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ABSTRACT. In this paper, we show that if S is an H-closed
topological semigroup and e is an idempotent of S, then eSe is
an H-closed topological semigroup. We give sufficient conditions
on a linearly ordered topological semilattice to be H-closed. Also
we prove that any H-closed locally compact topological semilattice
and any H-closed topological weakly U-semilattice contain mini-
mal idempotents. An example of a countably compact topological
semilattice whose topological space is H-closed is constructed.

Introduction

In this paper, all topological spaces will be assumed to be Hausdorff. We
shall follow the terminology of [1, 2, 3, 4]. If A is a subset of a topological
space X, then by clx(A) we denote the closure of the set A in X and
by Int(A) the interior of A in X. By w; we denote the first uncountable
ordinal.

If S is a semigroup, then by E(S) we denote the subset of idempo-
tents of S. A topological space S that is algebraically a semigroup with a
continuous semigroup operation is called a topological semigroup. A topo-
logical inverse semigroup is a topological semigroup S that is algebraically
an inverse semigroup with the continuous inversion.
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A semilattice is a semigroup with a commutative idempotent semi-
group operation. A topological semilattice is a topological semigroup
which is algebraically a semilattice.

If F is a semilattice, then the semilattice operation on E determines
the partial order < on E:

e< f ifand onlyif ef = fe=ce.

This order is called natural. An element e of a semilattice E is called
minimal (mazimal) if f < e (e < f) for f € E implies f = e. For
elements e and f of a semilattice F we write e < fife < fande# f. A
semilattice E is called linearly ordered if the semilattice operation admits
a linear natural order on E.

Let S be a semilattice and e,q € S. We denote Te = {f € S| e < f},
le,q] = leN Tq and [e,q) = [e,q] \ {¢}. Obviously, if S is a topological
semilattice then Te and |e are closed subsets in S for any e € S.

Let 8 be some class of topological semigroups. A semigroup S € 8
is called H-closed in 8 if S is a closed subsemigroup of any topological
semigroup 7' € § which contains S as a subsemigroup. If 8§ coincides
with the class of all topological semigroups, then the semigroup S is
called H-closed. The H-closed topological semigroups were introduced
by J. W. Stepp in [9], where they were called mazimal semigroups. A
topological semigroup S € 8§ is called absolutely H-closed in the class 8,
if any continuous homomorphic image of S into T" € § is H-closed in
8. If 8 coincides with the class of all topological semigroups, then the
semigroup S is called absolutely H-closed.

An algebraic semigroup S is called algebraically h-closed in 8§, if S
with the discrete topology 0 is absolutely H-closed in 8 and (5,0) € 8.
If § coincides with the class of all topological semigroups, then the semi-
group S is called algebraically h-closed. Absolutely H-closed topolog-
ical semigroups and algebraically h-closed semigroups were introduced
by J. W. Stepp in [10], where they were called absolutely mazimal and
algebraic mazximal, respectively.

J. W. Stepp [9] showed that any locally compact topological semi-
group is a dense subsemigroup of an H-closed topological semigroup.
O. V. Gutik and K. P. Pavlyk [5, 6] proved that a topological inverse
semigroup S is [absolutely| H-closed in the class of topological inverse
semigroups if and only if any topological Brandt A-extension of S is
an [absolutely| H-closed semigroup in the class of topological inverse
semigroups. The topological Brandt A-extensions which preserve the H-
closedness and the absolute H-closedness were constructed in [5, §].

In [10] J. W. Stepp proved that a semilattice E is algebraically h-
closed if and only if any maximal chain in £ is finite and he posed therein
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the question: Is any H-closed topological semilattice absolutely H-closed?
In [6] O. V. Gutik and K. P. Pavlyk remarked that a topological semi-
lattice is [absolutely| H-closed if and only if it is [absolutely| H-closed in
the class of topological semilattices. O. V. Gutik and D. Repovs [7] es-
tablished properties of linearly ordered H-closed topological semilattices
and showed that any linearly ordered H-closed topological semilattice is
absolutely H-closed. Also they constructed therein an example of a lin-
early ordered H-closed locally compact topological semilattice which is
not embedded into a compact topological semilattice.

