Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras

Justyna Kosakowska

Communicated by V. V. Kirichenko

ABSTRACT. We define and investigate Lie algebras associated with quadratic forms. We also present their connections with Lie algebras and Ringel-Hall algebras associated with representation directed algebras.

1. Introduction

Let q be a unit integral quadratic form

$$q(x) = q(x(1), \dots, x(n)) = \sum_{i=1}^{n} x(i)^2 + \sum_{i,j} a_{ij} x(i) x(j),$$

where $a_{ij} \in \{-1, 0, 1\}$. In [4], with q complex Lie algebras G(q), $\tilde{G}(q)$ are associated, where $\tilde{G}(q)$ is the extension of G(q) by the \mathbb{C} -dual of the radical of q and \mathbb{C} is the complex number field.

The following facts were proved in [4].

- If q is positive definite and connected, then $G(q) = \tilde{G}(q)$ is a finite dimensional simple Lie algebra.
- If q is connected and non-negative of corank one or two, then $\widetilde{G}(q)$ is isomorphic to an affine Kac-Moody algebra (if the corank of q equals one) or to elliptic (if the corank of q equals two and q is not of Dynkin type \mathbb{A}_n).

Key words and phrases: quadratic form, Lie algebra, Ringel-Hall algebra.

Partially supported by Research Grant No. N N201 269 135 of Polish Ministry of Science and High Education

²⁰⁰⁰ Mathematics Subject Classification: 17B20.

In [4], the Lie algebra G(q) was defined by generators and relations. Unfortunately, the set of relations defining G(q) is infinite. In [5], the authors give a finite and small set of relations sufficient to define G(q)for positive definite forms q.

In this paper, for any integral quadratic form q (2.1), we define by generators and relations, a Lie algebra $L(q, \mathfrak{r})$. For a positive definite form q, we describe a minimal set of relations defining $L(q, \mathfrak{r})$. Moreover we show that, for any representation directed \mathbb{C} -algebra A with Tits form q_A , there are isomorphisms of Lie algebras

$$L(q_A, \mathfrak{r}) \cong \mathcal{L}(A) \cong \mathcal{K}(A),$$

where $\mathcal{L}(A)$ is the Lie algebra associated with A in [11] by Ch. Riedtmann and $\mathcal{K}(A)$ is the Lie algebra associated with A in [13] by C. M. Ringel. The isomorphism $\mathcal{L}(A) \cong \mathcal{K}(A)$ is proved in [7]. Results of the present paper allow us to define Lie algebras $\mathcal{L}(A)$ and $\mathcal{K}(A)$ in a combinatorial way. Similar results are presented in [9] and [10] for Tits forms of posets of finite prinjective type.

The paper is organised as follows.

In Section 2 we give basic definitions and facts concerning weakly positive and positive definite quadratic forms and their roots.

In Sections 3, 4 we give a definition and prove basic properties of the Lie algebra $L(q, \mathfrak{r})$. Moreover (for some class of quadratic form q) we show that the Lie algebra $L(q, \mathfrak{r})$ is a Lie subalgebra of G(q).

In Section 5 we prove the existence of isomorphisms of Lie algebras

$$L(q_A, \mathfrak{r}) \cong \mathcal{L}(A) \cong \mathcal{K}(A),$$

for any representation directed \mathbb{C} -algebra A. Moreover we present applications of these results to Ringel-Hall algebras of representation directed algebras.

In Section 6 we give a minimal set of relations sufficient to define the Lie algebra $L(q, \mathfrak{r})$, where q is a positive definite quadratic form. More precisely we prove the following theorem.

Theorem 1.1. Let q be a positive definite quadratic form (2.1). There is an isomorphism of Lie algebras

$$L(q, \mathfrak{r}) \cong L(q)/(\mathfrak{j}),$$

where L(q) is the free complex Lie algebra generated by the set $\{v_1, \ldots, v_n\}$ and (j) is the ideal of L(q) generated by the set j, which is consisted of the following elements

- $[v_i, v_j]$ for all $i, j \in \{1, \ldots, n\}$ such that i < j and $a_{ij} \neq -1$,
- $[v_i, [v_i, v_j]]$ for all $i, j \in \{1, ..., n\}$ such that i < j and $a_{ij} = -1$,
- $[v_j, [v_i, v_j]]$ for all $i, j \in \{1, ..., n\}$ such that i < j and $a_{ij} = -1$,
- $[v_{i_1}, \ldots, v_{i_m}]$ for all positive chordless cycles (i_1, \ldots, i_m) (see Section 6 for definitions).

Finally, in Section 7, we present some examples and remarks.

