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On Frobenius full matrix algebras with structure
systems
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ABSTRACT. Let n > 2 be an integer. In [5] and [6], an n X n
A-full matrix algebra over a field K is defined to be the set M, (K)
of all square n x n matrices with coeflicients in K equipped with a
multiplication defined by a structure system A, that is, an n-tuple
of n x n matrices with certain properties. In [5] and [6], mainly
A-full matrix algebras having (0, 1)-structure systems are studied,
that is, the structure systems A such that all entries are 0 or 1.
In the present paper we study A-full matrix algebras having non
(0, 1)-structure systems. In particular, we study the Frobenius A-
full matrix algebras. Several infinite families of such algebras with
nice properties are constructed in Section 4.

1. Introduction

Throughout this paper we freely use the rings, modules, and representa-
tion theory terminology introduced in [1], [2], [4], [9], [11], and [12]. In
particular, given a finite dimensional algebra R over a field K, we denote
by mod R the category of all finite dimensional unitary right R-modules.
Given a module M in mod R, we denote by soc M the socle of M.

Let K be a field and n > 2 an integer. Let A = [Ay,...,A,] =

[az(?)]” % be an n-tuple of n x n matrices Ay = (az(?)) eM,(K) (1<k<
n) satlsfylng the following three conditions:

(A1) a w El) = az(lk)a;l'), for all i,7,k,l € {1,...,n},

(A2) akl; = a(k) =1, forall i,5,k € {1,...,n}, and
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(A3) a® = 0, for all 4,k € {1,...,n} such that i # k.

i

We denote by

(1.1) Ry = @ Kugj

,j=1

a K-vector space, with basis {u;; | 1 <1,j < n}, equipped with a multi-
plication (depending on A) defined by the formula

T I A
UikUlj = { aj iy, i k=1,

0, otherwise.

It is easy to check that Rp is an associative, basic K-algebra
U1l, - - - , Unp are orthogonal primitive idempotents of Ry and 1 = uyy +
-+ + Upy is an identity element of Ry, see |5, Proposition 1.1]. We call
Ry an A-full matriz algebra and A a structure system of Ry.

The reader is referred to the recent paper [7] for a degeneration-like
approach to the full matrix algebras Ra with structure systems.

Since u;Rauj; # 0, for all 1 < 4,5 < n, then the K-algebra Ry
is connected, that is, Ry can not be decomposed into a product of two
subalgebras. Note also that the Jacobson radical J(Ry) of Ry has the
form

(1.2) J(Ra) = P uyK.
i#]
If V is a simple right Rg-module, then Vu;; # 0, for some 1 < ¢ < n,
and V = w;;Rp /uiiJ(Ra) . Therefore the Ry-modules
unRA/uHJ(RA), . ,u,mRA/unnJ(RA)

are the representatives of all pairwise non-isomorphic simple right Ry-
modules. Note that dimgV = 1, for any simple right Rs-module V.

Let Ry be an A-full matrix algebra (1.1) and let M be a right Ra-
module in mod Ry. The dimension vector of M (or the dimension type
of M) is defined to be the n-tuple

(1.3) @M:(dl,...,dn) EZ”ZK@(RA)

of integers d; = dimg Mu;;, with 1 < i <n, see [1] and [5].
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2. When A-full matrix algebras are isomorphic?

In this section, we give a criterion for two A-full matrix algebras Ry and
Rp to be isomorphic. Moreover, we give a list of the representatives of
all non-isomorphic 3 x 3 A-full matrix algebras.

The isomorphism problem of A-full matrix algebras is also studied in
[7] in terms of an action

%1 Gp(K) x ST,(K) — STo(K)

of an algebraic group G, (K) (containing the symmetric group S,,) on the
algebraic K-variety ST,,(K) of the structure systems A.

n n

Proposition 2.1. Let Ry = @ Ku;j and Ry = @ Kwyj be full matric

Q=1 i,j=1
algebras with structure systems

k k
A=A, Al =16 and B=[Bi,...,Bu) = b)),

respectively. There is a K-algebra isomorphism Ry = Rp if and only
if there exist a matriv T = (t;j) € M,(K) and a permutation o :
{1,...,n} = {1,...,n} of the set {1,...,n} such that

tij 75 0, tii = 1, a((ja(gca))(j)tij = bl('f)tik:tkj, fO?“ all 1 < i,j, k <n.