In this paper, we show that if S is an H-closed topological semi-
group and e is an idempotent of S, then eSe is an H-closed topological
semigroup. We give sufficient conditions on a linearly ordered topologi-
cal semilattice to be H-closed. Also we prove that any H-closed locally
compact topological semilattice and any H-closed topological weakly U-
semilattice contain minimal idempotents. An example of a countably
compact topological semilattice whose topological space is H-closed is
constructed.

1. H-closed and absolutely H-closed
topological semigroups

Lemma 1.1. Let S be a dense subsemigroup of a topological semigroup
T and let e be a left (right) unity of S. Then e is a left (right) unity of
T.

Proof. Suppose, on the contrary, that e is not a left unity of the topolog-
ical semigroup T'. Then there exists ¢ € T such that e -t # t. We put
a =e-t. Let W(a) and W(t) be open neighbourhoods of the points a
and t, respectively, such that W(a) N W (t) = &. Since T is a topological
semigroup, there exist open neighbourhoods V' (e) and V (t) of the points e
and ¢, respectively, such that V(t) C W (t) and V(e) -V (t) C W (a). Since
S is a dense subsemigroup of T, there exists s € S such that s € V(¢),
and hence e-s = s € V(t) C W(t), a contradiction. Therefore e is a left
unity of T'.

The proof in the case if e is a right unity of S is similar. 0

Theorem 1.1. Let S be an H-closed topological semigroup and let e be
an idempotent of S. Then eSe = eS N Se is an H-closed topological
SEMIGroup.

Proof. Suppose the contrary, i.e., that T' = eSe is not an H-closed topo-
logical semigroup. Then e is the unity of T and there exists a topological
semigroup G which contains T" as a non-closed subsemigroup. Without
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loss of generality we can assume that clg(7) = G. Then G\ T # @ and
by Lemma 1.1 the idempotent e is the unity of G.

We define A = SUG and extend the semigroup operation from .S and
G onto A as follows:

Y, ifx,y€S;
-y, if x,y € G;
ce-y, ifxeSandye G,
ce-y, ifxeGandyes.

ToAY =

8 8 8 8

Let 7¢ be the topology on S and 7¢ be the topology on G. We define
a topology 74 on A as follows: U € 14 if and only if U NS € 75 and
UNG e 7g. Obviously, (A, 74) is a Hausdorff topological space and the
semigroup operation “-4” on A is continuous.

Therefore S is a dense subsemigroup of the topological semigroup A,
a contradiction. The obtained contradiction implies the statement of the
theorem. O

Corollary 1.1. Let S be an H-closed topological semigroup and let e be
an idempotent of S such that ex = xe for all x € eSUSe. Then eS = Se
1s an H-closed topological semigroup.

Theorem 1.2. Let S be an H-closed topological semigroup and let x be a
reqular element of S. If y is an inverse element to x, then xSy = zSNSy
1s an H-closed topological semigroup.

Proof. By Lemma 1.13 [2], zSy = eS N Se for an idempotent e = xy
of the semigroup S. Then Theorem 1.1 implies the statement of the
theorem. n

Corollary 1.2. Let S be an H-closed regular topological semigroup and
let x and y be inverse elements of S, i.e. xyx = x and yxy = y. Then
xSy = xS NSy is an H-closed topological semigroup.

Since the band of a Clifford inverse semigroup .S lies in the center of
S, Corollary 1.2 implies Corollaries 1.3 and 1.4 below.

Corollary 1.3. Let S be an H-closed Clifford inverse topological semi-
group (in the class of inverse topological semigroups) and x € S. Then
xS is an H-closed inverse topological semigroup (in the class of inverse
topological semigroups).

Corollary 1.4. Let S be an H-closed Clifford topological inverse semi-
group (in the class of topological inverse semigroups) and x € S. Then xS
is an H-closed topological inverse semigroup (in the class of topological
inverse semigroups).
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Theorem 1.3. Let S be an absolutely H-closed topological semigroup and
e be an idempotent of S such that ex = xe for alla € S. Then eS is an
absolutely H-closed topological semigroup.

