 + . . . + λn)!

1λ1λ1! · . . . · nλnλn!
· yλ1

1 · . . . · yλn
n ,

pper
(

Z
(y1

1!
,
y2

2!
, . . . ,

yn

n!

))

=

[

1

i − j + 1
·
yi−j+1

yi−j

]

1≤j≤i≤n

=

=
∑

Π(n)

(λ1 + . . . + λn)!

(1!)λ1λ1! · . . . · (n!)λnλn!
· yλ1

1 · . . . · yλn
n ,

ddet
(

Z
(y1

1
,
y2

2
, . . . ,

yn

n

))

=

〈

i − j + δij

i − j + 1
·
yi−j+1

yi−j

〉

1≤j≤i≤n

=

=
∑

Π(n)

(−1)n−(λ1+...+λn) ·
(λ1 + . . . + λn)!

1λ1λ1! · . . . · nλnλn!
· yλ1

1 · . . . · yλn
n ,

ddet
(

Z
(y1

1!
,
y2

2!
, . . . ,

yn

n!

))

=

〈

1

i − j + 1
·
yi−j+1

yi−j

〉

1≤j≤i≤n

=

=
∑

Π(n)

(−1)n−(λ1+...+λn)·
(λ1 + . . . + λn)!

(1!)λ1λ1! · . . . · (n!)λnλn!
· yλ1

1 · . . . · yλn
n .

Consider one more example of a primitive partition polynomial.

Proposition 6. If

C =

(

j

i − j + 1
·
xi−j+1

xi−j

)

1≤j≤i≤n

,

then the following identities hold:

pper(C) =
∑

π(n)∈Π(n)

n! · (λ(π))!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
· xλ1

1 · . . . · xλn
n ,

ddet(C) =

=
∑

π(n)∈Π(n)

(−1)n−λ(π) ·
n! · (λ(π))!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
· xλ1

1 · . . . · xλn
n .

The following propositions also hold.
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Proposition 7.

a)

[

j

i − j + j · δij

]

1≤j≤i≤n

=

=
∑

π(n)∈Π(n)

n!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
=

=
n
∑

k=1

∑

π(n)∈Πk(n)

n!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
=

n
∑

k=1

S(n, k) ;

b)

〈

j

i − j + j · δij

〉

1≤j≤i≤n

=

=
∑

π(n)∈Π(n)

(−1)n−λ(π) ·
n!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
=

=
n
∑

k=1

∑

π(n)∈Πk(n)

(−1)n−k ·
n!

λ1! · . . . · λn! · (1!)λ1 · . . . · (n!)λn
=

=
n
∑

k=1

(−1)n−kS(n, k) ,

where S(n, k) denote Stirling numbers of the second kind.

Proposition 8.

a) [j − (j − 1) · δij ]1≤j≤i≤n =
∑

π(n)∈Π(n)

n!

λ1! · . . . · λn! · 1λ1 · . . . · nλn
=

=
n
∑

k=1

(−1)n−k · s(n, k) = n!,

b) 〈(j − (j − 1) · δij)〉1≤j≤i≤n =

=
∑

π(n)∈Π(n)

(−1)n−(λ1+...+λn) n!

λ1! . . . · λn! · 1λ1 . . . · nλn
=

=
n
∑

k=1

s(n, k) =

{

1 , n = 1,

0 , n > 1.

where s(n, k) denote Stirling numbers of the first kind.

Some results of this section were announced by the author in [22] and
an extended version of the content is accepted for publication.
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6. Paradeterminants and formal operations with formal

power series

One of the central methods of combinatorial analysis is the method of
generating functions [4], which uses formal operations with power se-
ries. However operations such as inversion, composition of series and
some other operations with formal series, as it is well known, present
some difficulties. In this section, using techniques of paradeterminants
and parapermanents of triangular matrices, we construct some recurrent
algorithms for formal operations with series.

Some results of this section were announced by the author in [24] and
an extended version of the content is accepted to print.

