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Abstract. In this paper, we show that if S is an H-closed

topological semigroup and e is an idempotent of S, then eSe is

an H-closed topological semigroup. We give sufficient conditions

on a linearly ordered topological semilattice to be H-closed. Also

we prove that any H-closed locally compact topological semilattice

and any H-closed topological weakly U -semilattice contain mini-

mal idempotents. An example of a countably compact topological

semilattice whose topological space is H-closed is constructed.

Introduction

In this paper, all topological spaces will be assumed to be Hausdorff. We
shall follow the terminology of [1, 2, 3, 4]. If A is a subset of a topological
space X, then by clX(A) we denote the closure of the set A in X and
by Int(A) the interior of A in X. By ω1 we denote the first uncountable
ordinal.

If S is a semigroup, then by E(S) we denote the subset of idempo-
tents of S. A topological space S that is algebraically a semigroup with a
continuous semigroup operation is called a topological semigroup. A topo-
logical inverse semigroup is a topological semigroup S that is algebraically
an inverse semigroup with the continuous inversion.
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A semilattice is a semigroup with a commutative idempotent semi-
group operation. A topological semilattice is a topological semigroup
which is algebraically a semilattice.

If E is a semilattice, then the semilattice operation on E determines
the partial order 6 on E:

e 6 f if and only if ef = fe = e.

This order is called natural. An element e of a semilattice E is called
minimal (maximal) if f 6 e (e 6 f) for f ∈ E implies f = e. For
elements e and f of a semilattice E we write e < f if e 6 f and e 6= f . A
semilattice E is called linearly ordered if the semilattice operation admits
a linear natural order on E.

Let S be a semilattice and e, q ∈ S. We denote ↑e = {f ∈ S | e 6 f},
[e, q] = ↓e ∩ ↑q and [e, q) = [e, q] \ {q}. Obviously, if S is a topological
semilattice then ↑e and ↓e are closed subsets in S for any e ∈ S.

Let S be some class of topological semigroups. A semigroup S ∈ S

is called H-closed in S if S is a closed subsemigroup of any topological
semigroup T ∈ S which contains S as a subsemigroup. If S coincides
with the class of all topological semigroups, then the semigroup S is
called H-closed. The H-closed topological semigroups were introduced
by J. W. Stepp in [9], where they were called maximal semigroups. A
topological semigroup S ∈ S is called absolutely H-closed in the class S,
if any continuous homomorphic image of S into T ∈ S is H-closed in
S. If S coincides with the class of all topological semigroups, then the
semigroup S is called absolutely H-closed.

An algebraic semigroup S is called algebraically h-closed in S, if S
with the discrete topology d is absolutely H-closed in S and (S, d) ∈ S.
If S coincides with the class of all topological semigroups, then the semi-
group S is called algebraically h-closed. Absolutely H-closed topolog-
ical semigroups and algebraically h-closed semigroups were introduced
by J. W. Stepp in [10], where they were called absolutely maximal and
algebraic maximal, respectively.

J. W. Stepp [9] showed that any locally compact topological semi-
group is a dense subsemigroup of an H-closed topological semigroup.
O. V. Gutik and K. P. Pavlyk [5, 6] proved that a topological inverse
semigroup S is [absolutely] H-closed in the class of topological inverse
semigroups if and only if any topological Brandt λ-extension of S is
an [absolutely] H-closed semigroup in the class of topological inverse
semigroups. The topological Brandt λ-extensions which preserve the H-
closedness and the absolute H-closedness were constructed in [5, 8].

In [10] J. W. Stepp proved that a semilattice E is algebraically h-
closed if and only if any maximal chain in E is finite and he posed therein
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the question: Is any H-closed topological semilattice absolutely H-closed?
In [6] O. V. Gutik and K. P. Pavlyk remarked that a topological semi-
lattice is [absolutely] H-closed if and only if it is [absolutely] H-closed in
the class of topological semilattices. O. V. Gutik and D. Repovš [7] es-
tablished properties of linearly ordered H-closed topological semilattices
and showed that any linearly ordered H-closed topological semilattice is
absolutely H-closed. Also they constructed therein an example of a lin-
early ordered H-closed locally compact topological semilattice which is
not embedded into a compact topological semilattice.