Proof. Suppose, on the contrary, that eS is not an absolutely H-closed
topological semigroup. Then there exists a topological semigroup 7" and
a continuous homomorphism h: eS — T such that h(eS) is not a closed
subsemigroup of T'. Without loss of generality we can assume that h(eS)
is a dense subsemigroup of the topological semigroup 7" and T\ h(eS) # @.
We define the map ¢g: S — T as follows:

g(z) = h(ex) forall ze€S.
Then
g(s't) =h(e-st)=h(ee-st)=nh(es-et)=h(es) hlet)=g(s)- gt

for s,t € S and hence g: S — T is a homomorphism. Moreover, g(z) =
h(z) for z € eS and g(S) = h(eS). Therefore ¢(S) is a dense subsemi-
group of the topological semigroup 7" and T'\ ¢g(S) # &, a contradiction.
The obtained contradiction implies the statement of the theorem. ]

Corollary 1.5. Let S be an absolutely H-closed Clifford inverse topolog-
ical semigroup (in the class of inverse topological semigroups) and x € S.
Then xS is an absolutely H-closed inverse topological semigroup (in the
class of inverse topological semigroups).

Proof. Since S is a Clifford inverse semigroup, x5 = Sx for all x € S and
there exists an idempotent e in S such that xS = eS. Then we apply
Theorem 1.3. O

Similarly we get

Corollary 1.6. Let S be an absolutely H-closed Clifford topological in-
verse semigroup (in the class of topological inverse semigroups) and x €
S. Then xS is an absolutely H-closed topological inverse semigroup (in
the class of topological inverse semigroups).

2. H-closed topological semilattices

Proposition 2.1. Let (S,7s) be an H-closed topological subsemilattice
of a linearly ordered topological semilattice (T, 7p) and x € T. Then the
set Tx NS contains a minimal idempotent.
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Proof. Suppose the contrary, i.e., that the set A = TxN.S does not contain
a minimal idempotent.

Since the topological semilattice is H-closed, for any idempotent x €
T\ S there exists an open neighbourhood U(x) of = such that U(z)NS =
&. We define

A (x)={ecT\S|e<y forany ye A}

Therefore A~ (z) is an open subset in 7.
Let eg ¢ T. On the set T* = T U {eg} we define the semigroup
operation as follows

ep, if t=ep;
t-eg=¢€y-t= eg, if te€TA,;
t, if te (A ().

It is obvious that 7™ with so defined semigroup operation is a linearly
ordered semilattice.
We define a topology 7* on T™* as follows:

1) the bases of the topologies 7* and 7 at the point e € T =T\ {eg}
coincide;

2) the family
B(eo) = {Uy(eo) = [eo; f) | [ € A}
is a base of the topology 7* at the point eg € T*.

Obviously, the conditions (BP1)—(BP3) of [3] hold for the family B(eq)
and hence B(ep) is a base of a topology 7* at the point eg € T™*.

Let p € Teo \ {eo}. Since the set A does not contain a minimal
idempotent there exists an idempotent f € A such that ey < f < p and
for an open neighbourhood Vi (p) = T* \ | f of the point p in T we have

Vi(p) - Us(eo) € Ug(eo)-
Also for any idempotent f € A we have

Ug(eo) - Us(eo) € Uy(eo).

Let g € P = leg \ {eo} CT*. Then P =T%\ Tep and P is an open
subset in T*. Hence for any open neighbourhood W (q) C P of ¢ and for

any f € A we have
W(q) - Us(eo) € W(q).

Therefore (T, 7*) is a topological semilattice and obviously (.S, 7g) is not
a closed subsemilattice of (7, 7*), which contradicts the H-closedness of
the semilattice (S, 7g). The obtained contradiction implies the statement
of the proposition. O
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The proof of Proposition 2.2 is similar to Proposition 2.1.

Proposition 2.2. Let (S,7g) be an H-closed topological subsemilattice
of a linearly ordered topological semilattice (T, 7p) and x € T. Then the
set lx NS contains a mazximal idempotent.