2. Preliminaries on weakly positive and positive definite quadratic forms

Let e_1, \ldots, e_n be the standard basis of the free abelian group \mathbb{Z}^n . Let $q: \mathbb{Z}^n \to \mathbb{Z}$ be a connected unit integral quadratic form defined by

$$q(x) = q(x(1), \dots, x(n)) = \sum_{i=1}^{n} x(i)^2 + \sum_{i,j} a_{ij} x(i) x(j), \qquad (2.1)$$

where $a_{ij} \in \{-1, 0, 1\}$. Let B(q) be the bigraph associated with q (i.e. the set of vertices of B(q) is $\{1, \ldots, n\}$; for $i \neq j$ there exists a solid edge i - -j if and only if $a_{ij} = -1$ and a broken edge i - -j if and only if $a_{ij} = 1$). An integral quadratic form q is said to be **weakly positive**, if q(x) > 0 for any $0 \neq x \in \mathbb{N}^n$, where \mathbb{N} is the set of non-negative integers.

A vector $x \in \mathbb{Z}^n$ is called **a root** of q, if q(x) = 1; if in addition $x(i) \ge 0$, for any i = 1, ..., n, then we call x **a positive root**. Denote by

$$\mathcal{R}_q = \{ x \in \mathbb{Z}^n \; ; \; q(x) = 1 \}, \ \ \mathcal{R}_q^+ = \{ x \in \mathbb{N}^n \; ; \; q(x) = 1 \}$$
(2.2)

the set of all roots and all positive roots of q, respectively.

We associate with q the symmetric \mathbb{Z} -bilinear form

$$\langle -, - \rangle_q : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{Z},$$
 (2.3)

where $\langle x,y\rangle_q = q(x+y) - q(x) - q(y)$, for all $x,y \in \mathbb{Z}$. It is straightforward to check that

$$\langle e_i, x \rangle_q = 2 \cdot x(i) + \sum_{i \neq j} a_{ij} x(j), \qquad (2.4)$$

for any i = 1, ..., n. Let us recall the following useful facts concerning the \mathbb{Z} -linear form $\langle e_i, - \rangle_q$ (see [12]).

Lemma 2.5. Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be an integral quadratic form (2.1) and let $i \in \{1, \ldots, n\}$.

(a) $\langle e_i, e_i \rangle_q = 2.$

(b) Let x be a root of q and $0 \neq d \in \mathbb{Z}$. The vector $x - de_i$ is a root of q if and only if $d = \langle e_i, x \rangle_q$.

(b') Let x, y be roots of q. The vector x + y is a root of q if and only if $\langle x, y \rangle_q = -1$.

Assume that q is positive definite.

(c) If x is a root of q such that $x \neq e_i$, then

$$-1 \leq \langle e_i, x \rangle_q \leq 1.$$

(d) The set \mathcal{R}_q of all roots of q is finite. Assume that q is weakly positive.

(e) If x is a root of q, then

$$-1 \leq \langle e_i, x \rangle_q.$$

(f) The set \mathcal{R}_a^+ of all positive roots of q is finite.

Lemma 2.6. Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a weakly positive quadratic form and let $z \neq 0$ be a positive root of q. Then z is a Weyl root, i.e. there exists a chain

$$x^{(1)}$$
.... $x^{(m)}$

of positive roots of q such that

(a) $x^{(1)} = z, x^{(i)} = x^{(i-1)} - e_{j_i}$ for i = 1, ..., m and for some $j_i \in \{1, ..., n\},$ (b) $x^{(m)} = e_j$, for some $j \in \{1, ..., n\}.$

3. Lie algebras associated with quadratic forms

In a complex Lie algebra L, we use the following multibracket notation

$$[y_1, y_2, \dots, y_n] = [y_1, [y_2, [\dots [y_{n-1}, y_n]]]], \tag{3.1}$$

for all $y_1, \ldots, y_n \in L$. Let L be a complex Lie algebra generated by a set $\{v_1, \ldots, v_n\}$. Elements of the form $[v_{i_1}, \ldots, v_{i_m}]$ we call **standard multibrackets**. All Lie algebras considered in this paper are assumed to be complex finitely generated Lie algebras and all quadratic forms are assumed to be integral quadratic forms (2.1).

Let S_n be the symmetric group of *n*-elements.

Lemma 3.2. (a) Let L be a Lie algebra and let $y_1, \ldots, y_n, x \in L$. There exists a subset $S \subseteq S_n$ and for any $\sigma \in S$ there exists $\varepsilon_{\sigma} \in \{0, 1\}$, such that

$$[[y_1,\ldots,y_n],x] = \sum_{\sigma\in\mathcal{S}} (-1)^{\varepsilon_{\sigma}} [y_{\sigma(1)},\ldots,y_{\sigma(n)},x].$$

(b) Let L be a Lie algebra generated by a set $\{y_1, \ldots, y_n\}$. Any element $y \in L$ is a linear combination of standard multibrackets $[y_{i_1}, \ldots, y_{i_m}]$, where $i_j \in \{1, \ldots, n\}$.

Proof. (a) Apply recursively the Jacobi identity, see also [1, Lemma 1.1]. The statement (b) follows from (a). \Box

With a quadratic form q (2.1), we associate the complex free Lie algebra

$$L(q) = \operatorname{Lie}_{\mathbb{C}} \langle v_1, \dots, v_n \rangle \tag{3.3}$$

generated by the set $\{v_1, \ldots, v_n\}$. Note that the Lie algebra L(q) has a \mathbb{N}^n -gradation, if we define the degree of v_i to be e_i , for any $i = 1, \ldots, n$.