We consider formal power series with nonzero constant term.

Theorem 11. Let A(x) =
∑∞

i=0 aix
i, a0 = 1, be some formal power

series. Then the following equalities hold:

(A(x))n = 1 +
∞
∑

k=1

(−1)k

〈

(i − j + 1)n − (j − 1)

(i − j)n − j
·
ai−j+1

ai−j

〉

1≤j≤i≤k

· xk,

(A(x))−n = 1 +

∞
∑

k=1

(−1)k

〈

(i − j + 1)n + (j − 1)

(i − j)n + j
·
ai−j+1

ai−j

〉

1≤j≤i≤k

· xk,

(A(x))
1
n = 1 +

∞
∑

k=1

(−1)k

〈

−(i − j + 1) + (j − 1)n

−(i − j) + jn
·
ai−j+1

ai−j

〉

1≤j≤i≤k

· xk,

(A(x))−
1
n = 1 +

∞
∑

k=1

(−1)k

〈

(i − j + 1) + (j − 1)n

(i − j) + jn
·
ai−j+1

ai−j

〉

1≤j≤i≤k

· xk.

Theorem 12. Let A(x) = 1+
∑∞

i=1 aix
i, B(x) = 1+

∑∞
i=1 bix

i, C(x) =
1 +

∑∞
i=1 cix

i be some formal power series such that

C(x) =
A(x)

B(x)
.

Then

ci =
i−1
∑

j=0

(ai−j − bi−j) ·

〈

bs−r+1

bs−r

〉

1≤r≤s≤j

, i = 1, 2, . . . .

We assume that

〈

bs−r+1

bs−r

〉

1≤r≤s≤0

= 1.
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Corollary 7. If A(x) is the formal power series from Theorem 12 then

1

A(x)
= 1 − 〈a1〉 · x

1 + a1
a2
a1

a1
· x2 − . . .+

+(−1)i

a1
a2
a1

a1

... · · ·
. . .

ai

ai−1

ai−1

ai−2
· · · a1

· xi + . . .

Theorem 13. Let f(x) and g(x) be two infinitely differentiable functions
such that

gi
x(0) = ai, f i

x(a0) = bi, i = 0, 1, 2, . . . .

Then

f(g(x)) = b0+
1

1!
pper(B1(a1)·(b1)·x+

1

2!
pper(B2(a1, a2))·(b1, b2)·x

2+. . . ,

where Bn(a1, a2, . . . , an) is a triangular Bell matrix.

Corollary 8. If the function f(x) is infinitely differentiable and g(x) can
be presented as a series

g(x) = a0 + a1x + a2x
2 + . . . ,

such that equalities f(a0) = b0, f
(i)
x (a0) = bi, i = 1, 2, . . . , hold, then

f(g(x)) = b0+pper(Z1(a1)·

(

b1

1!

)

·x+pper(Z2(a1, a2))·

(

b1

1!
,
b2

2!

)

·x2+. . . ,

where Zn(a1, a2, . . . , an) is a triangular matrix of the form (5.7).

We consider now formal operations with formal power series with zero
constant term.

Theorem 14. (Theorem on composition of series) If formal power series
c(x) =

∑∞
i=1 cix

i is a composition of formal power series b(x) =
∑∞

i=1 bix
i

and a(x) =
∑∞

i=1 aix
i, i.e. c(x) = b(a(x)) =

∑∞
i=1 bia

i(x), then

ci = (b1, b2, . . . , bi) ·











a1
a2
a1

a1

...
...

. . .
ai

ai−1
ai−1

ai−2
· · · a1











i

.
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Theorem 15. (Theorem on inversion of a series) Let a(x) =
∑∞

i=1 aix
i

and b(x) =
∑∞

i=1 bix
i be some formal series such that

b(a(x)) = 1 · x + 0 · x2 + 0 · x3 + . . . .

Then the following equalities hold

bi =
(−1)i−1

ai
1

·

(

(i + 1)0

1!
,
(i + 1)1

2!
, . . . ,

(i + 1)i−2

(i − 1)!

