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ABSTRACT. This article is devoted to a special case of clas-
sification problem for Cohen-Macaulay modules over hypersurface
singularities.

1. Introduction

Recall that with respect to classification of Cohen-Macaulay modules they
distinguish tree types of algebras:

1. Cohen-Macaulay finite: An algebra R is called Cohen-Macaulay
finite if it has only finitely many non-isomorphic indecomposable
Cohen-Macaulay modules.

2. Cohen-Macaulay tame: Let R be aring. R is called Cohen-Macaulay
tame if indecomposable modules of fixed rank form finitely many
1-parametric families.

3. Cohen-Macaulay wild: R is called Cohen-Macaulay wild if for ev-
ery finitely generated algebra A there is an exact functor from the
category of finite dimensional A-modules to the category of Cohen-
Macaulay modules over this singularity, which maps non-isomorphic
modules to non-isomorphic ones and indecomposable to indecom-
posable.

It happens that these notions are closely related to the deformation
and modality properties of singularities. For the definitions and results
concerning modalities and deformations we refer to [1]. Till now the
following results have been obtained:
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1. A hypersurface singularity is of finite Cohen-Macaulay type if and
only if it is simple (i.e. has zero modality or, the same, is of type
Ay, Dy, Eg, E7, Eg in Arnold’s classification). (See [10, 3].)

2. A curve singularity is of finite Cohen-Macaulay type if and only
if it dominates one of the simple plane curve singularities (i.e.
Ap, Dy, Eg, Er7, Eg in Arnold’s classification) (see [9]). (Recall here
that A’ dominates A means that A C A" and A’/A is an A-module
of finite length).

3. A surface singularity is of finite Cohen-Macaulay type if and only
if it a quotient singularity, i.e. so that R ~ k[|z,]]®, the ring of
invariants of finite subgroup G C GL(2, k) (see [2, 8]).

4. A curve singularity is Cohen-Macaulay tame if and only if it dom-
inates one of the unimodal singularities T},q. (See [5].)

5. A minimally elliptic surface singularity (in the sense of [11]) is tame
if and only if it is either a simple elliptic singularity or a cusp
singularity. (See [6].)

6. Hypersurface singularities of type 7, are Cohen-Macalay tame
(see [6]).

In [6] it was conjectured that all other hypersurface singularities are
Cohen-Macaulay wild. In this article we will prove the following part of
this conjecture:

Theorem 1.1. Let R = k[[z1,72,...,7,)]/(f). Ifn =3 and f € m*,
then R is Cohen-Macaulay wild.

2. Prerequisites

In this section, we will review some basic definitions and facts we will
need then (see [12]). Through the article, we denote commutative Cohen-
Macaulay algebras R over an algebraically closed field k. For the sake
of simplicity, we also suppose that char k£ = 0, though some of results
remain valid for positive characteristic too. We suppose that R is local,
complete, noetherian and R/m = k, where m is the maximal ideal of R.
All modules in the article considered to be finitely generated.

Proposition 2.1. If 0 # f € E[[to, ..., td]], then R = E[[to, ..., ta]]/(f)

is a Cohen-Macaulay ring of Krull dimension d.

Let S be a regular local ring, and R is a homomorphic image of the
regular local ring S, that is R = S/I.
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Definition 2.2. A pair of square matrices (p, 1)) with entries in S satis-
fying the conditions

o= fI
Yo = fI

is called a matrix factorisation of f.

Definition 2.3. A morphism between matrix factorisations (g,1) and
(¢, 1) is a pair of matrices (S,T) with Sy = ¢'T and Ty = ¢'S:
P

gm) Y, glm) % _, g(m)

ls lT ls (1)
Glna) _ ¥ gna) . gna)

Note, that the commutativity of the right square in (1) implies the
commutativity of the left. In fact, multiplying S = ¢'T by ¢, v’, we will
have fi'S = ¢/'S¢pyp = ' ¢'Tp = fT4), hence ¥'S = T1. Nevertheless,
during the computations in the chapter 3 it will be convenient to use
both two equalities:

S =¢'T

Definition 2.4. Two matrix factorisations (¢, 1) and (¢’,1)’) are called
equivalent if and only if there exists a morphism(S,T") between (¢, 1))
and (¢',1"), such that (S,T) is an isomorphism, i.e. det(S) # 0 and
det(T) # 0. We will denote this fact using the notation (¢,v) ~ (¢’,¢').