Let $\mathfrak{a} \subseteq L(q)$ be a subset consisting of some standard multibrackets and let (\mathfrak{a}) be the homogeneous ideal of the Lie algebra L(q) generated by the set \mathfrak{a} . Let

$$L(q, \mathfrak{a}) = L(q)/(\mathfrak{a}) \tag{3.4}$$

be the quotient Lie algebra with induced \mathbb{N}^n -grading. Denote by π : $L(q) \to L(q, \mathfrak{a})$ the natural epimorphisms. Let $v = [v_{i_1}, \ldots, v_{i_m}] \in L(q)$. For the sake of simplicity, we will denote by $v = [v_{i_1}, \ldots, v_{i_m}]$ the element $\pi(v)$.

• We call an element $v = [v_{i_1}, \ldots, v_{i_m}] \in L(q)$ a **root**, if $m \ge 1$ and $\langle e_{i_k}, e_{i_{k+1}} + \ldots + e_{i_m} \rangle_v = -1$, for all $k = 1, \ldots, m-1$.

• Let $v = [v_{i_1}, \ldots, v_{i_m}] \in L(q)$, we set $\ell(v) = m$ and we call this number the **length** of the element v.

• We set $e_v = e_{i_1} + \ldots + e_{i_m} \in \mathbb{N}^n$.

For $e \in \mathbb{N}^n$, denote by $L(q, \mathfrak{a})_e$ the homogeneous space spanned by all standard multibrackets $v = [v_{i_1}, \ldots, v_{i_m}] \in L(q, \mathfrak{a})$, of degree $e_v = e$. Moreover, for any integer m, let

$$L(q, \mathfrak{a})_m = \bigoplus_{\substack{e \in \mathbb{N}^n \\ e(1) + \dots + e(n) \le m}} L(q, \mathfrak{a})_e \quad \text{and} \quad (\mathfrak{a})_m = (\mathfrak{a}) \cap L(q)_m.$$
(3.5)

The following lemma shows connections between roots in the complex Lie algebra L(q) and positive roots of the quadratic form q. **Lemma 3.6.** Let $u, w, v = [v_{i_1}, ..., v_{i_m}] \in L(q)$ be roots.

(a) At least one of the elements $[v_{i_1}, v_{i_2}]$, $[v_{i_2}, v_{i_1}, v_{i_3}, \ldots, v_{i_m}]$ is not a root.

(b) If $\langle e_u, e_v + e_w \rangle_q = -1$, then $\langle e_u, e_v \rangle_q \ge 0$ or $\langle e_u, e_w \rangle_q \ge 0$.

(c) The vector $e_v = e_{i_1} + \ldots + e_{i_m}$ is a positive root of the quadratic form q.

Let $v = [v_{i_1}, \ldots, v_{i_m}] \in L(q)$ and let q be weakly positive.

(d) If $e_v = e_{i_1} + \ldots + e_{i_m}$ is a positive root of q, then there exists a permutation $\sigma \in S_m$ such that the element $v_{\sigma} = [v_{i_{\sigma(1)}}, \ldots, v_{i_{\sigma(m)}}]$ is a root in L(q).

Proof. (a) Let $v = [v_{i_1}, \ldots, v_{i_m}] \in L(q)$ be a root and assume that $[v_{i_1}, v_{i_2}]$ is a root. It follows that $\langle e_{i_1}, e_{i_2} \rangle_q = -1$ and $\langle e_{i_1}, e_{i_3} + \ldots + e_{i_m} \rangle_q = \langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q - \langle e_{i_1}, e_{i_2} \rangle_q = -1 - (-1) = 0$. Therefore $[v_{i_2}, v_{i_1}, v_{i_3}, \ldots, v_{i_m}]$ is not a root.

The statement (b) is obvious.

(c) Obviously e_{i_m} is a root of q. Let $2 \le k \le m$ and assume that $e_{i_k} + \ldots + e_{i_m}$ is a root of q. We have $\langle e_{i_{k-1}}, e_{i_k} + \ldots + e_{i_m} \rangle_q = -1$, because v is a root in L(q). By Lemma 2.5(b), the vector $e_{i_{k-1}} + e_{i_k} + \ldots + e_{i_m}$ is a root of q. Inductively we finish the proof of the statement (c).

(d) Let v be a positive root of q. From Lemma 2.5(b) it follows that $v + e_i$ is a positive root of q if and only if $\langle e_i, v \rangle_q = -1$. Therefore the statement (d) follows easily from Lemma 2.6 and Lemma 2.5(b), because q is weakly positive.

Definition 3.7. (a) Let \mathfrak{r} be the set of all standard multibrackets

 $[v_{i_1},\ldots,v_{i_m}]\in L(q),$

such that $[v_{i_1}, \ldots, v_{i_m}]$ is not a root and $[v_{i_2}, \ldots, v_{i_m}]$ is a root, where $i_1, \ldots, i_m \in \{1, \ldots, n\}$ and $m \in \mathbb{N}$.