)

× (6.1)

×











a2
a1
a3
a2

a2
a1

...
...

. . .
ai

ai−1

ai−1

ai−2
· · · a2

a1











, i = 1, 2, . . . .

Theorem 16. Let a(x) =
∑∞

i=1 aix
i и c(x) =

∑∞
i=1 cix

i be some formal
series and ω(x) =

∑∞
i=1 ωi · x

i. Then the equalities

ω(a(x)) = c(x) and a(ω(x)) = c(x)

imply the equalities

ωn = pper(Z(b1, . . . , bn)) · (c1, . . . , cn)

and
ωn = pper(Z(c1, . . . , cn)) · (b1, . . . , bn),

where bi, i = 1, 2, . . . , n, are defined by equalities (6.1).

7. Application of paradeterminants to the solution of

problems on paths in skew diagrams and Ferrer graphs

Let λ = (λ1, λ2, . . . , λr) be some disordered partition of a number n.
A partition µ = (µ1, µ2, . . . , µr) is called a subpartition of λ (denoted
µ � λ), if the inequalities µi ≤ λi, i = 1, . . . , r hold. To any pair of such
partitions one can associate some skew diagram ([14], 12–15).

diagr(λ, µ) =

(

λ1, . . . , λn−1, λn

µ1, . . . , µn−1, 0

)

(7.1)

Distance between two points on the diagram is the shortest distance
between these points. A path in a skew diagram between the lowest right
point A and the upper left point B is a shortest path between these
points. Furthermore, we will move only in two directions: up and left.
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Theorem 17. [21] The number of the shortest paths between the lowest
right point and the upper left point on the skew diagram (7.1) is equal
to

ddet

(

(

1 − δij

i − j + 1
+ δij

)

·
(λi − µj + j − i + 1)i−j+1

(λi − µj+1 + j − i + 2)i−j

)

1≤j≤i≤n

(7.2)

where δij is the Kronecker symbol.

Remark 12. If in the paradeterminant (7.2) we have the inequality λi−
µj +j−i+1 ≤ 0, then the corresponding element of this paradeterminant
is assumed to be zero. Moreover, the value of the expression (λi −µj+1 +

j − i + 2)i−j for i = j = n is assumed to be 1.

Corollary 9. Suppose the diagram (7.1) has the form

diagr(λ, 0) =

(

λ1, . . . , λn−1, λn

0, . . . , 0, 0

)

,

i.e. it is a Ferrer graph. Then the number of shortest paths in the Ferrer
graph, or the number of standard tableaux of this graph can be found by
the formula

(−1)
n(n−1)

2 ·
N !

∏n
i=1(λi + n − i)!

· det((λi − i)j−1)i,j=1,...,n, (7.3)

where N is the weight of the Ferrer graph.

Remark 13. Thus the Frame-Robinson-Thrall hook rule [15] giving the
number of standard Young tableaux on Ferrer deagrams can be repre-
sented using formula (7.3) and Vandermonde determinant.

The reader can find an extended version of this material in [21].

8. A connection between determinants and paradetermi-

nants

The existing analogy between the properties of determinants and parade-
terminants can be explained mostly by the close connections between
them. In some sense determinants can be reduced to paradeterminants.
Replacement of determinants by paradeterminants could essentially sim-
plify calculations in many cases since the latter can be calculated faster.
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Consider a matrix

B =

















b11 1 0 . . . 0 0
b21 b22 1 . . . 0 0
b31 b32 b33 . . . 0 0
. . . . . . . . . . . . . . . . . .

bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1
bn1 bn2 bn3 . . . bn,n−1 bnn

















, (8.1)

which we will call lower quasi-triangular.

