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ABSTRACT. We define and investigate Lie algebras associated
with quadratic forms. We also present their connections with Lie
algebras and Ringel-Hall algebras associated with representation
directed algebras.

1. Introduction

Let ¢ be a unit integral quadratic form

a(2) = q(a(1),...,z(n) = Y w(@)* + Y aa(i)a(j),

i=1 i

where a;; € {—1,0,1}. In [4], with ¢ complex Lie algebras G(q), G(q)
are associated, where G(g) is the extension of G(¢) by the C-dual of the
radical of ¢ and C is the complex number field.

The following facts were proved in [4].

e If ¢ is positive definite and connected, then G(q) = G(q) is a finite
dimensional simple Lie algebra.

e [f ¢ is connected and non-negative of corank one or two, then G (q)
is isomorphic to an affine Kac-Moody algebra (if the corank of ¢
equals one) or to elliptic (if the corank of ¢ equals two and ¢ is not
of Dynkin type A,,).
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In [4], the Lie algebra G(q) was defined by generators and relations.
Unfortunately, the set of relations defining G(q) is infinite. In [5], the
authors give a finite and small set of relations sufficient to define G(q)
for positive definite forms q.

In this paper, for any integral quadratic form ¢ (2.1), we define by
generators and relations, a Lie algebra L(g,t). For a positive definite
form ¢, we describe a minimal set of relations defining L(g, t). Moreover
we show that, for any representation directed C-algebra A with Tits form
qa, there are isomorphisms of Lie algebras

L(ga,v) = L(A) = K(A),

where L£(A) is the Lie algebra associated with A in [11] by Ch. Riedtmann
and KC(A) is the Lie algebra associated with A in [13] by C. M. Ringel.
The isomorphism £(A) = IC(A) is proved in |7]. Results of the present
paper allow us to define Lie algebras £(A) and (A) in a combinatorial
way. Similar results are presented in [9] and [10] for Tits forms of posets
of finite prinjective type.

The paper is organised as follows.

In Section 2 we give basic definitions and facts concerning weakly
positive and positive definite quadratic forms and their roots.

In Sections 3, 4 we give a definition and prove basic properties of the
Lie algebra L(g,t). Moreover (for some class of quadratic form ¢) we
show that the Lie algebra L(g, t) is a Lie subalgebra of G(q).

In Section 5 we prove the existence of isomorphisms of Lie algebras

L(ga,v) = L(A) = K(A),

for any representation directed C-algebra A. Moreover we present appli-
cations of these results to Ringel-Hall algebras of representation directed
algebras.

In Section 6 we give a minimal set of relations sufficient to define the
Lie algebra L(q,t), where ¢ is a positive definite quadratic form. More
precisely we prove the following theorem.

Theorem 1.1. Let q be a positive definite quadratic form (2.1). There
s an isomorphism of Lie algebras

L(g,v) = L(9)/(j),

where L(q) is the free complex Lie algebra generated by the set {v1, ... ,v,}
and (j) is the ideal of L(q) generated by the set j, which is consisted of
the following elements
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o [v;,v;] foralli,j € {1,...,n} such thati < j and a;; # —1,

o [v;, [vi,v5]] for alli,j € {1,...,n} such that i < j and a;; = —1,

o (v, [v;,v4]] for alli,j € {1,...,n} such that i < j and a;; = —1,

o [vi,...,v;,] for all positive chordless cycles (i1, ...,im) (see Sec-

tion 6 for definitions).

Finally, in Section 7, we present some examples and remarks.

2. Preliminaries on weakly positive and positive definite
quadratic forms

Let eq,...,e, be the standard basis of the free abelian group Z™. Let
q:Z" — 7Z be a connected unit integral quadratic form defined by

q(z) = q(z(1),...,z(n)) = Z 2+ Za” (2.1)

=1

where a;; € {—1,0,1}. Let B(q) be the bigraph associated with ¢ (i.e.
the set of Vertlces of B(q) is {1,...,n}; for i # j there exists a solid edge
if a;; = —1 and a broken edge ;— — — 7 if and only
if a;j = 1). An integral quadratic form g is said to be weakly positive, if
q(x) > 0 for any 0 # x € N, where N is the set of non-negative integers.

A vector x € Z™ is called a root of ¢, if ¢(z) = 1; if in addition
x(i) > 0, for any i = 1,...,n, then we call  a positive root. Denote
by

Ry={€Z"; qa) =1}, Rf ={fw e N"; q(a) =1}  (22)

the set of all roots and all positive roots of g, respectively.
We associate with ¢ the symmetric Z-bilinear form

(= —)q:2" xZ" - Z, (2.3)

where (z,y)q = q(z+y)—q(z)—q(y), for all z,y € Z. It is straightforward
to check that

(ei,x)g=2-x(i —|—Zawx (2.4)

for any ¢ = 1,...,n. Let us recall the following useful facts concerning
the Z-linear form (e;, —)4 (see [12]).
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Lemma 2.5. Let q : Z"" — 7Z be an integral quadratic form (2.1) and let
ie{l,...,n}.

() (esrei)g =2

(b) Let z be a root of ¢ and 0 # d € Z. The vector x — de; is a Toot
of q if and only if d = (e;, x)q.

(b") Let x, y be roots of q. The vector x + 1y is a root of q if and only
if (x,y)qg = —1.

Assume that q is positive definite.

(¢) If z is a root of q such that x # e;, then

-1 < (e5,x)q < 1.

(d) The set Ry of all roots of q is finite.
Assume that q is weakly positive.
(e) If x is a root of q, then

—1 < (ej,x)q.
(f) The set R; of all positive Toots of q is finite. O

Lemma 2.6. Let q: Z" — 7Z be a weakly positive quadratic form and let
z # 0 be a positive root of q. Then z is a Weyl root, i.e. there exists
a chain

of positive roots of q such that

(a) W) = 2, 200 = =D _ ej, fori =1,...,m and for some j; €
{1,...,n},
(b) 2™ =e;, for some j € {1,...,n}. O

3. Lie algebras associated with quadratic forms

In a complex Lie algebra L, we use the following multibracket notation

[y17 Y2,. .. >yn] = [yla [y27 [ .. [yn—la yn“”) (31)

for all y1,...,yn, € L. Let L be a complex Lie algebra generated by
a set {v1,...,v,}. Elements of the form [v;,,...,v;, | we call standard
multibrackets. All Lie algebras considered in this paper are assumed
to be complex finitely generated Lie algebras and all quadratic forms are
assumed to be integral quadratic forms (2.1).

Let S;, be the symmetric group of n-elements.



J. KOSAKOWSKA 53

Lemma 3.2. (a) Let L be a Lie algebra and let yy,...,yn,x € L. There
exists a subset S C Sy, and for any o € S there exists ¢, € {0,1}, such
that

[[ylv B yn];x] = Z(_l)aa [ya(l)v < Yo(n)s iL']

o€eS

(b) Let L be a Lie algebra generated by a set {yi,...,yn}t. Any ele-
menty € L is a linear combination of standard multibrackets [y;,, . . ., Yi,.],
where i; € {1,...,n}.

Proof. (a) Apply recursively the Jacobi identity, see also [1, Lemma 1.1].
The statement (b) follows from (a). O

With a quadratic form ¢ (2.1), we associate the complex free Lie
algebra

L(q) = Liec(v1,...,vn) (3.3)
generated by the set {v1,...,v,}. Note that the Lie algebra L(q) has
a N"-gradation, if we define the degree of v; to be ¢;, forany i = 1,...,n.

Let a C L(q) be a subset consisting of some standard multibrackets
and let (a) be the homogeneous ideal of the Lie algebra L(g) generated
by the set a. Let

L(g,a) = L(q)/(a) (3-4)

be the quotient Lie algebra with induced N"-grading. Denote by 7 :
L(q) — L(q,a) the natural epimorphisms. Let v = [v;,,...,v;,,] € L(q).

For the sake of simplicity, we will denote by v = [v;,, ..., v;,,| the element
m(v).

e We call an element v = [v;,,...,v;,,] € L(q) a root, if m > 1 and
(€if>€ipq + -t ey )o=—1forallk=1,...,m -1

o Let v = [vyy,...,v;,,] € L(q), we set £(v) = m and we call this

number the length of the element v.

o Weset e, =¢;, +...4+¢;, € N

For e € N" denote by L(q,a). the homogeneous space spanned by
all standard multibrackets v = [v;,,...,v;,,] € L(g,a), of degree e, = e.
Moreover, for any integer m, let

Liga)m= P  Ligae and (@)m=(a)NL(Qm (3.5)
e(l)—}-.e..e—s—l\gzn)gm

The following lemma shows connections between roots in the complex
Lie algebra L(gq) and positive roots of the quadratic form q.
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Lemma 3.6. Let u,w,v = [v;,,...,v; | € L(q) be roots.