(b) Let

 $L(q, \mathfrak{r}) = Lie_{\mathbb{C}} \langle v_1, \ldots, v_n \rangle / (\mathfrak{r})$

be a complex Lie algebra generated by the set $\{v_1, \ldots, v_n\}$ modulo the ideal (\mathfrak{r}) generated by the set \mathfrak{r} . We consider $L(q, \mathfrak{r})$ as a Lie algebra with a \mathbb{N}^n -gradation, where we define the degree of v_i to be e_i , for any $i = 1, \ldots, n$.

Lemma 3.8. Let $\mathfrak{a} \subseteq L(q)$ be a subset consisting of some standard multibrackets. Let $v = [v_{i_1}, \ldots, v_{i_m}]$, $y \in L(q, \mathfrak{a})$. Assume that for any $z \in L(q, \mathfrak{a})$, such that $\ell(z) \leq \ell(v) + \ell(y)$, the following condition is satisfied:

if
$$\langle e_i, e_z \rangle_q \neq -1$$
, then $[v_i, z] = 0$ in $L(q, \mathfrak{a})$. (3.9)

Then [v, y] = 0 in $L(q, \mathfrak{a})$ or there exists $\sigma \in S_m$ and $\varepsilon \in \{0, 1\}$ such that

$$[v,y] = (-1)^{\varepsilon}[v_{i_{\sigma(1)}},\ldots,v_{i_{\sigma(m)}},y]$$

in $L(q, \mathfrak{a})$.

Proof. Let $v = [v_{i_1}, \ldots, v_{i_m}], y \in L(q, \mathfrak{a})$. We precede with induction on $m = \ell(v)$. For m = 1, the lemma is obvious.

Let m > 1. We apply the Jacobi identity and get

$$[v, y] = -[y, v] = [v_{i_1}, [[v_{i_2}, \dots, v_{i_m}], y]] - [[v_{i_2}, \dots, v_{i_m}], [v_{i_1}, y]].$$

Note that

$$\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} + e_y \rangle_q = \langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q + \langle e_{i_1}, e_y \rangle_q.$$

Therefore $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q \neq -1$ or $\langle e_{i_1}, e_y \rangle_q \neq -1$ or $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} + e_y \rangle_q \neq -1$.

If $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q \neq -1$, then, by (3.9), $v = [v_{i_1}, \ldots, v_{i_m}] = 0$ and [v, y] = 0. We are done. If $\langle e_{i_1}, e_y \rangle_q \neq -1$, then, by (3.9), we have $[v_{i_1}, y] = 0$ and $[v, y] = [v_{i_1}, [[v_{i_2}, \ldots, v_{i_m}], y]]$. We finish by induction on m applied to $[[v_{i_2}, \ldots, v_{i_m}], y]]$. In the case $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} + e_y \rangle_q \neq -1$, we have $[v_{i_1}, [[v_{i_2}, \ldots, v_{i_m}], y]] = 0$. Finally

$$[v, y] = (-1)^{\varepsilon}[[v_{i_2}, \dots, v_{i_m}], [v_{i_1}, y]]$$

and we finish by induction on m.

4. Grading of $L(q, \mathbf{r})$ and positive roots of q

Lemma 4.1. Let q be a weakly positive quadratic form (2.1) and let $\mathfrak{a} \subseteq L(q)$ be a subset consisting of some standard multibrackets. Let m be a positive integer. Assume that the following conditions are satisfied.

(a) If $v = [v_{i_1}, \dots, v_{i_s}]$ is not a root in L(q) and $\ell(v) = s \leq m$, then

$$L(q, \mathfrak{a})_{e_v} = 0.$$

(b) If
$$v = [v_{i_1}, \dots, v_{i_s}]$$
 is a root in $L(q)$ and $\ell(v) = s < m$, then

 $\dim_{\mathbb{C}} L(q, \mathfrak{a})_{e_v} \leq 1.$

Then dim_C $L(q, \mathfrak{a})_{e_v} \leq 1$, if $v = [v_{i_1}, \ldots, v_{i_s}]$ is a root in L(q) and $\ell(v) = s = m$.

Proof. Let $v = [v_{i_1}, \ldots, v_{i_m}]$ be a root of L(q). If v = 0 in $L(q, \mathfrak{a})$, then we are done. Assume that $0 \neq v \in L(q, \mathfrak{a})$. We have to prove that $\dim_{\mathbb{C}} L(q, \mathfrak{a})_{e_v} \leq 1$. If m = 1, the lemma is obvious. Let m > 1, and let $0 \neq w \in L(q, \mathfrak{a})_{e_v}$ be a standard multibracket. It follows that there exists a permutation $\sigma \in S_m$ such that $w = v_{\sigma} = [v_{i_{\sigma(1)}}, \ldots, v_{i_{\sigma(m)}}] \neq 0$. Since $v_{\sigma} \neq 0$ in $L(q, \mathfrak{a}), \ell(v_{\sigma}) = m$, then the assumption (a) of our lemma yields that v_{σ} is a root. It is enough to prove that there exists $a \in \mathbb{C}$ such that $v_{\sigma} = av$. Since $v, v_{\sigma} \in L(q, \mathfrak{a})_{e_v}$, there exists $k = 1, \ldots, m$ such that $i_k = i_{\sigma(1)}$. Note that we may assume, without loss of the generality, that k < m, because $[v_{i_{m-1}}, v_{i_m}] = -[v_{i_m}, v_{i_{m-1}}]$ and we may replace v by -v.