Proof. Suppose that there is a K-algebra isomorphism f : Ry — Rp.
Then f(ui1),..., f(un,) are orthogonal primitive idempotents of Rp such
that 1, = f(u11)+ -+ f(unn). It follows from [4, Theorem 3.4.1] that
there exist a permutation o of the set {1,...,n} and an invertible element
b € Rp such that v; = bf(ug(i)g(i))b_l, for all 1 < i < n. Hence there is
a K-algebra isomorphism g : Ry — Rp such that vi; = g(ug(j)e(;)), for all
1 <4 < n. Since g(Uo(5)o(j)) = Viid(Uo(i)o()) V55> then g(uos)o(j)) = tijvij,
for some 0 # t;; € K (1 <1i,5 <n). Clearly, t;; = 1, for all 1 < i < n.
Since
I(Us(i)o (k) Yo (k)o () = 9(Uo(i)o (k)9 (Uo(k)o ()

then we have ag(j(gfgzj)tij = bg?)tiktkj, forall 1 < 1,7,k <n. It follows that

T := (tij) € M, (K) is the desired matrix.
Conversely, suppose that there exist a matrix 7" = (¢;;) and a permu-
tation o of the set {1,...,n} satisfying the above condition. Then the

K-linear map
[ Ra — Rp,

given by u;j = to—1(3)0-1(j)Vo—1(i)o~1(j), defines a K-algebra isomorphism.
O]
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As an immedeate consequence of the proposition, we have the follow-
ing.
n n
Corollary 2.2. Let Ry = @ Ku;j and Ry = @ Kuvyj be full matric
ij=1 ij=1
algebras with (0, 1)-structure systems

A=[An,..., Al =16 and B=[By,...,Bu) = b))

respectively. Then Ry is isomorphic to Ry as K-algebras if and only if
there exists a permutation o of the set {1,...,n} such that bl(f) = aga(l(.gzj)

forall1 <1,7,k <n.
Lemma 2.3. Let n > 3 be an integer, and let A = [A1,..., A,] =

[aﬁ?)]i,j,k be a structure system. Then, for any distinct 1 < 1,5,k < n, the
following equalities hold agf)agi) =0 and ag}ag:) = 0.
Proof. This follows from (Al) and (A3). O

Example 2.4. By applying Lemma 2.3 and Corollary 2.2, one can verify
that, for n = 3, the following five (0, 1)-structure systems A1 A®) A®G)
AW AG).

| —
e

o= OO
COoO R OF
oO~RO OO
= Ll
O == OO
oo R OO
—OoO O OO
i e e
SO~ ~OR
O FH OF &~
H RO O~O
[ S S SR
OO oo
HOO ~=OO
H O KR =00

provide a list of all (0, 1)-structure systems A such that every A-full ma-
trix algebra Ry is isomorphic to any of the algebras R,a), Ry, Raoe),
Ry, Rye).-

Given an arbitrary structure system A = [Ay,..., 4,] = [ag?)]i,j,ka we

define a new one A = [Ay,...,A,] = [ag?)]mﬁ, where

ah) .= { 1, if “z(? 70,

t 0, otherwise.

It is easy to see that A is a structure system. Following [7, Definition
3.1], we call the A-full matrix algebra Ry a (0,1)-limit of Ry.
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Theorem 2.5. For n = 3, there are just five 3 X 3 A-full matriz alge-
bras Ry, up to isomorphism, which are given by the five (0, 1)-structure
systems in Example 2.4.

Proof. Let A be a 3 x 3 A-full matrix algebra, where A = [A;, Ay, A3] =
[az(f)], and let Ry be the (0,1)-limit of Ry. Then we show that Ry is
isomorphic to Ry, using Proposition 2.1. We put o = id and T' = (t;;) €
M;3(K), where

P ag?), ifagf) #£0, for k # 1,7,
E 1, otherwise,

for distinct 7,5 € {1,2,3}, and t;; := 1 for i = 1,2,3. Then using Lemma
2.3, one can check that Eg?)tij = al(f)tiktkj, for all 1 < 4,4,k < n. This
completes the proof. O

3. Frobenius A-full matrix algebras

In this section, we improve the characterization of Frobenius A-full matrix
algebras Ry given by [5, Lemma 4.2], where structure systems are (0, 1)-
matrices.