(a) At least one of the elements [vi,,Viy], [Vig, Viys Vigy - - -, Vi, ] 15 MOt
a root.

(b) If (eu, ey + €w)q = —1, then (ey,ey)q > 0 or (ey, ew)q > 0.

(c) The vector e, = ej, + ...+ e, is a positive Toot of the quadratic
form q.

Let v = [vj,,...,v;, | € L(q) and let q be weakly positive.

(d) If ey = €i, + ...+ e, is a positive root of q, then there exists
a permutation o € S,, such that the element v, = [vi(f(l), e ,vi(,(m)] 18
a root in L(q).

Proof. (a) Let v = [vjy,...,v;,,] € L(q) be a root and assume that
[Vi,,vi,] is & root. It follows that (e;,,e€i,)q = —1 and (e;,, ey + ... +
€in)g = (€i1s€iy + ...+ €i)g — (€irs€in)g = —1 — (=1) = 0. Therefore
[Vig, Vi, Vig, - - -, Vi, | 1S DOt & roOL.

The statement (b) is obvious.

(c) Obviously e;,, is a root of g. Let 2 < k < m and assume that
€i, +...+e;, isaroot of g. We have (e;, ,,e;, +...+€i,.)q = —1, because
v is a root in L(g). By Lemma 2.5(b), the vector e;, , +e;, +...+€;,
is a root of ¢. Inductively we finish the proof of the statement (c).

(d) Let v be a positive root of q. From Lemma 2.5(b) it follows that

v+ e; is a positive root of ¢ if and only if (e;,v)q = —1. Therefore the
statement (d) follows easily from Lemma 2.6 and Lemma 2.5(b), because
q is weakly positive. ]

Definition 3.7. (a) Let t be the set of all standard multibrackets

[Uil’ cee vvim] € L(q),

such that [viy,...,v;,] is not a root and [vi,,...,v; | is a root, where
i1y .yim €4{1,...,n} and m € N.
(b) Let
L(q,v) = Liec(v1,...,vn)/(¥)
be a complex Lie algebra generated by the set {v1,...,v,} modulo the ideal
(v) generated by the sett. We consider L(q,t) as a Lie algebra with a N"-
gradation, where we define the degree of v; to be e;, for anyi=1,...,n.

Lemma 3.8. Let a C L(q) be a subset consisting of some standard
multibrackets. Let v = [viy,...,v;,.], vy € L(q,a). Assume that for any
z € L(q,a), such that {(z) < £(v) + £(y), the following condition is satis-

fied:
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if (i, ez)q # —1, then [v;,z] =0 in L(q,a). (3.9)
Then [v,y] = 0 in L(q,a) or there exists 0 € Sy, and € € {0,1} such that
['U, y] = (_]‘)E[via(l)a ey via(m) ) y]
in L(q,a).

Proof. Let v = [vi,,...,v;, |,y € L(q,a). We precede with induction on
m = £(v). For m = 1, the lemma is obvious.
Let m > 1. We apply the Jacobi identity and get

[U7y] = —[y,v] - [Ui17 [[Ui27 s 7vi'nz}7 yH - Hviw s 7Uim]7 [Uiuyn'

Note that
(€iys€iy + oo Fei, Fey)g = (€is iy + oo i )g T (€irs €y) g

Therefore (€;,, €5, + ...+ €5, )q # —1 01 (€5, €y)q # —1 01 (€5, €5+ ...+
€in, +y)q 7 —1.

If (eiy,€iy + ...+ €i,)q # —1, then, by (3.9), v = [vi,...,v;,,] =0
and [v,y] = 0. We are done. If (e;,,e,)q # —1, then, by (3.9), we have
[viy,y] = 0 and [v,y] = [viy, [[Vig, - - -, Vi, ], y]]. We finish by induction on
m applied to [[vi,, ..., v;,,],y]]. Inthe case (e;,, e, +...+€;, +€y)g # —1,
we have [v;,, [[Vig, -, i, ], y]] = 0. Finally

[1), y] = <_1)€[[Ui27 e 7vim]7 [Uilay“

and we finish by induction on m. O

4. Grading of L(g,t) and positive roots of ¢

Lemma 4.1. Let q be a weakly positive quadratic form (2.1) and let
a C L(q) be a subset consisting of some standard multibrackets. Let m be
a positive integer. Assume that the following conditions are satisfied.

(a) Ifv=[viy,...v:,] is not a root in L(q) and £(v) = s < m, then

L(q,a)e, =0.
(b) Ifv=vi,...vi] is a root in L(q) and £(v) = s < m, then
dim¢ L(q, a)e, < 1.

v

Then dimg L(gq,a)e, < 1, if v = [vj,...vi] is a root in L(q) and {(v) =
s =m.
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Proof. Let v = [v;,,...,v;,] be aroot of L(q). If v =0 in L(q, a), then
we are done. Assume that 0 # v € L(g,a). We have to prove that
dimc L(q,a)e, < 1. If m = 1, the lemma is obvious. Let m > 1, and
let 0 # w € L(q,a)e, be a standard multibracket. It follows that there
exists a permutation o € S, such that w = v, = [viau)’ e ,vig(m] £ 0.
Since v, # 01in L(q, a), £(vy) = m, then the assumption (a) of our lemma
yields that v, is a root. It is enough to prove that there exists a € C such
that v, = av. Since v,v, € L(q, a)e,, there exists k = 1,...,m such that
ix = is(1)- Note that we may assume, without loss of the generality, that
k < m, because [v;,, ,,vi, | = —[vi,,,vi,, ,] and we may replace v by —v.

If k=1, then U= [vi, .. Vij ], [Vig, -3 i) € L(q; @), £(V) <
m, and the condition (b) yields that dimc L(q, a)e, < 1. Then there exists
a € C such that [ U = a[viy,...,v;,]. Therefore v, = av
and we are done.

Let £ > 1. Consider the following set

’UZ‘U(Q), .. a(m)]

Y =A{v,; forall 7 € S, such that there exists ¢ € C such that v, = cv}.

Note that for all v; € Y there exists [ such that i,y = i,(1). We choose
an element v, € Y such that [ is minimal with this property. Without
loss of the generality, we may assume that 7 =id, v, = v and k = [. Let

v = [vila [UZ'Q, [ y Uip_ 15 [Uikvy] . H] = [Uil’vizv"-7vik,1avikvy]7

where we set y = [v;,,,...,v;,]. By the choice of k it follows that
ij # ig(1) for all j < k. Our assumptions yield: (e;,,ey)q = —1, because
v is a root and

(€ip eyt € +... € )g= <eio(1)76ia(2> t..ot eio’(m)>q =1

because v, is a root. By the bilinearity of (—, —),, it follows that (e;, , €;, +
...+ e€i,_,)q =0. We prove that

v = [[U’i17 cee 7vik]7y]
in L(q,a).
Applying the Jacobi identity, we get
[Uip o 7vik_17 [vik7 y]] =
- _[’Uiu <y Uig_os [vikv [yv 'Uik71m - [Uiu sy Vig_gs [yv [vik—ﬂvik]]]'
Note that

<eik—1’€y>q = <€ik—17€y + eik)'l - <eik—1’eik>q =-1- <€ik—1veik>Q'
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If (ei, ,,ey)q = —1, then (e;, ,,e;,)q = 0. Therefore the condition (a)
yields [vi,_,,vi.] = 0 and

V= [Uilv N Y T [/Uika [/Uik,1 y y]]]
which is the contradiction with the choice of k. Therefore
v = [Uip N T [[Uik_lavik] y]]

Inductively, applying the Jacobi identity to

[Ui17 -y Vigs [[vis+1a cee Uik]v yH
we get
[vila <oy Vigsy [[vis+17 ce ?vik]?y]] =
= _[Uip ey Ui g, [[Uis+1v cee avik]v [y7 Uism_
- [vi17 ey Ui g, [yv [viw [Uis+17 ce 71}%]]“
Consider

(€igrey)qg = (€iy ey T €y + .ot e )qg— (€iyr gy + - F i )g =
=—-1-— <€is’6is+1 4+ ...+ eik>q.