Propositions 2.1 and 2.2 and Propositions 4 and 5 of [7| imply

Corollary 2.1. Let (S,75) be an H-closed topological subsemilattice of
a linearly ordered topological semilattice (T, Tr). Then for any x € T the
subsets Te NS and |x NS of T with induced semilattice operation are
H-closed topological semilattices.

Let C' be a maximal chain of a topological semilattice E. Then C =
Necc(le U Te), and hence C' is a closed subsemilattice of . Therefore
we get

Lemma 2.1. Let L be a linearly ordered subsemilattice of a topological
semilattice E. Then clg(L) is a linearly ordered subsemilattice of E.

A subsemilattice L of a linearly ordered semilattice S is called a L-
chain in S'if TeNn | f C Lforanye, f € L, e < f.

Theorem 2.1. Let S be a linearly ordered topological semilattice and let L
be a subsemilattice of S such that L is an H-closed topological semilattice
and any mazimal S\ L-chain in S is an H-closed semilattice. Then S is
an H-closed semilattice.

Proof. Suppose, on the contrary, that the topological semilattice S is not
H-closed. Then there exists a topological semilattice T which contains
S as a non-closed subsemilattice. By Lemma 2.1, clp(S) is a linearly
ordered topological subsemilattice of T'. Therefore without loss of gener-
ality we can assume that S is a dense subsemilattice of a linearly ordered
topological semilattice T

Let © € T\ S. The conditions of the theorem imply that the set S\ L
is a disjunctive union of maximal S \ L-chains K,, o € A, which are
H-closed semilattices. Therefore any open neighbourhood of the point x
intersects infinitely many sets K, a € A.

Since any maximal S\ L-chain in S is an H-closed topological semi-
lattice, one of the following conditions hold:

TeNL#@ or |zNL+#a.

We consider the case when the sets Te N L and |z N L are not empty. The
proofs in the other cases are similar.
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By Proposition 2.1 the set Tz N L contains a minimal idempotent e,
and by Proposition 2.2 the set |xN L contains a maximal idempotent ep;.
Then the sets Te,, and | ey are closed in T" and, obviously, L C |epUTen,.
Let U(z) be an open neighbourhood of the point = in 7. We define

Up(z) =U(z) \ (lepr UTem).

Then Uy(z) is an open neighbourhood of the point  in 7" which intersects
at most one maximal S\ L-chain K, a contradiction.
Therefore S is an H-closed semilattice. O

Corollary 2.2. Let S be a linearly ordered topological semilattice and let
L be a subsemilattice of S such that L is a compact topological semilattice
and any maximal S\ L-chain in S is a compact semilattice. Then S is
an H-closed semilattice.

Proposition 2.3. Every H-closed locally compact topological semilattice
contains a minimal idempotent.

Proof. Suppose the contrary, i.e., that there exists an H-closed locally
compact topological semilattice (F, ) which does not contain a minimal
idempotent. Let a ¢ S. We put E* = F'U{a} and define the semilattice
operation on 1" as follows:

R zy, if z,y€S8;
Y=V a, if {z.y}3a

The topology 7* on E* is defined as follows. Let B(z) be a base
of the topology 7r at the point x € E. Then for any € E we put
B*(x) = B(z) to be the base of the topology 7* at x € E* \ {a}.

Let x € E. We define

Be(x) ={U € B(x) | clg(U) is a compact subset of E}.

Then by Proposition VI-1.13(iii) [4], TU is an open subset in E for every
U € B(z) and by Proposition VI-1.6(ii) [4], Tclg(V) is a closed subset in
E for any V € B (x).

We put

B*(a) = {V*(a) = {a} U (E\ Tclg(V)) | V € Bo(x),z € E}.

Obviously, the conditions (BP1)-(BP3) of [3] hold for the family B*(a)
and hence B*(a) is a base of a topology 7 at the point a € E*. Since
for any x € E there exists V € Bg(z) such that V N V*(a) = @, the
topological space (E*,7*) is Hausdorff.
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For any z € E and V € Be(z) we have V*(a) - V*(a) C V*(a) and
V- V*(a) C V*(a), and hence (E*,7*) is a topological semilattice which
contains F as a dense subsemilattice. This is a contradiction to the H-
closedness of E. The obtained contradiction implies the statement of the
proposition. O

A topological semilattice L is called the U-semilattice if for every
idempotent e € L and for any open neighbourhood U (e) of e there exists
an idempotent y. € U(e) such that e € Int (Tye) [1].