Therefore, we obtain the category M F(f) of matrix factorizations of
(f). And now we will formulate an important result about the connection
between CM modules and matrix factorisations:

Theorem 2.5 (Eisenbud [7]). Let F} and F be two functors
Fi: MF(f) — CM(R),

and

> : CM(R) — MF(f)

defined as follows. If we have matriz factorisation (p,v) we get a CM
R-module M = S™/p(S™) (S™ is a free S-module and ¢ is considered as a
homomorphism ¢ : S™ — S™ ). This defines the functor Fy. Conversely,
we have for a CM R-module M a free resolution over S':

0 —— s 2, gn) M 0
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And there is another homomorphism ¢ : 8" — S™, such that oy =
v = fI. This defines the functor Fs.

Then the functors F1 and Fy establish an equivalence between the cat-
egory of CM modules over R and the category of matrix factorisations of

(f)-

Recall, thet an exact functor F' : A — mod — B — Mod is called a
representation embedding if and only if the following conditions hold:

1. F(M) is indecomposable if and only if M is indecomposable.
2. F(M) ~ F(M’) if and only if M ~ M.

By definition, a Cohen-Macaulay algebra R is called Cohen-Macaulay
wild (CM wild) if and only if for every finitely generated k-algebra A
there exists a representation embedding F' : A — mod — CM(R). We
will show now, that we need to check it only for a "special algebra" A,
ie. A = k(x,y) (free non-commutative algebra), or A = KJz,y|, or
A = K][[z,y]]. First notice the following obvious result.

Lemma 2.6. Suppose that a k-algebra Aqg is wild in the sense that for
every finitely generated k-algebra A there is a representation embedding
A —mod — Ag — mod. Then a CM algebra R is CM wild if and only if
there is a representation embedding CM(R) — Ag — mod.

Lemma 2.7. The algebras k(z,y), klz,y] and k[[x,y]] are wild.

Proof. First prove this result for the algebra k(x,y). Indeed, let A =
k{ai,az,...,an) be any finitely generated k-algebra. Any d-dimensional
representation M of the algebra A is given by m matrices of size d x
d A1, Ay, ..., Ap. Define the representation F(M) of the free algebra
k(z,y) such that it maps

0 I O 00 - .
0 0 I 0 0 o ’
c— M= ... . Yy M, = 2 ’
0O 0 0 . o1l |
000 ... 00 0 0 A

where I denotes the identity matrix of size d x d. It gives us a functor
F : A—mod — k(z,y) — mod. Suppose that another A-module N
is given by the matrices Bi, Bs,..., B, and ® : F(M) — F(N) is a
homomorphism. Then ® is a md x md-matrix such that ®M, = N,
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and ®M, = N,®. The first of these equalities implies that

T * %

0 7T =«
=10 0 T ,

0 0 O T

where T is a d X d-matrix. The second equality implies now that T A; =
B,T for all i = 1,2,...,m, therefore T is a homomorphism M — N.
Moreover, ® is invertible (i.e. isomorphism) if and only if so is T, and if
® is an idempotent, so is T' too. It means that the functor F' is indeed a
representation embedding.

Now we construct, following [4], a representation embedding k(x, y) —
mod — k[[z,y]] —mod (it will imply that k[[x, y]] and all the more k[z, y]
are wild). Namely, let a representation M of k(x,y) is given by two
matrices X,Y (the images of z and y). Define the representation F'(M)
of k[[z,y]] such that

0 0 I Yi 0 Y
zc— M, =0 0 0|, y—M,=10 0 Y31,
0 00 0 0N
where
0 0 I 0 0 0
Yi=[0 0 0], Yo=|I 0 0|, Ys=(0 C 0),
0 00 0 B O
and
al 0 0 0 0
0 eI 0 0 0
p=lo T a0 0| e=(R0 0 L)
0 0 0 cI O
0 0 0 0 c5l

with c1, c2, 3, ¢4, c5 are pairwise distinct elements.