If (ei,,ey)q = —1, then (e;,,e;,., + ...+ €;,)g = 0. The condition (a)
yields [vi,, [vi ;s --.,v;,]] =0 and

U= [Uiu <oy Vig_qs [[Uis+1’ s ’vikL [Uisvy”]'

Applying Lemma 3.8, we get the contradiction with the choice of k.
Therefore

V= [Vis s Vi [Vigs [Vigars -+ v )] Y]]
Inductively we get v = [[vi,, ..., ;] Y]
Since v # 0, k < m, then (by the assumption (a) of the lemma) the
element [v;,,...,v;.] is a root. Therefore, by Lemma 3.6 (c), we have

q(ei, +...+ei) = 1. Now consider
1=gqlej,+...+e,) =qle, +...+ei,_,)+aqlei,)+ (€, i+ F€ir_)q
Since we proved above that (e;,e;; + ...+ €, _,)q =0, we have

qles, +...+ei ,)=1—¢qle;,)=1-1=0.

We get a contradiction, because ¢ is weakly positive. This shows that
k=1 and v, € Y. This finishes the proof of lemma. O
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Let L(g,t) be the Lie algebra introduced in Definition 3.7

Proposition 4.2. Let q be a weakly positive quadratic form (2.1). The
following conditions hold.

(a) Ife=e€; + ...+ €, is not a root of q, then L(q,t)e = 0.

(b) Ife=ei, +...4 ¢, is aroot of q, then dime L(g,v)e < 1.

Proof. (a) Assume that e = e;, + ...+ €;,, is not a root of g. By Lemma

3.6, v = [viy,...,v;,] is not a root in L(g,t). Let k be maximal with
the property that [v;,,...,v;,] is a root. Since v = [v;y,...,v;,,] is not
a root, then k > 1. Therefore [v;,_,,vi.,...,v;,] is not a root and
[Vip_1sVigy---50i,] € v. Finally [v;,_,,vi,...,0;,] = 0 and v = 0 in
L(q,v).

The statement (b) follows easily by induction on the length ¢(v) of v,
if we apply Lemma 4.1. O

As a consequence we get the following corollary.

Corollary 4.3. Let q be a weakly positive quadratic form and let R;r be
the set of all positive roots of q. Then L(q,t) is a nilpotent Lie algebra
and
L(g,v) = € L(g;v)e and dime L(g,x) < [RF].
e€ERY

O

Let ¢ : Z™ — 7Z quadratic form (2.1). With ¢ we associate Cartan
matrix C' = (¢;;) € My (Z) defined by ¢;; = q(e; + €;) — q(e;) — q(e; ).
Following [4], to ¢ we attach a Z"-graded complex Lie algebra G(q) with
generators x;,x_;,h;, ¢ = 1,...,n, which are homogeneous of degree
e;, —e;, 0, respectively, and subject to the following relations:

1. [hiyh) =0, foralli,j=1,...,n,

2. [hi,xej) = ecijaey, forall i,j =1,...,nand € € {—1,1},

3. [weiyx—ei) = €hy, foralli=1,...,nand € € {—1,1},

4 [Zeyiys - Tepin) =0, if q(ere;, + ... +enei,) > 1 for g € {—1,1}.

Denote by G*(q) a Lie subalgebra of G(q) generated by the elements
LlyeeeyTy-

Proposition 4.4. If q is weakly positive and positive semi-definite, then

L(g,t) =~ G (q).
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Proof. By [4, Proposition 2.2] and Corollary 4.3, we have
dime G*(q) > [Ry| > dimc L(g, v).

On the other hand, it is easy to see that all relations v are satisfied in
Gt (q). Therefore we may define a homomorphism of Lie algebras

U L(g,t) — G*(q)

by ¥(u;) = x; for all i = 1,...,n. Since GT(q) is generated by the
elements x1,...,x,, the homomorphism ¥ is surjective. Therefore W is
an isomorphism, because dim¢ G*(q) > dimc L(qg, t). O

5. Connections with Ringel-Hall algebras

We present applications of Lie algebras L(q, t) to Lie algebras and Ringel-
Hall algebras associated with representation directed algebras. We get
a description of these Ringel-Hall algebras by generators and relations.
For the basic concepts of representation theory the reader is referred to
[2], [3] and for the basic concepts of Ringel-Hall algebras to [13], [14].

Let Q@ = (Qo, Q1) be a finite quiver without oriented cycles. Let
CQ be the complex path algebra of ). Assume that [ is an admissible
ideal of CQ such that A = CQ/I is a representation directed algebra. By
mod (A) we denote the category of all right finite dimensional A-modules
and by ind(A) we denote the set of all representatives of isomorphism
classes of indecomposable A-modules. For any A-module M denote by
dim M € N the dimension vector of M (i.e. (dim M)(i) equals the
number of composition factors of M which are isomorphic to the simple
A-module S; corresponding to the vertex i € Q). Let g4 : Z2° — Z be
the Tits form of A (see [6]). By [6, Theorem 3.3|, g4 is weakly positive
and there is a bijection (given by dim) between the set ind(A) and the set
RS, Let K(A) be the corresponding complex Lie algebra defined in [13].
Recall that, for a representation directed algebra A, the C-Lie algebra
KC(A) is the free C-linear space with basis {ux ; X € ind(A4)}. If X, Y are
non-isomorphic indecomposable A-modules such that ExtY(X,Y) = 0,
then the Lie bracket in K(A) is defined by

©Z (1) -uz if there is an indecomposable A — module Z
and a short exact sequence

[uy,ux] = 0-X—-2—-Y —0, ,

0 otherwise,
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where ¢Z , are Hall polynomials (see [13]). In [7] it is proved that the
Lie algebra K(A) is isomorphic to £(A), where £(A) is the Lie algebra
associated with A in [11]. Let H(A) be the universal enveloping algebra
of the Lie algebra IC(A). Recall that H(A) = H1(A), where H4(A) is
the generic Ringel-Hall algebra associated in [13] with the algebra A. In
fact, in [13], generic Ringel-Hall algebras were associated with directed
Auslander-Reiten quivers. However, it is possible to associate generic
Ringel-Hall algebras with representation directed C-algebras. The reader
is referred to [7] for details.

Proposition 5.1. Let A be a representation directed C-algebra.
(a) The Lie algebra KC(A) is generated by the set {u; ; i € Qo}, where
u; = ug; and S; is a simple A-module corresponding to the vertex i € Q.
(b) In the Lie algebra IC(A) the relations from the set v hold, if we
interchange wu;’s by v;’s.

Proof. The statement (a) is proved in [14, Proposition 6]. Let [v;,,...,v;,]
be an element from the set v. It follows that [vi,,...,v;,] is a root and

the element [v;,,vi,,...,v;,] is not a root. By Lemma 3.6, the vector
m = e, + ...+ €;, is a positive root of the Tits form g4 of A. If
[Vigy -+, vi,] = 0 in K(A), then we are done. Otherwise [vj,,...,v;, | =

a - upr for some 0 # a € C and the unique indecomposable A-module
M € ind(A) with dimM =m =e;, + ...+ ¢;,, because A is represen-
tation directed C-algebra. Since ga is weakly positive, then, by Lemma
3.6, the vector e;, + m is not a root of g4. Therefore there exists no
indecomposable A-module with dimension vector e;; +m. Then, by [13,
Theorem 2|, [vj,,...,v;,] =0 in (A) and we are done. O

Corollary 5.2. If A is a representation directed C-algebra, then there is
an isomorphism of C-algebras

F:L(qa,v) — K(A) = L(A)

given by F(v;) = u;, in particular dime L(ga,v) = R} |.
If, in addition, q is positive semi-definite, then L(qa,t) = GT(qa).

Proof. By Proposition 5.1, F' is a well-defined homomorphism of graded
Lie algebras. Since the Lie algebra L£(ga,t) is generated by the set
{vi ; i € Qo} and the Lie algebra K(A) is generated by the set {u; ; i €
Qo}, the homomorphism F' is an epimorphism. By Corollary 4.3, F' is
a monomorphism, because dimc KC(A) = \R(‘]"A . Finally F' is an isomor-
phism of Lie algebras.

The final assertion follows from Proposition 4.4. ]
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6.

A minimal set of relations defining L(q,t) for a positive
definite form ¢

The set t usually is not a minimal set generating the ideal (r) of the
Lie algebra L(gq). In this section we describe a minimal set of elements
defining the ideal (v) of L(q) for a positive definite form ¢ (2.1). In this
section all quadratic forms are assumed to be positive definite.

Remark 6.1. The following easily verified facts are essentially used in
this section.

1.

6.1.

Let i,5 € {1,...,n} be such that (e;,ej)q # —1, then

L. i v, =1 g, [vi, - )]

in L(q,t). Indeed, apply the Jacobi identity and note that in this
case [v;,vj] € (v).