Assume that Ry is an A-full matrix algebra (1.1) and let M be a right
Rp-module with dim M = (1,...,1). Then M has a K-basis {v1,...,vn}
such that vu; = v;, for all 1 <4 < n. Consider the matrix S = (s;5) €
M, (K) such that

SijVj, if k= i,
* Vil = .
(+) ik { 0, otherwise,

for all 1 <14,j, k <n, and that
(#%) s =1 and sjspj = az(f)sij, forall 1 <i,j5,k<n.

We call S a representation matriz of M with respect to a K-basis
{v1,...,vp}. Conversely, let M be a K-vector space with a K-basis
{vi,...,vp} and S = (s45) € M,,(K) which satisfies the condition ().
Then, by (), M has aright Ry-module structure with dim M = (1,...,1),
see |5, Proposition 2.1].

Now we modify [5, Propositions 2.2, 2.3 and Lemma 4.2] to remove
the assumption of (0, 1)-structure systems. We begin with the following
lemma.

Lemma 3.1. Assume that Ry is an A-full matriz algebra (1.1) and let
M, M’ be right Ry-modules, with dim M = dim M’ = (1,...,1) and with
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the representation matrices S = (sij) and S" = (s;;), respectively. There

exists an isomorphism M = M’ of right Ry-modules if and only if there
exist t1,...,ty € K such that

ti 0 and st —tsm, foralli,je{l,...,n}.

Proof. Let {v; | 1 <i < n},{v] |1 <i < n} be associated K-bases of
M, M’ with representation matrices S = (s;;) and S" = (s{;), respectively.

First suppose that there is an isomorphism f : M — M’. Since
U] v’uﬂ, for all j € {1,...,n}, then there exists 0 # t; € K such that
f(vi) = f(vi)ui; = tv), for each i € {1,...,n}. The equality f(viu;j) =
f(vi)u; yields s;t; = tl s, forall 4, j € {1,...,n}.

Conversely, suppose that there exist ¢1,...,t, € K satisfying the
above conditions. Since t; # 0, for all : € {1,...,n}, we can define a K-
linear isomorphism f : M — M’ by f(v;) := t;v}, for all i € {1,...,n}.
The latter condition implies that f is an Rg-module homomorphism, so
that f: M — M’ is an isomorphism. O

Indecomposable projective Ra-modules are characterized by their rep-
resentation matrices as follows, see [5, Proposition 2.2].

Lemma 3.2. Assume that Ry is an A-full matriz algebra (1.1).

(i) For each indecomposable projective right Rp-module u;; Ry, we
have

o dimuyRy =(1,...,1) and

e the representation matriz of the module u;; Ry, with respect to the
K-basis {u;; | 1 < j < n}, is the n x n matriz (GE?))k,j, where the (k,j)-
(k)

entry equals a;;

(ii) Let M be a right Ry-module with dimM = (1,...,1), and let
S = (si;) be a representation matriz of M with respect to a K-basis
{vi | 1 <i<n}. Then M is isomorphic to to the projective Rp-module
upRa if and only if si, # 0, for all k € {1,...,n}.

Proof. (i) This follows from the definition of the multiplication of Ry,

that is, wjpur; = al(f)uij, for all 4,7,k € {1,...,n}. Note that (A2)
implies dim u;; Ry = (1,...,1).

(ii) First suppose that M is isomorphic to ujyRs. Then it follows
from Lemma 3.1 that there exist t1,...,t, € K such that ¢; # 0 and
st = tial(;), for all 4,5 € {1,...,n}. Hence s;;t; = tial(]l.) =t; #0, so
that s;; # 0, for all j € {1,...,n}.
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Conversely, suppose that s;; # 0, for all j € {1,...,n}. Since al(;)slj =
s1i8ij, for all i,7 € {1,...,n}, then there is an Ry-module isomorphism

frugRy — M, wj— s (1 <5 <n). O

We denote the standard duality functor Homg(—, K) : mod Ry —
mod R}’ by (—)*. As a dual of Lemma 3.2, we obtain the following, see
[5, Proposition 2.3|.