In this paper, we show that if S is an H-closed topological semi-
group and e is an idempotent of S, then eSe is an H-closed topological
semigroup. We give sufficient conditions on a linearly ordered topologi-
cal semilattice to be H-closed. Also we prove that any H-closed locally
compact topological semilattice and any H-closed topological weakly U -
semilattice contain minimal idempotents. An example of a countably
compact topological semilattice whose topological space is H-closed is
constructed.

1. H-closed and absolutely H-closed

topological semigroups

Lemma 1.1. Let S be a dense subsemigroup of a topological semigroup
T and let e be a left (right) unity of S. Then e is a left (right) unity of
T .

Proof. Suppose, on the contrary, that e is not a left unity of the topolog-
ical semigroup T . Then there exists t ∈ T such that e · t 6= t. We put
a = e · t. Let W (a) and W (t) be open neighbourhoods of the points a
and t, respectively, such that W (a)∩W (t) = ∅. Since T is a topological
semigroup, there exist open neighbourhoods V (e) and V (t) of the points e
and t, respectively, such that V (t) ⊆ W (t) and V (e) ·V (t) ⊆ W (a). Since
S is a dense subsemigroup of T , there exists s ∈ S such that s ∈ V (t),
and hence e · s = s ∈ V (t) ⊆ W (t), a contradiction. Therefore e is a left
unity of T .

The proof in the case if e is a right unity of S is similar.

Theorem 1.1. Let S be an H-closed topological semigroup and let e be
an idempotent of S. Then eSe = eS ∩ Se is an H-closed topological
semigroup.

Proof. Suppose the contrary, i.e., that T = eSe is not an H-closed topo-
logical semigroup. Then e is the unity of T and there exists a topological
semigroup G which contains T as a non-closed subsemigroup. Without
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loss of generality we can assume that clG(T ) = G. Then G \ T 6= ∅ and
by Lemma 1.1 the idempotent e is the unity of G.

We define A = S∪G and extend the semigroup operation from S and
G onto A as follows:

x ·A y =















x · y, if x, y ∈ S;
x · y, if x, y ∈ G;
x · e · y, if x ∈ S and y ∈ G;
x · e · y, if x ∈ G and y ∈ S.

Let τS be the topology on S and τG be the topology on G. We define
a topology τA on A as follows: U ∈ τA if and only if U ∩ S ∈ τS and
U ∩ G ∈ τG. Obviously, (A, τA) is a Hausdorff topological space and the
semigroup operation “ ·A” on A is continuous.

Therefore S is a dense subsemigroup of the topological semigroup A,
a contradiction. The obtained contradiction implies the statement of the
theorem.

Corollary 1.1. Let S be an H-closed topological semigroup and let e be
an idempotent of S such that ex = xe for all x ∈ eS ∪Se. Then eS = Se
is an H-closed topological semigroup.

Theorem 1.2. Let S be an H-closed topological semigroup and let x be a
regular element of S. If y is an inverse element to x, then xSy = xS∩Sy
is an H-closed topological semigroup.

Proof. By Lemma 1.13 [2], xSy = eS ∩ Se for an idempotent e = xy
of the semigroup S. Then Theorem 1.1 implies the statement of the
theorem.

Corollary 1.2. Let S be an H-closed regular topological semigroup and
let x and y be inverse elements of S, i.e. xyx = x and yxy = y. Then
xSy = xS ∩ Sy is an H-closed topological semigroup.

Since the band of a Clifford inverse semigroup S lies in the center of
S, Corollary 1.2 implies Corollaries 1.3 and 1.4 below.

Corollary 1.3. Let S be an H-closed Clifford inverse topological semi-
group (in the class of inverse topological semigroups) and x ∈ S. Then
xS is an H-closed inverse topological semigroup (in the class of inverse
topological semigroups).

Corollary 1.4. Let S be an H-closed Clifford topological inverse semi-
group (in the class of topological inverse semigroups) and x ∈ S. Then xS
is an H-closed topological inverse semigroup (in the class of topological
inverse semigroups).
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Theorem 1.3. Let S be an absolutely H-closed topological semigroup and
e be an idempotent of S such that ex = xe for all a ∈ S. Then eS is an
absolutely H-closed topological semigroup.

Proof. Suppose, on the contrary, that eS is not an absolutely H-closed
topological semigroup. Then there exists a topological semigroup T and
a continuous homomorphism h : eS → T such that h(eS) is not a closed
subsemigroup of T . Without loss of generality we can assume that h(eS)
is a dense subsemigroup of the topological semigroup T and T\h(eS) 6= ∅.
We define the map g : S → T as follows:

g(x) = h(ex) for all x ∈ S.