If a € L(q) is a standard multibracket such that e, is not a root of
g, then a € (r). Indeed, apply Lemma 3.2 (b) and Proposition 4.2

(a).
Let a,b € L(q) be standard multibrackets such that (eq,ep)q > 0,
then [a,b] € (t). Indeed,
Q(ea + eb) = q(ea) + q<eb> + <eaa 6b>q >1+1=2
then e, + e is not a root of q. Therefore [a, b] € (v).

Let a,b € L(q) be standard multibrackets such that (eq,ep)q > 0,
then

.. ]a[b,.. )]l =1--,[b]a,...]]
in L(q,t). Indeed, apply the Jacobi identity and the fact that in
this case [a, b] € (v).

If a € L(q) and (e;,e4)q < —2, for some i = 1,...,n, then a € (v).
Indeed, by Lemma 2.5, e, is not a root of ¢ and therefore a € (t).

The first step of reduction

Let v C v C L(q) be the set consisting of the following elements:

e [v;,v;] for all 4,5 € {1,...,n} such that i < j and (e;, ej)q # —1,

o [v;,[v;,vj]] foralli,j € {1,...,n}suchthat i < jand (e;, e)q = —1,
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o [vj,[v;,v4]] for all 4,5 € {1,...,n} such that i < j and (e;,e;)q =
—1.

Let tg C v C L(q) be the set consisting of all elements [v;,,...,v;,] of t
such that (e;,, e, + ...+ €;,)q = 0. Define p C v to be

p=r1Uro. (6.2)

Proposition 6.3. If ¢ is a positive definite quadratic form (2.1), then
the ideals (p) and (t) of the Lie algebra L(q) are equal.

Proof. The inclusion (p) C (vr) is obvious. It is enough to prove that
(tr) C (p). Let v = [v4y,...,v;,] be aroot in L(q) and let i1 € {1,...,n}
be such that [v;,vi,,...,v;,] € v and (e;;, e, + ...+ €;,,)q # 0. Since
[Viy, Vig, - - ., Vi,,] is not a root, we have (e;, e, + ...+ ¢€;,)q > 1. We
claim that [v;,,v] € p.

We precede with induction on £(v) = m — 1. For ¢(v) < 3 our state-
ment easily follows by a case by case inspection on all possible cases.

Let 4(v) > 3, then m > 4, v = (v, [Viy, V]|, (€iy, €i5 + €v)q = —1,
(€iy,€3)q = —1 and £(v) > 1. Note that (e;,,ei,)q = a;; € {—1,0,1}, if
i1 # i3. Therefore it is enough to consider the following three cases.

1) If (e;,,€iy)q € {0,1}, then (e;;, e, + ... + €5, )g > 0. Therefore
[Viy, Uiy ], [Viys [Vig - - -5 0i,,,]] € ¢ and by the induction hypothesis we have
[Viy s [Vig - -, Vi ]]s [Vigs vip] € (p). Finally

[Uilv s 7vim] = _[in [[UiS s Uim]vvil]] - H’Uirw ERE Uim]7 [Uilvvlé]] S (P)

2) Let i1 = i2. Applying the Jacobi identity to [v;,, v] we get

[viu [viu [Uisv@]]] = _[Uiu [1)1'3, [67 vil]” - [Uiu [E’ [Uil’vi3]]] =
= [visv [[67 vil]? vil]] + [[@v 'Uil]a [Uil ) vls]] + [67 [[Uil ) Uis}’ Uil]] HU Uiy | [Uhvvlsﬂ

]
Note that, we have (e;,,ei, + ez)q = 2 + (€i,ex)q > 2+ (—1) = 1,
and therefore by the induction hypothesis [v;,, [viy,7]] € (p). More-
over, [viy, [Uiy,Vi,]] € (va) € (p). Finally [vi,v] = 2[[vi), vi][vi,, 7]]. If
[Viy, vig] € (p), then [v;,v] € (p). Assume that [v;,,vi,] € (p). In this
case (€j;,€iy)g = —1 and

<€i1,6§>q = <6i1vei2 +éiy +€F>q_ <6i1’6i2>q_ <6i1’€i3>q > 1_2_(_1) = 0.

Then [v;,,v] = 2[[vi;, viz][vi,, T]] € (to) C (p) and we are done.
3) Let (i1,i2)q = —1. By Lemma 2.5 (c), (e;,,€i; + ... + €i,) €
{=1,0,1}, because ¢ is positive definite. On the other hand

1< <ei1,ei2 +~"+€im>q = _1+<6i17€i3+~~+6im>q <0.

This contradiction shows that the case 3) does not hold.
This finishes the proof. O
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Corollary 6.4. If q is a positive definite quadratic form (2.1), then

L(g,v) = L(g, p).

6.2. The second step of reduction

Letiq,...,im € {1,...,n}. Following [5], we call the sequence (i1, ..., i)
a chordless cycle of the form ¢ (2.1), if the following conditions are
satisfied:

e the elements i1, ..., 4, are pairwise different,

e a;; = (e, ¢, )q 7 0 if and only if |k — j| = 1 mod m.

Chordless cycles are playing an important role in [5], where Lie alge-
bras associated with positive definite quadratic forms are investigated.

A chordless cycle (i1,...,1y) is called positive, if (e;,,€;,,)q = 1 and
(€i;,€iy)q = —1 for all j, k such that {j,k} # {1,m} and |j — k[ = 1 mod
m.

Remark 6.5. We note that if (i1,...,%,) is a chordless cycle, then
(i1, ...,4m) is a simple cycle in the bigraph B(gq). Moreover, if the chord-
less cycle (i1,...,4m) is positive, then the cycle (i1,...,%,) in B(q) has
exactly one broken edge i1 — — — iy, .

Let ta C L(q) be the set consisting of all elements [v;,, ..., v;, | such
that (i1,...,4,) is a positive chordless cycle.

Lemma 6.6. vt C p.

Proof. Let v = [viy,...,v;,] € t2. From the definition of a positive
chordless cycle, it follows easily that [v;,, ..., v;,,] is a root for any k£ > 1.
Moreover (e;,, €, + ...+ €i,,)q = 0, and therefore v € p O

Set
j=rt1Urs. (6.7)

For all elements =,y € L(q) we write z =y if x — y € (j). Obviously
= is an equivalence relation.

Before we prove that the ideals (p) and (j) of L(q) are equal, we need
to prove two technical lemmata.
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Lemma 6.8. Let q be a positive definite quadratic form (2.1). Let m >3
be an integer, let v = [vj,, ..., v;,] be a root and let (3)m—1 = (p)m—1. Let
i1 € {1,...,n} be such that [vi,,Viy, ..., 0| € P, (€i,€ir)qg = —1 and
(€irs€is + ...+ €i)g = 0. Then [v;,,v] € (j) or there exists ¢ € {0,1}
such that [v;,,v] = (—1)%[v;,, [a, x]], where

(@) a=[vi,..., V), T= Wiy 1s-.-,05,), for some 2 <k <m,

(b) (eiy,ei;)g =0, for all j=3,...,k, and

(c) (eirs€ippi)g =1

Proof. Let m > 3 and let v = [v;,, ..., v;,,| be aroot. Let i; € {1,...,n}
be such that [v,, viy, ..., v, ] €, (€, €i+. . . F€i,)g = 0and (e;,, €5, )q =
—1. Note that [v;,, v] = [viy, [@, x]], where @ = [vj;, ..., vi,], & = [vip, 1., V3]
and (e;;,e;,)g = 0, for all j = 3,...,1 (i.e. the conditions (a), (b) are sat-
isfied). Indeed, it is enough to set | =2, @ = z;, and = = [v4,, ..., v;,,].

Fix @ and 7 such that [v;;,v] = [v;,[a,T]], where @ = [v;,, ..., viy],
T = [Vipyys- -, Vip] and (ei),€i;)q = 0, for all j = 3,...,1. As we noted
above there exists at least one such a presentation of [v;,,v]. Consider
the element 4;,1. By Lemma 2.5, {e;;,€;,,,)q € {—1,0,1,2}.

o If (e;, € ,)q = 1, then we set k = [ and note that [v;,,v] has the

required form, i.e. [v;,,v] = [v;, [a, z]], where a = [v;,, ..., V], & =
[Vigsrs - Vi, (€05 €i;)g = 0, forall j =3,... &k, and (e, €, )g =
1.

o If (ei,€i.,)q = —1, then

<€i176il+2 +...+ eim>q = <€i176v>q - <ei1a€E>q - <ei176il+1>q
= 0—-(-1)—-(-1)=2.