A topological semilattice L is called the weak U-semilattice if for
every idempotent e € L there exists an idempotent y. € L such that
e € Int (Ty.). Obviously, every topological U-semilattice is a weak U-
semilattice. Proposition 2.3 implies that any locally compact H-closed
topological semilattice is a weak U-semilattice.

Proposition 2.4. FEvery H-closed topological weak U-semilattice con-
tains a minimal idempotent.

Proof. Suppose, on the contrary, that there exists an H-closed topological
weak U-semilattice (S, 7g) which does not contain a minimal idempotent.
Let e ¢ S. We define T'= S U {e} and extend the semilattice operation
from S onto T' as follows

r-e=e-r=e-e=c¢e forall ze€S.

Obviously, T" with so defined binary operation is a semilattice and e is
zero of T

We define a topology 7 on T' such that 7p|s = 7g in the following
way. For any x € S C T the bases of topologies 7 and 7g at the point x
coincide.

Since (S, 7g) is a weak U-semilattice, for any idempotent x € S there
exists an idempotent y, € S such that x € Int (Ty,). We put

Uz(e) = S\ (Tya)
and define
B(e) ={Uz(e) | x € S}.

Evidently, the conditions (BP1)-(BP3) of [3] hold for the family B(e)
and hence B(e) is a base of a topology 7p at the point e € T'. Obviously,
Ux(e) N S is open subset of S for every idempotent = € S. Since for any
open neighbourhood U(x) of an arbitrary idempotent z € S we have

(U(x) M Int (Tyac)) N U:L’(e) =,
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(T, 7r) is a Hausdorff topological space.
For every idempotent z € S and any its open neighbourhood U/(x)
we have

(U(x) NInt (Tyz)) - Uz(e) C Ugle) and Ux(e) - Ug(e) C Uzl(e)

and therefore (T, 7r,-) is a topological semilattice.

Since the topological semilattice (S, 7g) does not contain a minimal
idempotent, (S,7g) is a dense subsemilattice of (T, 7p,-). This contra-
dicts the H-closedness of (S, 7). The obtained contradiction implies the
statement of the proposition. O

Theorem 1.1 implies

Corollary 2.3. Let S be an H-closed topological semilattice and e € S.
Then eS is an H-closed topological semilattice.

Theorem 1.3 implies

Corollary 2.4. Let S be an absolutely H-closed topological semilattice
and e € S. Then eS is an absolutely H-closed topological semilattice.

O. Gutik and D. Repovs in [7]| constructed an example of a countable
metrizable locally compact H-closed topological semilattice which is not
embeddable into a compact topological semilattice.

Example 2.1 shows that there exists a countably compact topologi-
cal semilattice, whose space is H-closed. Also this example shows that
there exists a countably compact zero-dimensional scattered topological
semilattice which is not embeddable into a locally compact topological
semilattice.

Example 2.1. Let X = [0,w;) with the order topology (see [3, Ex-
ample 3.10.16]) and semilattice operation z -y = max{z,y}. On Y =
{0} U{L | n € N} with natural topology we define the semilattice op-
eration as follows: x -y = max{z,y} for all z,y € Y. Let S = X xY
with the product topology 7, and the product operation. We extend
the semilattice operation onto S* = S U {a}, where o ¢ S, as follows:
a-a=z-a=q«a-x=cqforall x €S, and define a topology 7 as follows.
The bases of topologies 7 and 7, at the point € S coincide and at the
point a € S* the family B(a) = {U(a) | @ € wi} is the base of the
topology 7, where

U(a) = {} U ([0,01) \ [0,a]) x ({0} U{1/n | n € N}).

It is obvious that (S*,7) is a topological semilattice. Moreover, Propo-
sition 3.12.5 [3] implies that (S*,7) is an H-closed countably compact
zero-dimensional scattered non-regular topological space.
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