Lemma 3.3. Assume that Ry is an A-full matriz algebra (1.1).

(i) For each indecomposable injective right Ra-module (Rayuj;)*, we
have

o @(RAUjj)* = (1, ey 1) and

o the representation matriz of the module (Rau;;)*, with respect to
the dual K-basis {uj; | 1 <i < n}, is the n x n matriz (a

the (i, k)-entry equals ag?).

(ii) Let M be a right Rp-module with dim M = (1,...,1), and let
S = (si5) be a representation matriz of M with respect to a K-basis
{vi | 1 < i < n}. Then M is isomorphic to the injective Rp-module
(Rauy)* if and only if sgy # 0, for all k € {1,...,n}.

a;; )ik, where

Proposition 3.4. Let Ry be an A-full n X n matrix algebra, where
= [A1,...,A4,] is the structure system and Ay = (a (k)) (1 <k<n).
The following two conditions are equivalent.
(i) Ra is a Frobenius algebra with Nakayama permutation o.
(ii) There exists a permutation a of the set {1,...,n} such that o(i) #

i, for alli € {1,...,n}, and that a y 70, for alli k € {1,...,n}.
Proof. (1)=(ii) It follows from (1) that u; Ry = (Ratg(i)e(;))”, for all
i € {1,...,n}. Since u;; Ry has a representation matrix (a(k))k] with
respect to a K-basis {u;1,...,u; | then Lemma 3.3 yields a; )( 75 0, for
all i,k € {1,...,n}. Since dimu;; Ry = (1,...,1) then bOC( Ry) 22
wiiRa JuiiJ(Ry), so that o(i) # i, for all i € {1,...,n}.

(ii))=-(i) Lemmas 3.2 and 3.3 yield the isomorphism wu;Ry =
(Ratg(i)o(i))" of right Ry-modules, for all 1 <4 < n. Hence (i) follows.
O

4. Infinite families of A-full matrix algebras

In this section, for n = 4,5 and n = 6, we construct several interesting
infinite families of A-full matrix algebras Ry that are of infinite represen-
tation type. We also determine their representation type (tame or wild),
by applying the well-known representation theory diagrammatic criteria,
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see [1], [11] and [12]. We end the section by presenting an idea of a
construction of a large class of Frobenius A-full matrix algebras R, such
that dimg Ry = n?, n > 4, socRy = J(Ry)" 2 and J(Ry)" 1 =0. A
characterization of all Frobenius algebras R, with the above properties
remains an open problem.

Example 4.1. Assume that n = 4 and K is a field. Consider the one-
parameter family of A -full matrix algebras C), = Ry, where p € K* =

K \ {0} and A, is the following structure system
1111 0100 0110 0101

A — 100 1111 0010 0011
£ 11001 0101 1111 0001
1000 1100 1010 1111

A simple calculation shows that, given p € K*, the matrix satisfies the
conditions (A1)-(A3). We show that the algebra C), is isomorphic to the
bound quiver K-algebra KQ/, (see [1]), where @ is the quiver

B4

B21 Ba3

and €, is the two-sided ideal of the path K-algebra K@ of () generated
by the following relations:

B21613 — 1+ B2443,

B13832 — Pr4Bu2,

B32824 — 531514,

Ba3B31 — Ba2a1,

B13B31, B31513, B24P42, Ba2Boa,

B21514, Ba3B32, B32521, B14B43-

It is easy to check that the correspondences €; — u;; and 3;; — u;; define
a K-algebra homomorphism h : KQ/Q, — C,,, where €; is the primitive
idempotent of the path algebra K@ defined by the stationary path at the
vertex j, for every j € Qo. Note that dimyg KQ /€, = 16 and the cosets
of the idempotents €1, €2, €3, €4, the eigth arrows 3;; € Q1, together with
the four cosets (321013, 813032, (32024, and B43031 form a K-basis of the
quotient K-algebra KQ/S,,.