Then

g(s·t) = h(e · s·t) = h(e·e · s·t) = h(e·s · e·t) = h(e·s) · h(e·t) = g(s) · g(t)

for s, t ∈ S and hence g : S → T is a homomorphism. Moreover, g(x) =
h(x) for x ∈ eS and g(S) = h(eS). Therefore g(S) is a dense subsemi-
group of the topological semigroup T and T \ g(S) 6= ∅, a contradiction.
The obtained contradiction implies the statement of the theorem.

Corollary 1.5. Let S be an absolutely H-closed Clifford inverse topolog-
ical semigroup (in the class of inverse topological semigroups) and x ∈ S.
Then xS is an absolutely H-closed inverse topological semigroup (in the
class of inverse topological semigroups).

Proof. Since S is a Clifford inverse semigroup, xS = Sx for all x ∈ S and
there exists an idempotent e in S such that xS = eS. Then we apply
Theorem 1.3.

Similarly we get

Corollary 1.6. Let S be an absolutely H-closed Clifford topological in-
verse semigroup (in the class of topological inverse semigroups) and x ∈
S. Then xS is an absolutely H-closed topological inverse semigroup (in
the class of topological inverse semigroups).

2. H-closed topological semilattices

Proposition 2.1. Let (S, τS) be an H-closed topological subsemilattice
of a linearly ordered topological semilattice (T, τT ) and x ∈ T . Then the
set ↑x ∩ S contains a minimal idempotent.
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Proof. Suppose the contrary, i.e., that the set A = ↑x∩S does not contain
a minimal idempotent.

Since the topological semilattice is H-closed, for any idempotent x ∈
T \S there exists an open neighbourhood U(x) of x such that U(x)∩S =
∅. We define

A−(x) = {e ∈ T \ S | e < y for any y ∈ A}.

Therefore A−(x) is an open subset in T .
Let e0 /∈ T . On the set T ∗ = T ∪ {e0} we define the semigroup

operation as follows

t · e0 = e0 · t =







e0, if t = e0;
e0, if t ∈ ↑A;
t, if t ∈ ↓(A−(x)).

It is obvious that T ∗ with so defined semigroup operation is a linearly
ordered semilattice.

We define a topology τ∗ on T ∗ as follows:

1) the bases of the topologies τ∗ and τT at the point e ∈ T = T ∗ \{e0}
coincide;

2) the family
B(e0) = {Uf (e0) = [e0; f) | f ∈ A}

is a base of the topology τ∗ at the point e0 ∈ T ∗.

Obviously, the conditions (BP1)–(BP3) of [3] hold for the family B(e0)
and hence B(e0) is a base of a topology τ∗ at the point e0 ∈ T ∗.

Let p ∈ ↑e0 \ {e0}. Since the set A does not contain a minimal
idempotent there exists an idempotent f ∈ A such that e0 < f < p and
for an open neighbourhood Vf (p) = T ∗ \ ↓f of the point p in T ∗ we have

Vf (p) · Uf (e0) ⊆ Uf (e0).

Also for any idempotent f ∈ A we have

Uf (e0) · Uf (e0) ⊆ Uf (e0).

Let q ∈ P = ↓e0 \ {e0} ⊆ T ∗. Then P = T ∗ \ ↑e0 and P is an open
subset in T ∗. Hence for any open neighbourhood W (q) ⊆ P of q and for
any f ∈ A we have

W (q) · Uf (e0) ⊆ W (q).

Therefore (T ∗, τ∗) is a topological semilattice and obviously (S, τS) is not
a closed subsemilattice of (T ∗, τ∗), which contradicts the H-closedness of
the semilattice (S, τS). The obtained contradiction implies the statement
of the proposition.



I. Chuchman, O. Gutik 19

The proof of Proposition 2.2 is similar to Proposition 2.1.

Proposition 2.2. Let (S, τS) be an H-closed topological subsemilattice
of a linearly ordered topological semilattice (T, τT ) and x ∈ T . Then the
set ↓x ∩ S contains a maximal idempotent.

Propositions 2.1 and 2.2 and Propositions 4 and 5 of [7] imply

Corollary 2.1. Let (S, τS) be an H-closed topological subsemilattice of
a linearly ordered topological semilattice (T, τT ). Then for any x ∈ T the
subsets ↑x ∩ S and ↓x ∩ S of T with induced semilattice operation are
H-closed topological semilattices.