Therefore, by Lemma 2.5, m = [ + 2 and 47 = ¢;45. Note that

[Uilv [’UilavizHH € (tl) - (]),
<€i1aei1 + €E>q =1, then [Uip [Uil7a]] € (p)(m—l) = (j)(m—l) - (J)a

<6i1a€il+1 + 65>q = -2, therefore [vil+1va] € (p)(m—l) (])(m—l) - (J)

Then we have

[Uil,’U] = [Ui17 [ﬁ, [Uiurnvilm

_[aa [[Uiz+1vvi1]7 Ui1]] - [[vil+17vi1]7 [Uilva]]
Hviwa]’ [Uiz+1vvi1“

= _[Uil+17 [Uiu [Uz‘uﬁm - [Uiu Hviya}, viz+1]]
[Uilv [Uil+17 [Uil’am

_[Uilv [in [E, Uiz+1m - [Uiu [67 [Uiu.lvvil]]]
_[Uila [E, [Uizﬂ’vilm

_[vil ) U]'
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Therefore 2 - [v;,,v] € (j) and [v;,,v] € (j).

o If (eiy, €, )g = 2, then iy = 441 and [vy,v] = [viy, [@, [vi, Y]],
where y = [v3,,,,...,,]. By the bilinearity of (-, —),; and as-
sumptions, we have (e;,,ey,)q = —1. Moreover
<ei1vei1 + 6y>q =1, then [Uila [Uil,y“ (p)(m 1) (])
<ei17€i1 + €E>q =1, then [Uilv [Uilaaﬂ (p> = (J)
<ei176y + eE)q = —2, therefore [UiHl,a] € (p>(m—1) = (])(m 1)

Similarly as above we can prove that [v;,,v] € (j).

o Let (e, €, )g=0and y = [vy,,...,v,]. Consider

[vilv [6’ [Uil+1 ) ym =
= _[vin [Uil+1’ [yvam - [Ui17 [y’ [E, vil+1m =
= [vil+17 [[yaaL Ui1H + [[y,ﬁ], [vi17vil+1H - [vi17 [[Uil+1,5], yH

Note that [v;;,v;,, ] € (
)

1) € (j), (e, ea + ey)q = 0 and therefore
[y, @l vi,] € (P)m—1 = (] 1

t
Jm—1 C (j). Then

[Uilvv] = [Uin [67 [Uil+1’ym = _[vil’ [[vil+17a]a y“

We may set @ := [v;,,,a], T := y and continue this procedure
inductively.

Note that there exists k such that (e;;, e;,.,)q > 1, because (e;,, €, +

..+e€i,)q=0and (e, es,)q = —1. Therefore continuing this procedure
inductively, we prove that [v;,,v] € (j) or [v;,,v] = (—1)%[vsy, |a, x]], where
a = Vi, Vig), @ = [Viy 1, Vi, (€35 €50 = 0, forall j =3,... F,
and (e, €, ,)q = 1. O

Lemma 6.9. Assume that q is a positive definite quadratic form (2.1).
Let m > 3 be an integer, v = [vj,, ..., v;, | be a root and (j)m—1 = (P)m—1-
Letiy € {1,...,n} be such that [vi,, Vi, ..., vi,,] €P, (€i,€ir)g = —1 and
(€irs€in+...F€i,)q = 0. Moreover assume that [v;,,v] = (=1)%[v;,, [a, z]]
and the conditions (a)-(c) of Lemma 6.8 are satisfied. Then [v;,,v] € (j)
or [U’Ll?v] = [Uilv [a,:z:]] = [Ullv[ 7[b7 ym; where

(i) a=[vi,. Vi), b= [vi,,vi,_y oo Vi L, Y = (Vi Vi)

(ii) (eir,e€i;)q =0, forallj=3,....k and j=k+2,...,s,

(111) <€i176i2>q =-1 <ei176ik+1>q =1,

(iv) (ep,eq)q =0,

(v) if s <m then (e, ,€a)qg = —1 and (e;,,,ep)q = —1.
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Proof. Note that [v;,,v] = [vi, [a, z]] = [vi, [a, [b,y]]], where b = v;,_,,
Y = [Vi, 9, Vi,] and the conditions (i), (ii), (iii) are satisfied, if we
put s = k + 1. We may assume that the condition (iv) is also satisfied.
Indeed, it is enough to show that (e;, ., €a)q = 0.

o If (€1, €a)g = —1, then (e, e, + ey)q = —2. Therefore [a,y] €
(V)m-1 = (P)m-— :()mlC()Then
[Uin [a7 [Uik+17y]]] = _[Uiu [Uik+1’ [yv am - [Uiu [y’ [CL, Uik+1m

[Uiu Hav Uik+1]7y]]
= _Hav Uik+1]7 [y, Uh]] - [ya [Uiu [a’ Uik+1ﬂ]~

Since (e, ey)q = 0 = <€i1v€ik+1 + €q)q, then [y,v] € (P)m—1 =
()m-1 and [vi, [a,vi,,]] € (P)m—1 = ())m—1.Therefore we have
[Ui17 [a7 [Uik-H?ym € (])

o If (i, ., €a)g = 2, then a = v;, . It is a contradiction, because
<6i1veik+1>q =1#-1= <ei1a ea>61'

o If (ei,,,,€a)q = 1, then (e;,,  ,es+ey)q = 0. Therefore [v;,,, [y, a]],
[CL U'Lk+1] (p)m 1= (J)m—l and

[Uhv [CL, [Uik+1’ym = 7[vi1’ [vik+1’ [y7 am - [vil’ [yv [CL, Uik+1]]] € (J)

Finally, we can assume that (e;,,,,€a)q = {(€p, €a)q = 0 and the condi-
tion (iv) is satisfied. Therefore [v;,, [a, [b,y]]] = [viy, [b, [a,y]]], because

(€p, €q)q = 0.
If K+ 1 = m, then we are done. Assume that k+1 < m and consider
the element ix49.

L. Let (e ., ep)q = —1.

(a) If (€., €a)q = —1, then we put s = k + 1 and we are done.
(b) If ey 0r€a)q = 0, then [v;,_,,a] € (I)m-1.
If m =k +2, then

[Uiuv] = _[vil? [b7 [vik+27 am - [Uiu [Uik+27 [CL, bm € (])

and we are done.

Assume that m > k + 2. We can assume that (e;, ,,,€q)q = 0.
Indeed, since [vj, ,,,a] € (j)m—1, we have

[vil ) U] [ [ba [ [vik+27 Vigygs - 7Uz‘m]]]]
[ [ba [vlk+2> [a7 [Uik+37 s 7vim]m]'
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If (€iy.0s€a)q > 1, then (e; ,,eat€i s+ ... Fei)g >1-1=
0. It follows that

[vik+2’ [av [Uik+37 s ’Uim]]] € (p)m—l = (j)m—l'

Therefore we can assume that (e;,,,€q)q = 0. Moreover

[Uipv] = [Uin [b7 [Uik+2’ [aa [vik+37 s ’vim]m]
= _[Uiu [UikH’ [[a7 [Uik+37 R Uim]]v bm
_[Uiu Ha7 [Uik+37 s 7vimH’ [b7 Umzm

= —[viy; [[Vigy2, 0], 05 Vi - -5 vi 1]

because (e;, ,,€p)q = —1 and (e, ,,,eq + €y + €5y + ... +
Cipm)q = —2. We can assume that (e;,,e;,,,)q = 0. Indeed, if
<ei1,eik+2>q = —1, then

0= <€i17€v>q = <€i17ea +ep+ eik+2>q + <ei1veik+3 +.oo+ eim>q
= 71+<61‘1,€ik+3 +...+€im>q.