Since ea3 = h(B21513), e12 = h(B13032), e34 = h(B32024), and e =
h(Ba3/31) then the map h is surjective. Finally, since dimg KQ/Q,,
dimg C,, = 16, the surjection is an isomorphism of K-algebras.

It follows from the shape of @ and €, that, for each p € K~,
KQ/Q, = C, is a special biserial algebra [13|, and therefore it is
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representation-tame, see [3, 5.2]. Since there is a cyclic walk

1 B3 3 Bas 4 Baz 9 B32 3 B31 1 B21 9 B24 4 B14 1

of the quiver @) then, according to the finite representation type criterion
in [13] (see see also [10, Proposition 3.7]), the algebra C,, is of infinite
representation type. Note also that, for each 4 € K*, C), is self-injective,
J(Cy)? =0 and

J(C)? = soc(Cy) = K Pa1B13 © K P13Bs2 © K Bs2Bos @ KBz B,

see also |7, Section 5|. Consequently, the quotient algebras

C,=Cy/socC, and C,=C,/socC,

are isomorphic, for each pair u,~y € K*. In particular, it follows that the
numbers of the indecomposable C',-modules and C'y-modules are equal
and the stable Auslander-Reiten quivers of C}, and of C are isomorphic.

Example 4.2. Assume that n = 6. Consider the one-parameter family
of A,-full matrix algebras H, = Ry, , where p € K and

[111111 010000 011000 010100 011110 011101]
100000 111111 001000 000100 001110 001101
100111 010111 111111 000100 000110 000101
101011 011011 001000 111111 001010 001001
100000 010000 p11000 110100 111111 000001
1100010 010010 111010 110110 000010 111111]

A, =

First we observe that:

(a) if K is infinite, then the family {H},cx\ (0,1} is infinite, because
H, = H, if and only =+, for u,v € K\ {0,1} (apply Corollary 2.2),

(b) for each pn € K \ {0,1}, the algebra H,, is not self-injective (the
right ideals ug2 H,, and wus5H,, are not injective, by Lemma 3.3, and

(c) for each p € K \ {0,1}, the Gabriel quiver Q(H,,) of the algebra
H,, is the following quiver @ (apply [5, Proposition 1.2]).

Be3 Buo
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Now we show that, for each p € K*, the algebra H, is of wild represen-
tation type, see [9, Section 14.2] and [12, Chapter XIX]. To see this, we
note that H,/J(H,)*> & H,/J(H,)?, for all u,v € K*, and the algebra
B:=H,/J(H,)? has J(B)* = 0. It follows that Q(B) = Q(H,,). Since
the separated quiver Q°(B) of B (see |2, Section X.2|) contains a wild
subquiver of the form

6//j’><i£’

then, by [9, Theorems 14.14 and 14.15] and [12, Chapter XIX], the
algebra B is representation-wild and hence also H, is representation-
wild, for each u € K*, because there is a fully faithful exact embedding
mod B — mod H,,.

Example 4.3. Assume that n = 4, K is a field and A is a structure
system such that R, is a Frobenius algebra and the Nakayama permu-
tation of Ry is the cyclic permutation o = (1,2,3,4), see |5, Theorem
3.4] and [7, Theorem 5.5]. The structure system A and the associated
(0, 1)-structure system A have the following forms

11 1 1|0 10 0] 0 pw 1 0[]0 pr 0 1
A— |10 m 0] 1 1 1 170 0 1000 0 p 1
=110 0 p| 0 1 0 m| 1 1 1 1,0 0 0 1
10 0 0| p 1 0 0] pw 0 1 01 1 1 1

1 11 1/0 10 0[]0 1 1001 0 1

A_ |1 o L1of1 11 1/0010[00 11
= |1 0o 1/0 1 0 1|1 1 1 1]0 00 1"

1 000|110 0[1 010|111 1

where p1, ..., pg are arbitrary scalars in K \ {0}. By Proposition 3.4 (see
also [5, Theorem 3.4] and |7, Theorem 5.5]), each of the algebras Ry in
the defined eight parameter family is Frobenius and soc Ry = J(Ra)?.
One shows that there is a K-algebra isomorphism Ry = KQ/Q,, where
Q is the quiver

B1a

and €1, is the two-sided ideal of the path K-algebra K@ of @) generated
by the following elements:
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1° B21B13— 24043, B13B32—L14Pa2, [32024— 031514, BazfBs1—La2f21,

2° (13031, 831513, B24Ba2, Ba2B24, B21 514, $14543, B32521, and [43332.
It follows that

e the zero relation ajasas belongs to €, for each path e-*L: ¢ 22; o

X0 in Q,
e there is an algebra isomorphism Ry = KQ/),, and
e J(Rp)?=0and J(Ry)? =soc(Ry).