Just as above, one can easily check that any homomorphism & :
F(M) — F(N) induces a homomorphism 7" : M — N; moreover, ®
is an isomorphism (an idempotent) if and only if so is 7. Thus F is also
a representation embedding. O

Therefore, to prove that an algebra R is CM wild, it is enough to con-
struct a representation embedding k[x, y] — mod — CM(R) or k[[z,y]] —
mod — CM(R). In what follows, we will construct such functors.

To prove these facts we will use the following lemma.
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Lemma 2.8. Let f be a polynomial that has a presentation as f = fig1+
fog2 + fags, where f;, g; are polynomials of order at least 1 for all i =
1,2,3. Then there exists a matrix factorization of f: fl4 = b = Y,
where et ¢ and Y are the following matrices:

fi 9 f3 0
o= for —o 0 f3
g3 93 —q1—Jf2 J1— g2
—g93 0 g 92
(3)
g 92 0 —f3
p= fa2 =f f3 I3
93 0 —g2 —g2+f1
0 g g fota;
Proof. The proof is an easy straightforward calculations. O

The idea of the proof of theorem 1.1 is the following.

e Firstly, we find a presentation of f as f1g1 + fogo + f3g3, where f;
depend on some parameters A, i, ... and g; have a big enough order.
Thus we obtain a matrix factorization of the form (3) depending on
parameters A, i, . . ..

e Secondly, we “blow” the matrix factorization (3). Namely, we re-
place each constant a € k by the scalar matrix al,, for some
m and the parameters A, p,... by commuting m X m matrices
A M, .... It is obvious that in this way we obtain a marix fac-
torization fly,, = ®¥ = Ud.

e Then we prove that these new factorizations are equivalent if and
only if the corresponding matrices A, M, ... are conjugate. Thus
we obtain a representation embedding k[[x,y]] — mod — CM(R),
therefore R is CM wild.

Certainly, this is only a general outline of the proof; for the details
see below.

3. Proof of the Theorem 1.1

Lemma 3.1. Let f € k[[x,y, z]] be a polynomial of order 4. Then f has a

presentation [ = f1g1+ foga + f3g3, where f1 = x+ Az, fo = y+uz, f3 =
22, ord(g1) > 3, ord(ge) >3, ord(g3) > 2 and g3 is divisible by z.
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Proof. Let | = (x + Az,y + pz), where A\, u are parameters. Firstly we
check that [m? + (23) = m3, where m = (x,%,2). Indeed, multiplying
x + Az and y + pz by momomials of degree 2, we obtain polynomials

23 4+ Nz, 2%y + dwyz, 22z + Aw2?, zy? 4+ M2z, zyz + My2?, x2? + 223,
a:2y + ,USUQZ, :r:y2 + puryz, rYz + /m:zg, y3 + quZ, y2z + ,uyZZ, y22 + qu.
Together with 23 they generate (z,v, 2)3.

Since m* = m3m, we can present any polynomial f € m* in the

form f = (z + A2)g1 + (y + p2)g2 + 239, where ord(g1) > 3, ord(g2) >
3, ord(g) > 1, so it is enough to denote g3 = zg. O

According to lemma 2.8, we obtain a matrix factorization fIy = pi) =
Y, where

T+ Az g2 22 0
_|y+pr o 0 22
LA 93 —Y—pzr—g1 T+Az—go
—93 0 —01 g2
g1 92 0 —2?
b= y+pz —x—Az 22 22
|l e 0 —g2 T+ Az —go
0 g3 g y+tuz+ag

Now we use the blowing procedure. Namely, let A and M be two com-
muting m X m matrices. Then we can consider the matrix factorization

FLim = ®(A, M)T(A, M) = T(A, M)B(A, M),

where & = ®(A, M) and ¥ = ¥(A, M) are given by the formulas:

zl +Az Gy 22T 0
o yl + Mz -Gy 0 221
G3 Gs —yl—Mz—Gy zl+ Az— Gy
-G 0 -G G
3 1 , 2 <4)
Gy Go 0 —z°1
U yl + Mz —al — Az 221 221
Gs 0 —Gy zl+Az— Gy
0 G3 G, yl + Mz + G1

Here I = I,;,, and G; denotes the matrix obtained from the polynomial
gi; by replacing all coefficients a € k by the scalar matrix al, parameter
A by the matrix A and parameter p by the matrix M.
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In the following computations, we denote by Gv the coefficient of
the monomial w in the polynomial matrix G. Especially G° denote the
constant term of this polynomial matrix.