Theorem 18. (Lischinski I.I.) For any triangular matrix (1.1)

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 1 0 . . . 0 0
b21 b22 1 . . . 0 0
b33 b32 b33 . . . 0 0
· · · · · · · · · · · · · · · · · ·

bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1
bn1 bn2 bn3 . . . bn,n−1 bnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











=

















b11 1 0 . . . 0 0
b21 b22 1 . . . 0 0
b33 b32 b33 . . . 0 0
· · · · · · · · · · · · · · · · · ·

bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1
bn1 bn2 bn3 . . . bn,n−1 bnn

















,

where

bij = {aij} =
i
∏

k=j

aik, 1 ≤ j ≤ i ≤ n. (8.2)

Corollary 10. For any lower triangular matrix (8.1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 1 0 . . . 0 0
b21 b22 1 . . . 0 0
b31 b32 b33 . . . 0 0
. . . . . . . . . . . . . . . . . .

bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1
bn1 bn2 bn3 . . . bn,n−1 bnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

b11
b21
b22

b22
b31
b32

b32
b33

b33

...
...

...
. . .

bn1
bn2

bn2
bn3

bn3
bn4

· · · bnn

.
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Observe that the elements bij , 1 ≤ j ≤ i ≤ n in equality (??) can
take values from a numeric field, as follows from Remark 7.

Theorem 19. Let A be a square matrix of order n

A =









α11 α12 · · · α1n

α21 α22 · · · α2n

· · · · · · · · · · · ·
αn1 αn2 · · · αnn









,

such that the minors of A satisfy the inequalities:

A

(

1

2

)

6= 0, A

(

1 2

2 3

)

6= 0, . . . , A

(

1 2 . . . n − 2 n − 1

2 3 . . . n − 1 n

)

6= 0.

Then the following identity holds

det(A) = a12a
(1)
23 a

(2)
34 · . . . · a

(n−2)
n−1,n · ddet

〈

a
(j−2)
ij

a
(j−1)
i,j+1

〉

1≤j≤i≤n

,

where

a
(p−2)
i,p =

A
(

1 2 ... p−2 i
2 3 ...p−1 p

)

A
(

1 2 ... p−2
2 3... p−1

) , p = 3, 4, . . . , n, i = p − 1, p, . . . , n,

a
(p−2)
ip = aip , p = 1, 2, an−1

n,n+1 = 1.

Proposition 9. For any matrix (19) and n = 3, 4, . . ., the following
identity holds

det(A) · A
(

1 2···n−2
2 3···n−1

)

= A
(

1 2···n−1
1 2···n−1

)

A
(

1 2···n−2 n
2 3···n−1 n

)

−

−A
(

1 2···n−2 n−1
2 3···n−1 n

)

A
(

1 2···n−2 n
1 2···n−2 n−1

)

.

Thus, by virtue of the proposition cited above, the determinant of the
matrix (19), for any n = 3, 4, . . ., can be expressed through four minors
of order n − 1 and one minor of order (n − 2).

9. Principles of calculus for triangular matrices

We define the basic operations on triangular matrices: addition of tri-
angular matrices, multiplication of a triangular matrix by a number and
multiplication of triangular matrices.

Let A = (aij)1≤j≤i≤n, B = (bij)1≤j≤i≤n and C = (cij)1≤j≤i≤n be
some triangular matrices of order n.
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Definition 13. Sum of two triangular matrices A and B is the matrix
C, whose elements are equal to the sum of the corresponding elements in
A and B, i.e. cij = aij + bij , 1 ≤ j ≤ i ≤ n.

It follows directly from the definition that the addition operation is
commutative and associative.

Definition 14. Product of a triangular matrix A by a number α from
some numeric field is the matrix C with elements cij = α · aij , 1 ≤ j ≤
i ≤ n.

Obviously:

α(A + B) = αA + αB, (α + β)A = αA + βA, (αβ)A = α(βA).

To define the product of two triangular matrices we give some pre-
liminary definitions:

Definition 15. An element ξ1 ∈ Ξ(n) is not related to an element ξ2 ∈
Ξ(n) if [ξ1]

⋂

[ξ2] = {n}, where [·] denotes the basis of the corresponding
multiset (see definition 6). Otherwise these elements are called related.