Now it is easy to see that R is a special biserial algebra, and therefore
it is representation-tame, see [3, 5.2]. Since there is a cyclic walk

NSNS\

in Q then, according to [13], the Frobenius algebra R, is of infinite rep-
resentation type, see also [10, Proposition 3.7].

We end this section by presenting an idea of a construction, for n = 5,
of tame Frobenius A-full matrix algebras Ry of infinite representation
type such that J(Ry)* = 0 and J(Ry)? = soc Ra.

Example 4.4. Assume that n = 5 and K is a field. We construct a set of
structure systems g = [q(l), ¢, ¢®) @), q(5)] such that R, is a Frobenius
algebra, J(R,)* = 0, J(R,)® = soc(R,), and o = (}1 g ‘:’ ;l g) is the
Nakayama permutation of R,.

2) (3)

Suppose that ¢ = [q(l),q( g

ture system and let

g, q®)] = [qz(f)]”k is such a struc-

5
Rq = @ Keij
ij=1

be the corresponding g¢-full matrix K-algebra with the basis

{eij | 1 <4,57 <5}, We recall that the elements e; = eq1,...,e5 = es5

form a complete set of pairwise orthogonal primitive idempotents of the

algebra R, and 1 = e1 +e2 +e3+e4 + €5 is the identity of R,. We denote
by -4 the multiplication in R,.

One shows that soc(e; R;) = Ke;,(j) (see [7, Theorem 5.3]) and there-

fore e 4(;) ¢ J(Rg) = 0 apd J(Ry) g €jo() =0, for j = '1, ...,b. Hence

we get the equalities qj(-j(])) =0, for all » # o(j), and q(J)

s o) = 0, for all
s # j, that is,
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® 43y = qsi) = q:%) = 0 and q34) = q24) =54 =0,
e
ERRELIRR R
* iy =¢i3 =q5 =0and g5 =gz = g3, =0,
o s =a = a5 =0and g = ¢ =413 =0

1111 1001 % % 00 % 1 % %[0 00 1 0[0 % 0 % 1
10 = 0 (1 1 1 1 1/0 0 1 % *x[x 0 *x 1 {0 0 0 0 1
g=[1 000 0% 1 0 % 0[1 1 1 1 1% 0 0 1 *|% % 0 * 1
1+ % 0 %[0 10000 % 1011111 %001
I+ % 00+« 1 % % 0[00100[*x0=10/11111
Since we assume that soc(e;jRy) = Kej, ;) C €;J(Ry)?, for j =

5, then Kej, () = K(ejjy g €j1jz “q €, o(j))» Where ji # ja and

317J2 ¢ {j,o(4)}-

Assume, for simplicity, that there exist non-zero scalars
)\14, )\25, )\31, )\42, )\53 € K such that

A14€14 = €12 *q €23 *q €34,

A25€25 = €23 *q €34 *q €45,

A31€31 = €34 *q €45 *q €51,

A42€42 = €45 *q €51 *q €12,

A53€53 = €51 'q €12 "¢ €23.

Henc(e)we co(n )clude th%t) (5) 1 _ 4 _ (1) (3)
3 5 2 5 1 1 3
412 = q12 =003 =a30 =0, ¢35 = a3 =0, q45 = qg5 =0,
(2) (4) _

451 = 451 =

Indeed, if we assume to the contrary that qg) # 0 then eq3 -4 e30 =
qg)elg and then the non-zero element )\14qg)614 = €13 g €32 q €23 ¢
es4 belongs to J(R,)* = 0, and we get a contradiction. The remaining
equalities follow in a similar way.