It follows that (ej,,€i s + ... + Vip)g = 1, (€, €0 + €y +

.. ‘+Uim>q =0and [Uil, [a, [Uik+37 ... ,Uimm S (p)m_1 = (j)m—1~
Therefore

[vh ) U] _[vilv [[Uik+27 b]v [av [vik+37 s 7Uimm]

_Hvik+2v bl, [viy, [a, [Uik+37 0]l E (),

because (e, €i, ., + €b)qg = 0. If (e, €5, ,,)q > 1, then

0= <ei1 ’ €U>q <ei1 1€a T €p + eik+2>q + <€i1’eik+3 .t eim>q
1

Z +<eila€ik+3 +~--+€im>q'

It follows that (e;;, e, + ... + Vi, )g < —1, (€iy,€a + €y 5 +
s i )g £ =2 and [a, [V, Vi) € (P)me1 = ()met
Therefore, [v;,,v] € (j) and we are done. Finally, (e;, ,,,€4)q =
0, (€4, eik+2>q =0, <eik+2 + €, €a)q = 0 and

[Uiuv] = _[U’ilv [[vim—zv b], [a, [Uik+37 oo 7Uim]]]]
= 7[1}7;17 [av Hvik+2v b]a [vik+3v s ’Uim]m
We set @ = a, b = [vi,,,,b], ¥ = [Viy,q---50i,] and con-

tinue this procedure inductively using [v;,, [@, [b, 7]]] instead of
[Uila [a’a [bv y]“

2. Let (i, 5, €0)q # —1, then [vy, ,,b] € (J)m—1. If m =k + 2, then

[vi17v] = [Uilv [CL, [b7 Uz‘k+2”] € (J)



68

LIE ALGEBRAS ASSOCIATED WITH QUADRATIC FORMS

and we are done. Assume that m > k+ 2. Since [v;,_,,b] € (I)m—1,
we have

- i, 11

For the sake of simplicity we present partial results in tables. In the
first column of the following table we consider all possible values of
(€if 10> €b)g- In the second column we give the corresponding value
of (€} ,, e +e€iy 5+ ..+€i,)q The third column contains the sign
""", if we can deduce that X = [v;,_,, [b, [Viy 55+, Vi )] € ()m—1,

[viw [CL, [bv [UikJrzv [vik+3’ s ’Ui7n]]]]] = [Uil? [a7 [vik+2’ [b7 [Uik+3’ s

and the sign "—", otherwise.
<eik+27€b>q <6ik+27 €+ iyt ...+ eim>q X € (j)m—l
0 -1 —
1 0 +
2 1 +

Therefore we may assume that (e;,,,,es)q = 0, because otherwise

- Vil € ()-

(a) Assume that (e;,_,,€a)q # —1. Then [v;,_,,a] € (j)m-1 and

5 i 1]
5 Vi J]]]1-

In the first column of the following table we consider all pos-
sible values of (e;, ,,,€4)q. In the second column we give the
corresponding value of x = (e;, ,,,€q +€p+€iy s+ ...+ i)
The third column contains the sign "+", if we can deduce that

[vil ) ’U] = [Uip [CL, [vik+27 [bv [Uik+3) .-

[Uilv [aa [Uik+2a [bv [Uik+3’ .
[viy [Uik+2’ [a, [b, [vik+3’ e

[Uil ) U]

X = [Uik+2’ [aa [b’ [Uik+37 s 7vimm] € (j)TTL*lv

and the sign "—", otherwise.
<€ik+2’€a>q o X € ())m—1
0 -1 —
1 +
2 1 +

Therefore we may assume that (e;, ,,,eq)q = 0, because oth-
erwise [vj,,v] € (j). Moreover,

[Uiu [Uik+2= [av [ba [Uik+37 o

= [viu [U’ik+27

5 Vi, 1]

[b7 [a7 [vik+37 s 7’Uim]]m»
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because (eq,€p)q = 0.

In the first column of the following table we consider all pos-
sible values of (e;,,e;,_,)q- In the second column we present
a consequences of the information contained in the first col-
umn. Finally, in the second table we present conclusions of
the results presented in the first table.

(€i1s€iyia)q consequences
-1 <€i176b+eik+3+~-+€im>q:2
0 (e eateptei s+ ... +e,)g=0
1 (€ a+ €y + .o+ €ip)g=—2
2 (€ip,eateptey s+ .. F+ep)g=—2
(€i1s€iyia)q conclusions
-1 [b7 [Uik+37 R 7vim]] € (j)m—l
0 [Ui17 [av [b7 [Uik+37 . 7Uimm] € j)m—l
1 [a, [Viy 5,5 Vi ] € ()m—1
2 [aa [b’ [Uik+3v s »Uz'm]]] € (J m—1
All these cases imply that [v;,,v] € (j).
Assume that (e;,,,,eq)q = —1. In this case

<€ik+27 ot €+ € g+ ...+ eim>q = —2.

It follows that

[a, [b, [Vig 5+ Vil € ()m—

and
[’U,;l,?}] = Vi, [a7 [Uik+27 [b’ [vik+37 s 7Uimm“
= [Uip [Uik+27 [a, [bv [Uik+37 s 7Uim”]”
_[in [[bv [Uik+3’ SRR Uim]]v [av Umgm

= _[Uiu [[Uik+27 a]v [ba [Uik+37 s a“im]]]]
Consider (e;,, €, ,)q and
- [Uiu [[Uik+2’a]7 [b7 [Uik+3v s vvimm] =

= [[Uik+27 a]? [[bv [Uik+37 s 7UimH7 Uil]]+

+ Hb7 [vik+37 s 7vim]]7 [Uiu [’Uik+2»am-
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We present again partial results in tables.

(€15 €ipin)q consequences
-1 (i, ep+ Cipuy + -t €ip)g =2
1 <€i1yeb+ez’k+3+'--+eim>q20
and (e, €., +€a)g =0
2 11 = lg42
(€irs Cipra)g conclusions
-1 [b7 [vik+37 . 7vim“ € (j)m—l
1 [N TS 8 Y
and [/U’il? [vik+27 CLH € (j)m,1
9 contradiction, because
<ei17 eb>q =1 7é 0= <eik+27 eb)g

Therefore, we can assume that (e;;,e;,.,)q = 0, because oth-
erwise [v;,,v] € (j). Moreover

_[Uhv Hvik+27 a]> [bv [vik+37 s 7Uim]m
_[Uin [bv [[UikJrzv a]v [vik+3’ s 7vim]m’

[’Uh ) U}

because (€;, , + €a,€p)q = 0. Therefore

[Uinv] = _[vilv [av [ba ?m,

where @ = [v5,,,a], b =0, J = [Vi 4, ---,V;,] and the condi-
tions (i)-(iv) are satisfied.

Continuing this procedure inductively we show that [v;,,v] € (j) or
[viy, v] = [viy, [a, z]] = [viy, [a, [b,y]]] and the conditions (i)-(v) are satis-
fied. O

Proposition 6.10. Let g be a positive definite quadratic form. The ideals
(G) and (p) of the Lie algebra L(q) are equal.

Proof. The inclusion (j) C (p) is obvious. It is enough to prove that
(p) € (j). Let v = [vj,,...,v;, ] be aroot in L(q) and let 4 € {1,...,n}
be such that [v;,,vi,,...,v;,] € p and (e;;, e, +...+¢€;,,)qg = 0. We claim
that [v;,, v] €j.

We prove our claim by induction on ¢(v) = m — 1. For ¢(v) < 3 our
statement easily follows by a case by case inspection on all possible cases.

Let ¢(v) > 3, then m > 4, v = (v, [Viy, V)], (€iy, €5 + €v)qg = —1,
(€iy,€3)q = —1 and £(T) > 1. By Lemma 2.5, it is enough to consider the
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following three cases.

1) If (ei,,€i)g = 0, then by the bilinearity of (—,—),, we have
(€iys€i5 + ...+ €, )q = 0. Moreover

[Uilav] = _[in [[Uisa R Uim]?”h“ - [[Ui?ﬂ R Uim]7 [Uilaviz]]'

By definitions, [vi,,v;,] € j and [vj,, [vig, - .., v;,,]] € v. Then, by Propo-
sition 6.3, [viy, [Vig,--.,i,,]] € (p) and by the induction hypothesis we
have [0, [ - -, 05, ]] € (3). Finally, [v3,,0] € ().

2) If 41 = ig, then (e;,,€i,)q = 2 and (e, €5 + ...+ €i,,)g = —2.
This is a contradiction with Lemma 2.5 and therefore the case 2) does
not hold.

3) Let (ei;,€iy)q € {1, —1}. In this case we apply the Jacobi identity
and develop Lemmata 6.8, 6.9 to find an element w € L(g) such that
[viy,v] —w € (§) (i-e. [vi;,v] = w). Finally we show that w € (j), which
implies that [v;,,v] € (j).

3.1) Let (e;,, €i,)q = 1. We reduce this case to the case 3.2) presented
below. Since (e;,,€y)q = 0 and (e;,,€4,)q = 1, then there exists k €
{3,...,m} such that (e;,,e;,)q = —1. Choose k minimal with this prop-
erty. We may assume that k < m, because [v;, ,,vi,. | = —[vi,,, Vi,, ]
and we can work with —v instead of v. Note that for all s =3,..., k—1,
we have (e;,,e;,)q = 0. Indeed, if there exists s = 3,...,k — 1 such that
(€ir,€i,)g # 0, then by the choice of k, we have (e;;,e;,)q > 1. Then
(€irs€ip+ .- Fein)g < (€irsev)g— (€irs€in)g — (€irs€i)g = —2 and we get
a contradiction, because [v;,,...,v;, ] is a root.