If k = 1, then $\overline{v} = [v_{i_{\sigma(2)}}, \ldots, v_{i_{\sigma(m)}}]$, $[v_{i_2}, \ldots, v_{i_m}] \in L(q, \mathfrak{a})_{e_{\overline{v}}}, \ell(\overline{v}) < m$, and the condition (b) yields that $\dim_{\mathbb{C}} L(q, \mathfrak{a})_{e_{\overline{v}}} \leq 1$. Then there exists $a \in \mathbb{C}$ such that $[v_{i_{\sigma(2)}}, \ldots, v_{i_{\sigma(m)}}] = a[v_{i_2}, \ldots, v_{i_m}]$. Therefore $v_{\sigma} = av$ and we are done.

Let k > 1. Consider the following set

 $\mathcal{Y} = \{v_{\tau} ; \text{ for all } \tau \in S_m \text{ such that there exists } c \in \mathbb{C} \text{ such that } v_{\tau} = cv \}.$

Note that for all $v_{\tau} \in \mathcal{Y}$ there exists l such that $i_{\tau(l)} = i_{\sigma(1)}$. We choose an element $v_{\tau} \in \mathcal{Y}$ such that l is minimal with this property. Without loss of the generality, we may assume that $\tau = \mathrm{id}$, $v_{\tau} = v$ and k = l. Let

$$v = [v_{i_1}, [v_{i_2}, [\dots, v_{i_{k-1}}, [v_{i_k}, y] \dots]]] = [v_{i_1}, v_{i_2}, \dots, v_{i_{k-1}}, v_{i_k}, y]$$

where we set $y = [v_{i_{k+1}}, \ldots, v_{i_m}]$. By the choice of k it follows that $i_j \neq i_{\sigma(1)}$ for all j < k. Our assumptions yield: $\langle e_{i_k}, e_y \rangle_q = -1$, because v is a root and

$$\langle e_{i_k}, e_y + e_{i_1} + \ldots + e_{i_{k-1}} \rangle_q = \langle e_{i_{\sigma(1)}}, e_{i_{\sigma(2)}} + \ldots + e_{i_{\sigma(m)}} \rangle_q = -1,$$

because v_{σ} is a root. By the bilinearity of $\langle -, - \rangle_q$, it follows that $\langle e_{i_k}, e_{i_1} + \dots + e_{i_{k-1}} \rangle_q = 0$. We prove that

$$v = [[v_{i_1}, \ldots, v_{i_k}], y]$$

in $L(q, \mathfrak{a})$.

Applying the Jacobi identity, we get

$$[v_{i_1}, \dots, v_{i_{k-1}}, [v_{i_k}, y]] = -[v_{i_1}, \dots, v_{i_{k-2}}, [v_{i_k}, [y, v_{i_{k-1}}]]] - [v_{i_1}, \dots, v_{i_{k-2}}, [y, [v_{i_{k-1}}, v_{i_k}]]].$$

Note that

$$\langle e_{i_{k-1}}, e_y \rangle_q = \langle e_{i_{k-1}}, e_y + e_{i_k} \rangle_q - \langle e_{i_{k-1}}, e_{i_k} \rangle_q = -1 - \langle e_{i_{k-1}}, e_{i_k} \rangle_q.$$

If $\langle e_{i_{k-1}}, e_y \rangle_q = -1$, then $\langle e_{i_{k-1}}, e_{i_k} \rangle_q = 0$. Therefore the condition (a) yields $[v_{i_{k-1}}, v_{i_k}] = 0$ and

 $v = [v_{i_1}, \dots, v_{i_{k-2}}, [v_{i_k}, [v_{i_{k-1}}, y]]]$

which is the contradiction with the choice of k. Therefore

$$v = [v_{i_1}, \dots, v_{i_{k-2}}, [[v_{i_{k-1}}, v_{i_k}]y]].$$

Inductively, applying the Jacobi identity to

$$[v_{i_1}, \ldots, v_{i_s}, [[v_{i_{s+1}}, \ldots, v_{i_k}], y]]$$

we get

$$\begin{split} [v_{i_1}, \dots, v_{i_s}, [[v_{i_{s+1}}, \dots, v_{i_k}], y]] &= \\ &= -[v_{i_1}, \dots, v_{i_{s-1}}, [[v_{i_{s+1}}, \dots, v_{i_k}], [y, v_{i_s}]]] - \\ &- [v_{i_1}, \dots, v_{i_{s-1}}, [y, [v_{i_s}, [v_{i_{s+1}}, \dots, v_{i_k}]]]]]. \end{split}$$