Moreover, since the elements A4, Aos, A31, A2, As3 € K are non-zero

then, by the associativity of -, the equalities above yields

2 3 2 3 3 4 3 4 4 4
070y = ayasy) #0, aSlaly) =adald #0, a5dl) = alValy #o0,

5) (1 5) (1 1) (2)
qz(u)qz(u) = qz(12)q5(>2) # 0, qéQ)qéfi) = q§3)q§3 # 0.

Equivalently, we get the equalities
(2) (3)

(3) _ di3qiy4
oy = @
3 4 2 3 4
@ _ aald _ ai¥alPasy
35 = " @ = HENONE
<Z>25<5> <2>l4<3>25<4> (5)
aff) = B = dadiigi
b
S (334(3)20(2?1(5) (1)
(1) — Y4142 _ %13 914 935 931" a2
452 ) EVNCINCM O

442 d14 925 431 442
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1 2 3 4 5 1 2
-
1 2 3 5 1
914 925 931 942 953
It follows that if qgg) € K™ is arbitrary, then the remaining non-zero

(s)

scalars g; ;

3 4 2 3
(*) 07k al) aly ay) = i} el al a) aly

that appear in the equalities above satisfy the condition

Now we show that qil) 0, qé4) =0, q§5) =0, qél) =0 and q( ) — 0.
To see this, assume to the contrary that q43 # 0. Then 0 # q43 €43 =

eq1 -q €13. It follows that the non-zero element eys - €51 g €12 -¢ €23 =

qfll)q§3)e41 g €13 = qil)q§3)qi3)e4g belongs to J(Rq)4 = 0, and we get a

contradiction. The equalities qéi) =0, qg) =0, qg) =0, qé‘;)) = 0 follow
in a similar way. Consequently, the block matrix ¢ has the form

11 1 11|01 42 ¢2o0joo1 4 0o]o 001 0o 0 0«1
1 0 0 0|11 1 1 1/001 43 2|0 00140 0 001
g=[1 0 o0 oo 1 0 o0 o[t 11 1 1]¢ o001 0 001
1¢) 0 0o0/o1 0 0 0/0s+1 0 0|1 111 1|q¢ ¢ 0001
1¢) ¢ 00lo1 ¢ 0o 0oloo1 0o oo 01 0]1 1 111

) (3 (@) (5) .

Now we claim that each of the scalars qé?, qé 1442 s 953 > 74 1S non-
zero. Assume, to the contrary, that some of them is zero, say q§ 4) =0. It
follows from the shape of ¢ that q( ) = = 0, for all  # 5, and consequently
e1s ¢ J(Ry) = 0. It follows that S = e;5 K C e1 Ry is a simple submodule
of e; Ry; contrary to the assumption that soc(e; Ry) = e14 K. This finishes

the proof of our claim. Consequently, the block matrix ¢ has the form
(5)

11 11 10 142 ¢2 0o o 14¢Y o0f]o 0o 0 1 0]o o 0y 1
1o 0 0¢| 1 11 1 1jo 0 142 ¢[00 0 1420 0 0 0 1
a={1 0 0 0 ol 1 0 0 o[t 111 1) 0 0 1 df ) 0 0 0 1
1 ¢ 0 0 0oflo 1 0 o0 olo Y 0 o1 11 1 1(d2 ¢ 0 0 1
1 ¢ ¢ 0o 0o 142 0 oo o o 0oflo oY1 01 1 1 1 1

1
1
where g3, 45y 4l Q§3), ¢\ and g3

the coefficients

5 3 1
R A B

satisfy the equation (x) and the coefficients qéz), q](L 3), qé 4), qgé), qil) depend

of the remaining ones by the formulas preceding the equation ().