Now applying the Jacobi identity we get

[viQ’ s Ui [Ulkvy]] =
= [Uiz’ cees Vg [Uik—ﬂy]] + [Uizv coes Vig_gs [[vik—l’vik]’ yH

By Lemma 3.6 (a), the element [v;,, [v;, _,,y]] or the element [v;,_,,v;,]
is not a root, then [v;,_,,v;] € (p) or [vi, [vi,_,,¥]] € (p). By the in-
duction hypothesis [v;, , [vi,_,,y]] € (§) or [vi,_,,vi,] € (j). Therefore v =
[Vigs -« Vip_y, X, 2]], where = v, and z = [v;,_,,y] or = = [v;,_,, v, ],
z = y. In both cases (e;,,e5)q = —1. Continuing this procedure (i.e. z
plays a role of v;, and z plays a role of y), we get

[Uilvv] = [Uil’ [Uim [x’ Zm’
where (e;,,e;)q = —1. Applying the Jacobi identity, we get

[Ui27 [x7 ZH = [x’ [Ui27 ZH + [[in x]v z]
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By Lemma 3.6 (b), [vj,, 2] or [vi,,x] is not a root, then [z, [vs,, 2]] € (p)
or [v,,z] € (p). By the induction hypothesis [z, [vi,, 2]] € (§) or [vs,, 2] €
(3). Therefore [v;,,v] = [viy, [, [Viy, 2]]] OF [Viy, 0] = [Viy, [V, 2], 2]]. If
[viy, v] = [viy, [, [Viy, 2]]], then applying Lemma 3.8 we get a reduction to
the case 1) or to the case 3.2) below. If [v;,,v] = [viy, [[viy, 7], 2]], then

[Uilvv] = [Ui17 [[inx]?'zﬂ = _[[inx]? [z7vi1H - [Zv [Uilv [’inxm'

Note that £(z) > 1, because we choose k with the property & < m. Then
(€irs€2)q <6117ev> — (€irs €x)g — (€ir,€i2)g = 0= (=1) =1 = 0 and
(€iy,€iy +€1)g =1 —1=0, and therefore by the induction hypothesis

[viwv] = _Hvimm]? [z7vi1]] - [Zv [viu [viwxm € (])
3.2) Let (e;,,€i,)q = —1. Applying Lemma 6.8 and 6.9 we get

[Uil ’ U] € (J)

or
[’Uil,’U] = [vila [CL,[L‘H = [Uila [av [ba y]“a
where
(1) a = [vip,..., Vi), b= [vi,, Vi, ;... ,vik+1], Y= [Vigors- - Vin,
(ii) (eiy,€i;)q=0,forall j=3,...,kand j =k +2,...,s,
(iii) <€i176i2>q = -1, <€i176ik+1>q =1,
(iv) <6b7 ea>q =0,
(v) if s <m then (e;,,,,eq)g = —1 and (e; ., ep)qg = —1.

Consider the following cases.
(a) If s =m, then [v;,v] = [vi, [a, b]] and

qeq +ey) = qleq) + qlep) + (€a,e)g =1+ 1+0=2.

Therefore e, + €, is not a root of ¢, by the induction hypothesis [a, b] € (j)
and [v;,,v] = [vs, [a, b]] € (j).

We may assume that s < m and consider (e;,e;,,,)q. Partial results
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are presented in the following tables.

(€iy, €isy1 >q consequence
qlei + (eis+1 +eq)) =
-1 Q(eil) + Q(eis+1 + ea) + <ei1a€is+1 + €a>q =

1+1-1-1=0
g(=eir + (igy + ) =

1 q(ei,) + Q(eis+1 +ep) — <ei1’€is+1 + ep)g =
1+41-1-1=0
2 il - is—‘rl
(€15 €iyi1)q conclusions
1 contradiction, because
q is positive definite
1 contradiction, because

q is positive definite
9 contradiction, because
<eis+17€b>q =—1 7é 1= <€i17€b>q

Therefore, we may assume that (e;;, e;,,,)q = 0.
(b) Let m > s+ 2. Then

[vi17v] = [viu [av [bv [’Uisﬂvzm]v
where £(z) > 1. Moreover (e; . ,ep +€:)g = —1 — 1 = =2, then [z,b] is
not a root and by the induction hypothesis [z, b] € (j). Therefore
[Uilﬂ [a’ [b7 [Uis+17 Z]m = _[vil’ [CL, [Uis+17 [Z, b]m - [Uiu [CL, [Z7 [b7 Uis+1m]
= [Uilv [CL, [[bv vis+1]v Zm

Applying the Jacobi identity, we get

[Uila [av Hbv Uis+1]7 Z]H = _[viu [[bv Uis+1]7 [27 am - [Uilv [Zv [av [b’ Uis+1m]'

Note that (e;,,,,eq + €:)g = =1 —1 = =2, then [z,a] is not a root and
by the induction hypothesis [z,a] € (j). Therefore

[Uin [a7 [[b7 U’is+1]7 Z]H = [Uilv Ha7 [b7 Uis+1H7 ZH
= —[[CL, [bv Uis+1“7 [27 Uil]] - [Z> [Ui17 [(L, [ba Uis+1]m'

Note that (e;,, ea+ep+ei,,,)g = —1+1+0 = 0 and (e;,, €.)q = (€}, €v)g—
(€ir,eat+ep+ei ., )q = 0. By the induction hypothesis [v;,, [a, [b, v, ]]] €
(j) and [z, v;,] € (§). Therefore [v;,,v] € (j).

(c) Let m = s+1. Werecall that (e;,, e;,)qg = —1, (€, €i,,,)q = 1 and
(i, ei;)g =0 forall j =3,...,s. Applying 1) and the Jacobi identity, it
is straightforward to prove the following conditions:
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(i) [Uinv] = (_1)8[’01'17”1'2’ -
(ii) [1)1'1,1)] = <_1)E[vi17 [[Uijv .-

k,s+1,s....k+2.
Without loss of generality, we can assume that in both cases € = 0. It
follows from (i) that there exists a numbering of elements {ia, ..., 4541},

such that

[Uil,l)] = [Uiuviz) ..

i) ’Uik7vis+1avisa .

where, [vi,,...,v;,,,] is a root, (e, e€i,)q =
(€i,ei;)g = 0 for j = 3,...,5. Moreover, it follows from (ii) that the
elements [v;;,...,v;,] for all j = 2,...,k,s +1, s...,k + 2, are roots,

because otherwise [v;;, . .
We claim that (e;;,

€iji1

.,UiQ],vij+l,..

- Vi,
V)], forall j =2,

. )Uis+1])

-1, (€i,€isy,)g = 1 and

., Vi,] € and [v;,,v] €.
)g = —1 for all j = 2,...,s. Assume, for

the contrary, that there exists j = 2,...,s, such that (e;;,e;;,,) # —1.

If j = s, then [vj,,..

Applying the Jacobi identity we get

[Uil, [UiQ, ..

and, by the case 1), [v;,v] € j.

3 Viy,] 18 not a root. If j = 2, then [v;,,v,] € j.

: 7vis+1“ = [Uin [Ui:w [Uizv [%’4; T 7Uis+1]m

Therefore we can assume that j =

3,...,5—1. Since [viy,...,v;,,,] is aToot, (e, €, +...+ € )g=—1
and (e;;, €, + ..+ € )qg > —1. By the bilinearity of (-, —),, Lemma
2.5(c) and our assumptions, we have (e;;,€;, ., + ...+ €;,,,) = —1 and
(ei;,€i; ;) = 0. By assumptions and (ii), the elements [v;,vi;_;, ..., V]
and [Vi; 1, Vi, o, - Vi, ] are roots. Moreover (e, , €, +...+e€i_1)g =
(€ijy1r€ip + oo ey +ei)g = —1. Sety = [vi;_,,...,vi,] and z =
(Vi a5+ Vigyy], then
L=q(v) = qley+ei;+ei, +e)

= qley +ei;) +qlei,, +ex)+(ey+eij e, +ex)g

= 2+ (ey, eij+1>q + (ey; €x)q + <eijv eij+1>q + <6ij7€x>q

= 2+ (=1 +{ey€a)g + 0+ (-1)

= (ea;€x)q-
It follows

q(—ez + (ey +ei,))

qex) +qley +eiy) — (ex, ey +€i))q
L+1— (e, ey)g — (€xs €i1>q

— 2-1-1=0,
because (ez,€i,)q = (€i,;1,€i1)q = 1. This is a contradiction, because
q is positive definite. Finally, we proved that (e;;,e;,,,)q = —1 for all

j=2,...,8.

If (e, e)q < 0foral 2 <j << s+1, then (iq,42,...,7541) is

a positive chordless cycle and therefore [v;,, vj,, ..