Any pair (A, M) of commuting matrices defines a representation L =
L(A,M) of the polynomial algebra k[z,y|, namely

x— A, y— M.

If (A/,M’) is another such pair and L' = L(A’,M’), a homomorphism
L — L' is a matrix A such that AA = A’A and AM = M’A. In particular,
L and L' are isomorphic if and only if the pairs (A, M) and (A’,M’) are
conjugate, i.e. there is an invertible matrix A such that A’ = AAA~" and
M = AMA~!. Moreover, L = L(A,M) is devomposable if and only if
there is a non-trivial idempotent endomorphism L — L, i.e. a matrix A
such that AN = AA, AM =MA, A>=Aand A#0, A#1I.

On the other hand, a homomorphism of matrix factorizations (¢, V') —
(@', %) is given by a pair of matrices (S,T) such that S® = ®'T and
TV = U'S. Therefore, all we need is to prove the following fact.

Lemma 3.2. Let & = ®(A,M), ¥ = ¥(A,M), &' = &N, M), ¥ =
V(A , M) as defined by the formulas (4). If a pair (S,T) defines a ho-
momorphism of matrixz factorizations (®, V) — (®', V'), their constant
terms S, T° are of the form:

A0 0 &
o_[0 40 6
& & A &
0O 0 0 A (5)
A 0 0 O
70 _ 0 A 0y 03
6, 0 A 0]’
s 0 0 A

where all matrices are with entries from the field k, such that AN = A'A
and AM = M'A.

Proof. Recall that all entries of the polynomial matrices G1,G9 are of
order at least 3, and those of G5 are of order at least 2; moreover, all
entries of G'3 are divisible by z. We write .S and T" as block matrices with
the blocks of size m x m, namely, S = (&), T = (0;;) (i,5 =1,2,3,4).
First, we will consider the equality S® = ®'T and compare all (i, j)-
components.

(1,1):
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Eia(xl + Az) + oyl +Mz) + &13G3 — §14Gs = (xf + N'2)611 +
Gaoba 1 + 2203 1;

€T 5(1),1 = 9(1),17

y: 59,2 =0,

z: A+ E),M = A6, Since &7, =0,

Y2 5%72 = 0 (recall that G is divisible by z), we have:

5(1),1A = A/9(1),1 (6)
(1,2)
£11G2 — €12G1 + &13G3 = (2] + N2)01 2 + Gabo g + 22035
x: 9?72 =0
(2.1)

Ea1(x] + Az) — Ea2(yl + Mz) + &23G3 — §24G3 = (yI + M'2)0,1 —
G161 + 22041

€ 53,1 =0

y: fg,z = 9(1),1

2169 A +E,M =M6 . Since £ =0 and 6 ; = 0 we have:

53,21\/[ = Ml@?; (7)
(4,1)

Ean(x] +Az) +E&2(yl +Mz) + €4 3G3 — €44G3 = —G3611 — G103 +
G041

Sie, —0

y:80,=0

(4,3)

41220+ &4 3(—yl — Mz — G1) — &44G1 = —G301 3 — G1033 + Gaba3
y:&l3=0

(3,2)

£31G2 — £32G1 +&33G3 = G3b1 2 — G362 + (—yl —M'z — G1)032 +
(QJ + Az — G2)9472

T 9372 =0

y: 92,2 =

(3,1)

E1(x] + Az) — &2(yl + Mz) + £33G3 — E34G3 = Gabi1 — Gabag +
(—y[ — Mz - G1)93,1 + ($ + ANz — G2)9471

T fg,l = ‘92,1

y: 5:9,2 = 9g,1

(1,3)

1122 =& 3(—yl —Mz—G1)+£14G1 = (v +N'2)01 3 — Goba 3+ 22033

T 6?3 =0
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x? 073=0
Y- 5(1),3:0
TRE 11/,3:0

2260+ &5 M = N67 5+ 635,
Tz Gf,g = *5%,31\/[’ (8)
yz: &g = —No7;.