(1) (2

Conversely, if ¢ is a block matrix of the above form, where ¢;:’, g3,
qg), qéS), qgi) and qg) are arbitrary non-zero scalars in K, and the re-
maining ones satisfy the above conditions then g is a structure system and

Ry, is a Frobenius algebra such that J(R,)* = 0 and soc(R,) = J(R,)>.
The associated (0, 1)-matrix g structure system has the following form

are arbitrary non-zero scalars in K,

111114011100 O0T1TT1TO0O[0O0O0T1TO0[0O0O0T11
1000142111100 1 1 1]j0 0 01 1/0 0001
g=|10 00 0f1 1 0001 1 1111 001 1|1 0 0 01
1100001 O0O0O0O0011O0O0(1 11111 1001
11100011 0O00O01O0O0|]0011051 1111
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It follows that the Gabriel quiver Q(R,) of R, has the form
Bis

Q(R,): 1 Lo B g B O o

B21 B32 B3 Bs4

Bs1

To view the algebra R, as a path algebra KQ /€, of a bound quiver, we
note that

(5) . 2 (3)
14 €12 "q €23 "q €34 = (13 414 €15 *q €54,

)

qg5)€23 €34 "q €45 = Q§4)Qé5)€21 €15,
2

qg1)€34 ‘q €45 "q €51 = Q§5)Q§1)632 €21,
3

qi2)e45 €51 "q €12 = qz(ﬂ)QELQ)elli’) €32,

) )

(4 (1) (2)
(53 €51 'q €12 *q €23 = (59 (53 €54 *q €43-

To see the first equality, we note that ei5 -4 e54 = qgi)eu and eq2 -q €23 +¢
€34 = qg)qﬁ)eu. Hence the first equality follows, and the remaining ones
follow in a similar way.

Now we prove that there is a K-algebra isomorphism R, = KQ/Qq,
where @@ = Q(R,) and € is the two-sided ideal of the path K-algebra
KQ of Q generated by the following relations:

o (3118341 and B 4185414, for j =1,...,5, where j+1 is reduced
modulo 5.

o (31320304, if there is a path o1, 0 P2, 4 B3, g Pi,qip Q.
o 321815054, B320321515, Ba3B32021, B5443032, F150540543;

5 2) (3
g C]§4)512523ﬂ34 - Q§3) Q§4)/315554,

1 3 4
L4 QQ5 623634545 QQ4 QQ5 ﬁQlﬁlEn

o %8534545551 Q35)Q:(31)ﬁ32521,

o Q42)ﬁ45551ﬂ12 - q41) Q42)ﬁ43532,

o 4i B51B12B23 — 055 as BsaBas.

It is easy to check that the correspondences €; — e; and 3;; — e;; define
a K-algebra homomorphism h : KQ/Q, — R,, where ¢; is the primitive
idempotent of the path algebra K( defined by the stationary path at
the vertex j, for every j € QQp. Note that the map h is well defined and
surjective. Finally, since dimgx KQ/Q, = dimg R, = 25, the surjection
h is an isomorphism of K-algebras.
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Now it is easy to see that R,/soc(R,) = Rg/soc(Rjg) and the algebra
KQ/Qq = R, is special biserial; hence R, is representation-tame, see [3,
5.2]. Since there is a cyclic walk

1 B12 9 B23 3 B3 4 Bas 5 Bs1 1

of the quiver @) and, according to the finite representation type criterion
in [13|, the algebra R, is of infinite representation type, see also [10,
Proposition 3.7].

Problem 4.5. Give a characterisation of the Frobenius A-full matrix
algebras Ry such that dimg Ry = n% n > 3, soc Ry = J(Ra)" 2 and
J(RA)”_1 =0.

Remark 4.6. In connection with Problem 4.5, we recall that if Ry is an
A-full matrix algebra and Ry is the (0,1)-limit of Ry then

o J(Ry)® = J(Ry)?®, for each s > 1 (by [7, Proposition 3.2]),

e soc Ry = soc Ry (by [7, Proposition 5.1]), and

e R, is a Frobenius algebra if and only if the (0, 1)-limit Ry of Ry
is a Frobenius algebra (by [7, Theorem 5.3]).

It follows that a solution of the Problem 4.5 for (0, 1)-structure sys-
tems should help to find a solution for arbitrary structure systems A.

We recall from [5] that in case n = 5, a list of (0, 1)-structure systems
A such that R, is a Frobenius algebra is given in Examples 4.7(4) and
4.7(5) of [5]. It is shown there that, up to isomorphisms of the A-full ma-
trix algebras, there are precisely four Frobenius (0, 1)-structure systems
A. Note that one of them has the property soc Ry = J(Ry)3, compare
with the (0, 1)-limit algebra Ry in Example 4.4.
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