Consider

$$\langle e_{i_s}, e_y \rangle_q = \langle e_{i_s}, e_y + e_{i_{s+1}} + \ldots + e_{i_k} \rangle_q - \langle e_{i_s}, e_{i_{s+1}} + \ldots + e_{i_k} \rangle_q =$$
$$= -1 - \langle e_{i_s}, e_{i_{s+1}} + \ldots + e_{i_k} \rangle_q.$$

If $\langle e_{i_s}, e_y \rangle_q = -1$, then $\langle e_{i_s}, e_{i_{s+1}} + \ldots + e_{i_k} \rangle_q = 0$. The condition (a) yields $[v_{i_s}, [v_{i_{s+1}}, \ldots, v_{i_k}]] = 0$ and

$$v = [v_{i_1}, \dots, v_{i_{s-1}}, [[v_{i_{s+1}}, \dots, v_{i_k}], [v_{i_s}, y]]].$$

Applying Lemma 3.8, we get the contradiction with the choice of k. Therefore

$$v = [v_{i_1}, \dots, v_{i_{s-1}}, [[v_{i_s}, [v_{i_{s+1}}, \dots, v_{i_k}]], y]].$$

Inductively we get $v = [[v_{i_1}, \ldots, v_{i_k}], y].$

Since $v \neq 0$, k < m, then (by the assumption (a) of the lemma) the element $[v_{i_1}, \ldots, v_{i_k}]$ is a root. Therefore, by Lemma 3.6 (c), we have $q(e_{i_1} + \ldots + e_{i_k}) = 1$. Now consider

$$1 = q(e_{i_1} + \ldots + e_{i_k}) = q(e_{i_1} + \ldots + e_{i_{k-1}}) + q(e_{i_k}) + \langle e_{i_k}, e_{i_1} + \ldots + e_{i_{k-1}} \rangle_q.$$

Since we proved above that $\langle e_{i_k}, e_{i_1} + \ldots + e_{i_{k-1}} \rangle_q = 0$, we have

$$q(e_{i_1} + \ldots + e_{i_{k-1}}) = 1 - q(e_{i_k}) = 1 - 1 = 0.$$

We get a contradiction, because q is weakly positive. This shows that k = 1 and $v_{\sigma} \in \mathcal{Y}$. This finishes the proof of lemma.

Let $L(q, \mathfrak{r})$ be the Lie algebra introduced in Definition 3.7

Proposition 4.2. Let q be a weakly positive quadratic form (2.1). The following conditions hold.

- (a) If $e = e_{i_1} + \ldots + e_{i_m}$ is not a root of q, then $L(q, \mathfrak{r})_e = 0$.
- (b) If $e = e_{i_1} + \ldots + e_{i_m}$ is a root of q, then $\dim_{\mathbb{C}} L(q, \mathfrak{r})_e \leq 1$.

Proof. (a) Assume that $e = e_{i_1} + \ldots + e_{i_m}$ is not a root of q. By Lemma 3.6, $v = [v_{i_1}, \ldots, v_{i_m}]$ is not a root in $L(q, \mathfrak{r})$. Let k be maximal with the property that $[v_{i_k}, \ldots, v_{i_m}]$ is a root. Since $v = [v_{i_1}, \ldots, v_{i_m}]$ is not a root and $[v_{i_{k-1}}, v_{i_k}, \ldots, v_{i_m}] \in \mathfrak{r}$. Finally $[v_{i_{k-1}}, v_{i_k}, \ldots, v_{i_m}] = 0$ and v = 0 in $L(q, \mathfrak{r})$.

The statement (b) follows easily by induction on the length $\ell(v)$ of v, if we apply Lemma 4.1.

As a consequence we get the following corollary.

Corollary 4.3. Let q be a weakly positive quadratic form and let \mathcal{R}_q^+ be the set of all positive roots of q. Then $L(q, \mathfrak{r})$ is a nilpotent Lie algebra and

$$L(q, \mathfrak{r}) = \bigoplus_{e \in \mathcal{R}_q^+} L(q, \mathfrak{r})_e \quad and \quad \dim_{\mathbb{C}} L(q, \mathfrak{r}) \le |\mathcal{R}_q^+|.$$

Let $q : \mathbb{Z}^n \to \mathbb{Z}$ quadratic form (2.1). With q we associate Cartan matrix $C = (c_{ij}) \in \mathbb{M}_n(\mathbb{Z})$ defined by $c_{ij} = q(e_i + e_j) - q(e_i) - q(e_j)$. Following [4], to q we attach a \mathbb{Z}^n -graded complex Lie algebra G(q) with generators $x_i, x_{-i}, h_i, i = 1, \ldots, n$, which are homogeneous of degree $e_i, -e_i, 0$, respectively, and subject to the following relations:

- 1. $[h_i, h_j] = 0$, for all i, j = 1, ..., n,
- 2. $[h_i, x_{\varepsilon j}] = \varepsilon c_{ij} x_{\varepsilon j}$, for all $i, j = 1, \ldots, n$ and $\varepsilon \in \{-1, 1\}$,
- 3. $[x_{\varepsilon i}, x_{-\varepsilon i}] = \varepsilon h_i$, for all $i = 1, \ldots, n$ and $\varepsilon \in \{-1, 1\}$,

4. $[x_{\varepsilon_1 i_1}, \ldots, x_{\varepsilon_n i_n}] = 0$, if $q(\varepsilon_1 e_{i_1} + \ldots + \varepsilon_n e_{i_n}) > 1$ for $\varepsilon_j \in \{-1, 1\}$.