(2,3)
€912 =& 3(—yl —Mz—G1) +€2.4Gs = (yI +M'2)01 53— G102 3+ 22043
e 5873 = 9(1)73 =0, from (1,3)x

ZJ2 : 53,3 = _9%3 9)
(1,4)
E1022 + & 3(x] + Az — Go) + &14Ga = (2] + A2)01 4 — Gaba g + 2205 4
z: 00, =¢03=0,since (1,1)y
(3,3)
€312% —E33(—yl — Mz — G1) — €24G1 = G313 — Gsba3+ (y + Mz —
G1)033 + (x + Az — G2)04 3

y: 5:9,3 = 9373.
(3,4)

3227 — &33(x] — Az — Go) — €34G2 = Gt g — Gsbaa + (y + Mz —
G1)9373 + (a: + Az — G2)9474

€T 5??,3 = 92,4

e 934 =0.

So, we have

| 0 0 &,

50: 0 ‘ 0 €8,4
81 &8s Il &al

0 0O O 5274

| 0 0 0

T0 — 98,1 98,2 98,3 98,4
gy 0 | 0

&g, 0 0

And also we have two important equalities (6) and (7).

But It’s not enough and nothing new can be obtained from others
cells of matrices from the equality S® = ®7T. So, we will use another
equality we have WS = T0’
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(2,1)

(yI +Mz)&1— (2l +At)éo 1+ 27831+ 27801 = 02 1G1 +022(y+Mt) +
t2,3G'3

y: 5(1),1 = ‘9(2),2-

(3,4)

Gs&u1 — Gobus + (x] + Az — G2)&yq = —0312% + 03227 + O3 3(x] +
ANz — GQ) + 0374(y1 + Mz + Gl)

€T 52,4 = 9g,3~

(2.3)

(y+Mz)&13— (z+Az)€ 3+ 22633+ 226a3 = 02,927 — 02,3G2 + 02 4G4

. r __ ¢Y
Ty - 51,3 = 52,3-
Therefore, from (8) and (9), we get

5?,1 = 93?,3 + A'07 5 — £ 3M = 93,3 — NéT M+ A’H%:,,M =
=035 — N M+ AEY M = 09 5

Thus, the matrices S,T" have the form as in (5). O

Corollary 3.3. The functor klz,y] — mod —MF(f), which maps a rep-
resentation of k[xz,y| given by the commuting matrices A, M to the matriz
factorization ®(A, M), V(A, M) defined by the formulas (4), is a repre-
sentation embedding.

Proof. If a pair of matrices (S,T') defines an isomorphism of the matrix
factorization (®(A, M), ¥(A,M)) to (®(A, M), ¥(A,M')), it is of the
form (5). Since S is invertible, so is A, and since AN = A'A, AM =
M'A, the pairs (A,M) and (A’,M’) are conjugate. It means that the
corresponding representations of k[z,y] are isomorphic.

Recall that a representation is decomposbale if and only if it has a
non-trivial idempotent endomorphism. If a pair (S,T') defines such an
endomorphism of the matrix factorization ®(A, M), W(A, M), then the
matrix A in the form (5) is also an idempotent endomorphism of the
representation of k[z,y] given by the matrices A, M. Moreover, as S? =
S, T? = T, it is easy to check that if A = 0, then S = T = 0, and if
A =1, then S =T = I. Hence, if (A, M), V(A, M) is decomposable, so
is the corresponding representation of k[z,y]. O

Since MF(f) ~ CM(R), we also have the following result, which

proves the theorem 1.1 .

Corollary 3.4. If n = 3 and f € m*, the algebra R = k[[x,]]/(f) is
CM wild.
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