3 Vigy,] €. Indeed, if
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(i1,12,...,9s+1) is not a positive chordless cycle, then there exists 2 <
j <1 < s+ 1such that [ # j,j + 1 and (e;;,e;)q = —1. Therefore
qlei, +...+ei ) <s—(s—1)+ (e, ey)q = 0 and ¢ is not positive
definite.

Assume that (e;;,e;)q > 0 for some 2 < j <1 < s+ 1. Choose j,1
such that 2 < j <l —1< s+ 1 and [ — j is minimal with the property
<€ij7 6iz>q 7& 0.

If (e, ei)g = —1, then q(e;; +... +e;) = 0. If (e;;,€;,)q = 2, then
q(ei; + ...+ e;) = —1. In both cases ¢ is not positive definite.

Therefore (e;;,e;)q = 1. Note that in this case (ij,4j11,...,7) is
a positive chordless cycle and [v,v;_,,...,vi;,,] is aroot. If | = s +1,
then
V= [Vigy . Vigy 5 V] €

by the definition. Therefore we can assume that [ < s+ 1. If j = 2, then

[viy,v] = [,Uij7 [[Uiz’ Vig_qye -+ vvij+1]7 [Uil+1’ e 7Uis+1H
= [[Uil yVig_qy- - 7Uij+1]7 [Uij [Uiz+17 s ,Uis+1]],
because [v;,, [vi, vi,_y,---,Vi;4]] € ). It follows by 1), that [v;,v] € j,

because (e;,, €, + ...+ ¢€;)q = 0. Therefore we can assume that 2 <
j<l<s+1and

[viy, v] = [vgy, [z, [Uija b, ],
where z = [vi,_;, ..., v3,], b= [vi), v, .., v ] and y = (Vi v
Since ey, ei; + ey + ey and e; + €;; + e, + e, are roots of ¢, by Lemma
2.5(b") we have (ez,e;; + e, +ey)q = —1. Consider

Q(_ey + (eil + 6;,;)) = Q(ey) + q(eil + e:}c) - <ei1 + e, ey>q
L+ 1— (€, ey)g — (€x,€y)q
= 1- (em €y>qa

because (e;,,€y)q = (€i1, €, 1)q = 1 and (e;,, €z)q = (€, €in)g = —1.
On the other hand

[Uilav] = [vil’ [fL‘, [Uija [bv y]m = _[vil’ [vija [[ba y]a $m - [Uiu Hb’ y]? [$a %m

Therefore (e;;, e;)q = —1, because otherwise by the induction hypothesis
we have [z,v;,] € j, and by 1),

[Uilvv] = [Uilv [:U, [Uij’ [b7 ym] = _[Uilv [vi]‘? [[bv y]v xm €J.
Similarly we have (e, ep)q = —1, because otherwise

[Uiuv] = [in [1:7 [Uijv [b7 y]]]] = [Uiu [1‘, [b7 [Uij’y]]]] = [U’iu [b’ Hy7 Uij]’ $H] €j,
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by the case 1).
Finally
(€z,€y)qg = —1— <ex,ei]. +ep)g=—1— <em,e¢j)q — (ez,€p)qg =1

and ¢(—ey + (e; +€;,)) = 1 — (ez,ey)q = 0. This is a contradiction,
because ¢ is positive definite. This finishes the proof. O

7. Examples and final remarks

In this section we present some examples and remarks that illustrate basic
results of this paper.

Theorem 7.1. If A = CQ/I is a representation directed C-algebra, such
that its Tits form qa is positive definite, then the map

®: L(qa,j) — K(A) (7.2

R &

given by v; — u; is an isomorphism of Lie algebras. Moreover L(qa,j)
G (qa)-

Proof. By Corollary 5.2, the map ® : L(ga,t) — K(A), given by ®(v;) =
u;, is an isomorphism of Lie algebras. By Propositions 6.3 and 6.10, we
have L(qa,j) = L(qa,t), because q4 is positive definite. The isomorphism
L(qa,j) = G (qa) follows from Proposition 4.4. O

Remark 7.3. Let A be a representation directed C-algebra and let ¢4
be its Tits form. It is well-known (see [6]) that g4 is weakly positive.
It follows that the set R(‘;A of positive roots of g4 is finite. Therefore
dimc KC(A) = [R],] is finite. In this case, the subset v of L(ga) is finite,
even if g4 is not positive definite. Moreover, we are able to describe
an algorithm that constructs the set v. Indeed, it is enough to develop
Definition 3.7 and construct all Weyl roots of ¢ (see [8, Remark 4.15]).

If g4 is positive definite, then L(ga,j) = L(ga,t). The set j is a min-
imal set generating the ideal (tr) and j is smaller than v (see Example
7.4).

If g4 is not positive definite, then (j) C (¢r) in general (see Example
7.5).

Example 7.4. Let L be the following poset

/\
\/
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and let KL be the incidence algebra of the poset L (see [15]). It is easy
to see that KL is representation directed, qx is positive definite and

B(qxk1,) has the form

4
\

VRN
[

2 \ 3

\
\

\ ! /
1

Then

j = {[UQ’ u3]7 [ula u‘d? [ulv [U‘l? UQ]]a [ulv [ulv u3]]7 [u2a [ulv U‘QH? [ui’n [ula 'LL3H,
[ug, [uz, ual], [us, [us, ual], [ua, [uz, uall, [ua, [us, ua]], [u1[uz, udll,
[u1, [usz, ual]}

and L(gkr,j) = K(KL). Note that

v o= {[u2,us), [u1, ud], [ur, [ur, ual], [ur, fur, usl], [uz, [uz, ual], fus, [us, ua]],
[ug, [uz, uall, [us, [us, uall, [ua, [ua, ual], [ua, [ua, usl}, [u1 [uz, udl],

U17[u37u4“7 us u2]7[u47u1]7[ulﬂ[u%ul]]v[ulv[u?nul”v[u2?[u1>u2”7
us, [’LL1, u3” Uz, [’LL4, uQ”a [U3, [U47 U3”, [U4, [U’Qv U4”, [’LL4, [u37 U4Ha
uiug, uz)], [ur, [ug, usl], [ur, vz, ur, usl, [uz, uz, w1, us], [us, uz, u1, usl,
UL, U3, U1, U2], [uz, us, ut, uzl, [us, us, w1, u2l, [u1, uz, us, u1],
Uz, U2, U3, U1 ,[UJ,UQ,UJ,TM] [Ul,uza,uz,ul] [u27U3,u2, 1},

[ ]

[

S

Uz, us, U2, U], (U4, U2, us, us], [uz, uz, ua, usl, [us, uz, us, us),
Ua, U3, Ud, Usz), [U2, U3, Ua, Uz], [Us, Us, Ua, Us2], [Ua, U2, Uz, U4],
U2, Uz, U3, Usl, (U3, U2, U3, Us], [Ug, us, U2, us], [U2, U3, Uz, U4, [us, us, U2, usl,
U1, Us, U2, U3, UL], [U2, Us, U2, U3, U1], (U3, Us, Uz, us, u1], [U4, Us, U2, us, u1],
U1, Us, U3, Uz, U], [U2, Ua, Us, Uz, U1], [U3, Ua, Uz, Uz, u1], [Ua, Ua, U3, U2, U1],
U1, U1, U2, U3, Ud), [U2, U1, U2, U3, U4, [U3, U1, U2, U3, U4), [Ua, U1, U2, U3, U4],
UL, UL, U3, U2, ual, (U2, U1, us, U2, usl, (U3, w1, us, uz, usl, (g, u1, us, Uz, u4),
UL, Ug, Uz, UL, us), (U2, Ua, U2, U1, us], [us, U4, Uz, u1,us), (U4, ua, u2, u1, Uz,
[ uz], ls [
[ us], I [
[ ] I

u17u47u37u17u2] U2, Uq, U3, UL, U2 [u37u47u37u17 uzj, (U4 U4,U3,U1,U2],
UL, U, U2, Ug, U], (U2, U1, uz, us, usl, [us, w1, uz, us, us), [ug, w1, w2, us, us),
U1,U1,U3,U4,UQ] U2, U1, U3, Uq, U2 ,[U3,U1,US,’LL4 uz|, ’LL4,U1,’LL3,U4,’LL2]}

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Example 7.5. Consider the following graph
4
AN
2 3
N
1
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Let A = CQ/I, where I = (ab,cd). The form g4 is not positive definite
and B(qa) has the following form

SN,
N/

Note that [ug, [us, [uz,u1]]] € (v), but [ug,[us, [uz,u1]]] € (j). On the
other hand, the algebra A is representation directed and g4 is weakly
positive. By Corollary 5.2, K(A) = L(ga,t).
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