Denote by $G^+(q)$ a Lie subalgebra of G(q) generated by the elements x_1, \ldots, x_n .

Proposition 4.4. If q is weakly positive and positive semi-definite, then

$$L(q, \mathfrak{r}) \simeq G^+(q).$$

Proof. By [4, Proposition 2.2] and Corollary 4.3, we have

$$\dim_{\mathbb{C}} G^+(q) \ge |\mathcal{R}_q^+| \ge \dim_{\mathbb{C}} L(q, \mathfrak{r}).$$

On the other hand, it is easy to see that all relations \mathfrak{r} are satisfied in $G^+(q)$. Therefore we may define a homomorphism of Lie algebras

$$\Psi: L(q, \mathfrak{r}) \to G^+(q)$$

by $\Psi(u_i) = x_i$ for all i = 1, ..., n. Since $G^+(q)$ is generated by the elements $x_1, ..., x_n$, the homomorphism Ψ is surjective. Therefore Ψ is an isomorphism, because $\dim_{\mathbb{C}} G^+(q) \ge \dim_{\mathbb{C}} L(q, \mathfrak{r})$.

5. Connections with Ringel-Hall algebras

We present applications of Lie algebras $L(q, \mathbf{r})$ to Lie algebras and Ringel-Hall algebras associated with representation directed algebras. We get a description of these Ringel-Hall algebras by generators and relations. For the basic concepts of representation theory the reader is referred to [2], [3] and for the basic concepts of Ringel-Hall algebras to [13], [14].

Let $Q = (Q_0, Q_1)$ be a finite quiver without oriented cycles. Let $\mathbb{C}Q$ be the complex path algebra of Q. Assume that I is an admissible ideal of $\mathbb{C}Q$ such that $A = \mathbb{C}Q/I$ is a representation directed algebra. By $\mod(A)$ we denote the category of all right finite dimensional A-modules and by ind(A) we denote the set of all representatives of isomorphism classes of indecomposable A-modules. For any A-module M denote by $\dim M \in \mathbb{N}^{Q_0}$ the dimension vector of M (i.e. $(\dim M)(i)$ equals the number of composition factors of M which are isomorphic to the simple A-module S_i corresponding to the vertex $i \in Q_0$). Let $q_A : \mathbb{Z}^{Q_0} \to \mathbb{Z}$ be the Tits form of A (see [6]). By [6, Theorem 3.3], q_A is weakly positive and there is a bijection (given by \dim) between the set $\operatorname{ind}(A)$ and the set $\mathcal{R}_{q_A}^+$. Let $\mathcal{K}(A)$ be the corresponding complex Lie algebra defined in [13]. Recall that, for a representation directed algebra A, the \mathbb{C} -Lie algebra $\mathcal{K}(A)$ is the free \mathbb{C} -linear space with basis $\{u_X ; X \in ind(A)\}$. If X, Y are non-isomorphic indecomposable A-modules such that $\operatorname{Ext}^{1}_{A}(X,Y) = 0$, then the Lie bracket in $\mathcal{K}(A)$ is defined by

$$[u_Y, u_X] = \begin{cases} \varphi_{YX}^Z(1) \cdot u_Z & \text{if there is an indecomposable } A - \text{module } Z \\ & \text{and a short exact sequence} \\ & 0 \to X \to Z \to Y \to 0, \\ 0 & \text{otherwise,} \end{cases}$$

where φ_{YX}^Z are Hall polynomials (see [13]). In [7] it is proved that the Lie algebra $\mathcal{K}(A)$ is isomorphic to $\mathcal{L}(A)$, where $\mathcal{L}(A)$ is the Lie algebra associated with A in [11]. Let $\mathcal{H}(A)$ be the universal enveloping algebra of the Lie algebra $\mathcal{K}(A)$. Recall that $\mathcal{H}(A) = \mathcal{H}_1(A)$, where $\mathcal{H}_q(A)$ is the generic Ringel-Hall algebra associated in [13] with the algebra A. In fact, in [13], generic Ringel-Hall algebras were associated with directed Auslander-Reiten quivers. However, it is possible to associate generic Ringel-Hall algebras with representation directed \mathbb{C} -algebras. The reader is referred to [7] for details.

Proposition 5.1. Let A be a representation directed \mathbb{C} -algebra.

(a) The Lie algebra $\mathcal{K}(A)$ is generated by the set $\{u_i ; i \in Q_0\}$, where $u_i = u_{S_i}$ and S_i is a simple A-module corresponding to the vertex $i \in Q_0$.