The set of all elements of Ξ(n) not related to an element ξ is denoted
by Ξξ(n).

Proposition 10. There are 3n−1 pairs (ξ1, ξ2) in the Cartesian product
Ξ(n) × Ξ(n) whose components are not related.

Two summands aξ1(1),1aξ1(2),2·. . .·aξ1(n),n and bξ2(1),1bξ2(2),2·. . .·bξ2(n),n

in the paradeterminant (parapermanent) of the triangular matrices A and
B are not related, if the elements ξ1 = {ξ1(1), ξ1(2), . . . , ξ1(n)}, ξ2 =
{ξ2(1), ξ2(2), . . . , ξ2(n)}, which belong to Ξ(n), are not related.

Definition 16. Incomplete product of the paradeterminants of matrices
A and B is the sum of products of all pairwise not related components
of these paradeterminants taken with appropriate signs, i.e.

ddet(A) ◦ ddet(B) =

=
∑

(ξ1,ξ2)∈Ξ(n)×Ξ(n)

(−1)ε(ξ1)+ε(ξ2)·k(ξ1, ξ2)·aξ1(1),1·. . .·aξ1(n),n·bξ2(1),1·. . .·bξ2(n),n,

where ε(ξ1) and ε(ξ2) are the numbers of different elements in the multiset
ξ1 and ξ2, respectively, and k(ξ1, ξ2) is defined by the equality

k(ξ1, ξ2) =

{

1, if [ξ1] ∩ [ξ2] = {n},

0, if [ξ1] ∩ [ξ2] 6= {n}.
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Example 5. The incomplete product of paradeterminants of matrices A

and B of order 3 is given by

ddet(A) ◦ ddet(B) =

= a11a22a33b31b32b33 + a21a22a33b11b32b33 − a21a22a33b31b32b33 +

+ a11a32a33b21b22b33 − a11a32a33b31b32b33 + a31a32a33b11b22b33 −

− a31a32a33b21b22b33 − a31a32a33b11b32b33 + a31a32a33b31b32b33

Incomplete product of parapermanents is defined in the same way,
except that the sing (−1)ε(ξ)+ε(ξ). is disregarded.

Definition 17. The paradeterminant (parapermanent) product of two
triangular matrices A and B of order n is the matrix C = A · B of the
same order with elements:

cij(A, B) = (−1)δij+1 ·
dij(A, B)

di,j+1(A, B)

(

cij(A, B) =
pij(A, B)

pi,j+1(A, B)

)

,

where δij is the Kronecker symbol, and dij(A, B), pij(A, B) — incomplete
product of paradeterminants (parapermanents) of the corners Rij of the
triangular matrices A and B, i.e.

dij(A, B) = ddet(Rij(A)) ◦ ddet(Rij(B))

(pij(A, B) = pper(Rij(A)) ◦ pper(Rij(B))) ,

where 1 ≤ j ≤ i ≤ n.

Proposition 11. The following equalities hold: AB = BA, (AB)C =
A(BC), A(B + C) = AB + AC, ddet(AB) = ddet(A) · ddet(B),

pper(AB) = pper(A) · pper(B).

Identity matrix is the matrix of the form

E =











1
0 1
...

...
. . .

0 0 · · · 1
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A.V. Zelevinskĭı. “Mir”, Moscow, 1985. 224 pp.

[15] Frame J.S., Robinson G. de B., Thrall R.M. The hook graphs of Sn. // Canad. J.
Math. 6, 1954, p. 316-324.

[16] Tarakanov V.E. Kombinatornye zadachi i (0, 1)-matritsy. (Russian) [Combinato-
rial problems and (0, 1)-matrices] Problemy Nauki i Tekhnicheskogo Progressa.
[Problems of Science and Technological Progress] “Nauka”, Moscow, 1985. 192 pp.

[17] Sachkov V.N. Vvedenie v kombinatornye metody diskretnŏımatematiki. (Rus-
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