Let C be a maximal chain of a topological semilattice E. Then C =
⋂

e∈C(↓e ∪ ↑e), and hence C is a closed subsemilattice of E. Therefore
we get

Lemma 2.1. Let L be a linearly ordered subsemilattice of a topological
semilattice E. Then clE(L) is a linearly ordered subsemilattice of E.

A subsemilattice L of a linearly ordered semilattice S is called a L-
chain in S if ↑e ∩ ↓f ⊆ L for any e, f ∈ L, e 6 f .

Theorem 2.1. Let S be a linearly ordered topological semilattice and let L
be a subsemilattice of S such that L is an H-closed topological semilattice
and any maximal S \L-chain in S is an H-closed semilattice. Then S is
an H-closed semilattice.

Proof. Suppose, on the contrary, that the topological semilattice S is not
H-closed. Then there exists a topological semilattice T which contains
S as a non-closed subsemilattice. By Lemma 2.1, clT (S) is a linearly
ordered topological subsemilattice of T . Therefore without loss of gener-
ality we can assume that S is a dense subsemilattice of a linearly ordered
topological semilattice T .

Let x ∈ T \S. The conditions of the theorem imply that the set S \L
is a disjunctive union of maximal S \ L-chains Kα, α ∈ A, which are
H-closed semilattices. Therefore any open neighbourhood of the point x
intersects infinitely many sets Kα, α ∈ A.

Since any maximal S \ L-chain in S is an H-closed topological semi-
lattice, one of the following conditions hold:

↑x ∩ L 6= ∅ or ↓x ∩ L 6= ∅.

We consider the case when the sets ↑x∩L and ↓x∩L are not empty. The
proofs in the other cases are similar.
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By Proposition 2.1 the set ↑x ∩L contains a minimal idempotent em

and by Proposition 2.2 the set ↓x∩L contains a maximal idempotent eM .
Then the sets ↑em and ↓eM are closed in T and, obviously, L ⊂ ↓eM∪↑em.
Let U(x) be an open neighbourhood of the point x in T . We define

U0(x) = U(x) \ (↓eM ∪ ↑em) .

Then U0(x) is an open neighbourhood of the point x in T which intersects
at most one maximal S \ L-chain Kα, a contradiction.

Therefore S is an H-closed semilattice.

Corollary 2.2. Let S be a linearly ordered topological semilattice and let
L be a subsemilattice of S such that L is a compact topological semilattice
and any maximal S \ L-chain in S is a compact semilattice. Then S is
an H-closed semilattice.

Proposition 2.3. Every H-closed locally compact topological semilattice
contains a minimal idempotent.

Proof. Suppose the contrary, i.e., that there exists an H-closed locally
compact topological semilattice (E, τE) which does not contain a minimal
idempotent. Let a /∈ S. We put E∗ = E ∪ {a} and define the semilattice
operation on T as follows:

x · y =

{

xy, if x, y ∈ S;
a, if {x, y} ∋ a.

The topology τ∗ on E∗ is defined as follows. Let B(x) be a base
of the topology τE at the point x ∈ E. Then for any x ∈ E we put
B∗(x) = B(x) to be the base of the topology τ∗ at x ∈ E∗ \ {a}.

Let x ∈ E. We define

BC(x) = {U ∈ B(x) | clE(U) is a compact subset of E}.

Then by Proposition VI-1.13(iii) [4], ↑U is an open subset in E for every
U ∈ B(x) and by Proposition VI-1.6(ii) [4], ↑ clE(V ) is a closed subset in
E for any V ∈ BC(x).

We put

B
∗(a) = {V ∗(a) = {a} ∪

(

E \ ↑ clE(V )
)

| V ∈ BC(x), x ∈ E}.

Obviously, the conditions (BP1)–(BP3) of [3] hold for the family B∗(a)
and hence B∗(a) is a base of a topology τ∗ at the point a ∈ E∗. Since
for any x ∈ E there exists V ∈ BC(x) such that V ∩ V ∗(a) = ∅, the
topological space (E∗, τ∗) is Hausdorff.
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For any x ∈ E and V ∈ BC(x) we have V ∗(a) · V ∗(a) ⊆ V ∗(a) and
V · V ∗(a) ⊆ V ∗(a), and hence (E∗, τ∗) is a topological semilattice which
contains E as a dense subsemilattice. This is a contradiction to the H-
closedness of E. The obtained contradiction implies the statement of the
proposition.

A topological semilattice L is called the U -semilattice if for every
idempotent e ∈ L and for any open neighbourhood U(e) of e there exists
an idempotent ye ∈ U(e) such that e ∈ Int (↑ye) [1].

A topological semilattice L is called the weak U -semilattice if for
every idempotent e ∈ L there exists an idempotent ye ∈ L such that
e ∈ Int (↑ye). Obviously, every topological U -semilattice is a weak U -
semilattice. Proposition 2.3 implies that any locally compact H-closed
topological semilattice is a weak U -semilattice.

Proposition 2.4. Every H-closed topological weak U -semilattice con-
tains a minimal idempotent.

Proof. Suppose, on the contrary, that there exists an H-closed topological
weak U -semilattice (S, τS) which does not contain a minimal idempotent.
Let e /∈ S. We define T = S ∪ {e} and extend the semilattice operation
from S onto T as follows

x · e = e · x = e · e = e for all x ∈ S.

Obviously, T with so defined binary operation is a semilattice and e is
zero of T .

We define a topology τT on T such that τT |S = τS in the following
way. For any x ∈ S ⊂ T the bases of topologies τT and τS at the point x
coincide.

Since (S, τS) is a weak U -semilattice, for any idempotent x ∈ S there
exists an idempotent yx ∈ S such that x ∈ Int (↑yx). We put

Ux(e) = S \ (↑yx)

and define

B(e) = {Ux(e) | x ∈ S}.

Evidently, the conditions (BP1)–(BP3) of [3] hold for the family B(e)
and hence B(e) is a base of a topology τT at the point e ∈ T . Obviously,
Ux(e) ∩ S is open subset of S for every idempotent x ∈ S. Since for any
open neighbourhood U(x) of an arbitrary idempotent x ∈ S we have

(U(x) ∩ Int (↑yx)) ∩ Ux(e) = ∅,
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(T, τT ) is a Hausdorff topological space.
For every idempotent x ∈ S and any its open neighbourhood U(x)

we have

(U(x) ∩ Int (↑yx)) · Ux(e) ⊆ Ux(e) and Ux(e) · Ux(e) ⊆ Ux(e)

and therefore (T, τT , ·) is a topological semilattice.
Since the topological semilattice (S, τS) does not contain a minimal

idempotent, (S, τS) is a dense subsemilattice of (T, τT , ·). This contra-
dicts the H-closedness of (S, τS). The obtained contradiction implies the
statement of the proposition.

Theorem 1.1 implies

Corollary 2.3. Let S be an H-closed topological semilattice and e ∈ S.
Then eS is an H-closed topological semilattice.

Theorem 1.3 implies

Corollary 2.4. Let S be an absolutely H-closed topological semilattice
and e ∈ S. Then eS is an absolutely H-closed topological semilattice.

O. Gutik and D. Repovš in [7] constructed an example of a countable
metrizable locally compact H-closed topological semilattice which is not
embeddable into a compact topological semilattice.

Example 2.1 shows that there exists a countably compact topologi-
cal semilattice, whose space is H-closed. Also this example shows that
there exists a countably compact zero-dimensional scattered topological
semilattice which is not embeddable into a locally compact topological
semilattice.

Example 2.1. Let X = [0, ω1) with the order topology (see [3, Ex-
ample 3.10.16]) and semilattice operation x · y = max{x, y}. On Y =
{0} ∪ { 1

n
| n ∈ N} with natural topology we define the semilattice op-

eration as follows: x · y = max{x, y} for all x, y ∈ Y . Let S = X × Y
with the product topology τp and the product operation. We extend
the semilattice operation onto S∗ = S ∪ {α}, where α /∈ S, as follows:
α ·α = x ·α = α · x = α for all x ∈ S, and define a topology τ as follows.
The bases of topologies τ and τp at the point x ∈ S coincide and at the
point α ∈ S∗ the family B(α) = {U(α) | α ∈ ω1} is the base of the
topology τ , where

U(α) = {α} ∪
(

[0, ω1) \ [0, α]
)

×
(

{0} ∪ {1/n | n ∈ N}
)

.

It is obvious that (S∗, τ) is a topological semilattice. Moreover, Propo-
sition 3.12.5 [3] implies that (S∗, τ) is an H-closed countably compact
zero-dimensional scattered non-regular topological space.
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