(b) In the Lie algebra $\mathcal{K}(A)$ the relations from the set \mathfrak{r} hold, if we interchange u_i 's by v_i 's.

Proof. The statement (a) is proved in [14, Proposition 6]. Let $[v_{i_1}, \ldots, v_{i_n}]$ be an element from the set \mathfrak{r} . It follows that $[v_{i_2}, \ldots, v_{i_n}]$ is a root and the element $[v_{i_1}, v_{i_2}, \ldots, v_{i_n}]$ is not a root. By Lemma 3.6, the vector $m = e_{i_2} + \ldots + e_{i_m}$ is a positive root of the Tits form q_A of A. If $[v_{i_2}, \ldots, v_{i_n}] = 0$ in $\mathcal{K}(A)$, then we are done. Otherwise $[v_{i_2}, \ldots, v_{i_n}] = a \cdot u_M$ for some $0 \neq a \in \mathbb{C}$ and the unique indecomposable A-module $M \in \operatorname{ind}(A)$ with $\dim M = m = e_{i_2} + \ldots + e_{i_n}$, because A is representation directed \mathbb{C} -algebra. Since q_A is weakly positive, then, by Lemma 3.6, the vector $e_{i_1} + m$ is not a root of q_A . Therefore there exists no indecomposable A-module with dimension vector $e_{i_1} + m$. Then, by [13, Theorem 2], $[v_{i_1}, \ldots, v_{i_n}] = 0$ in $\mathcal{K}(A)$ and we are done. \Box

Corollary 5.2. If A is a representation directed \mathbb{C} -algebra, then there is an isomorphism of \mathbb{C} -algebras

$$F: L(q_A, \mathfrak{r}) \to \mathcal{K}(A) \cong \mathcal{L}(A)$$

given by $F(v_i) = u_i$, in particular dim_C $L(q_A, \mathfrak{r}) = |\mathcal{R}_q^+|$. If, in addition, q_A is positive semi-definite, then $L(q_A, \mathfrak{r}) \cong G^+(q_A)$.

Proof. By Proposition 5.1, F is a well-defined homomorphism of graded Lie algebras. Since the Lie algebra $\mathcal{L}(q_A, \mathfrak{r})$ is generated by the set $\{v_i ; i \in Q_0\}$ and the Lie algebra $\mathcal{K}(A)$ is generated by the set $\{u_i ; i \in Q_0\}$, the homomorphism F is an epimorphism. By Corollary 4.3, F is a monomorphism, because $\dim_{\mathbb{C}} \mathcal{K}(A) = |\mathcal{R}_{q_A}^+|$. Finally F is an isomorphism of Lie algebras.

The final assertion follows from Proposition 4.4.

6. A minimal set of relations defining $L(q, \mathfrak{r})$ for a positive definite form q

The set \mathfrak{r} usually is not a minimal set generating the ideal (\mathfrak{r}) of the Lie algebra L(q). In this section we describe a minimal set of elements defining the ideal (\mathfrak{r}) of L(q) for a positive definite form q (2.1). In this section all quadratic forms are assumed to be positive definite.

Remark 6.1. The following easily verified facts are essentially used in this section.

1. Let $i, j \in \{1, \ldots, n\}$ be such that $\langle e_i, e_j \rangle_q \neq -1$, then

 $[\ldots, [v_i, [v_j, \ldots]]] = [\ldots, [v_j, [v_i, \ldots]]]$

in $L(q, \mathfrak{r})$. Indeed, apply the Jacobi identity and note that in this case $[v_i, v_j] \in (\mathfrak{r})$.

- 2. If $a \in L(q)$ is a standard multibracket such that e_a is not a root of q, then $a \in (\mathfrak{r})$. Indeed, apply Lemma 3.2 (b) and Proposition 4.2 (a).
- 3. Let $a, b \in L(q)$ be standard multibrackets such that $\langle e_a, e_b \rangle_q \ge 0$, then $[a, b] \in (\mathfrak{r})$. Indeed,

$$q(e_a + e_b) = q(e_a) + q(e_b) + \langle e_a, e_b \rangle_q \ge 1 + 1 = 2,$$

then $e_a + e_b$ is not a root of q. Therefore $[a, b] \in (\mathfrak{r})$.

4. Let $a, b \in L(q)$ be standard multibrackets such that $\langle e_a, e_b \rangle_q \ge 0$, then

$$[\dots, [a, [b, \dots]]] = [\dots, [b, [a, \dots]]]$$

in $L(q, \mathfrak{r})$. Indeed, apply the Jacobi identity and the fact that in this case $[a, b] \in (\mathfrak{r})$.

5. If $a \in L(q)$ and $\langle e_i, e_a \rangle_q \leq -2$, for some $i = 1, \ldots, n$, then $a \in (\mathfrak{r})$. Indeed, by Lemma 2.5, e_a is not a root of q and therefore $a \in (\mathfrak{r})$.

6.1. The first step of reduction

Let $\mathfrak{r}_1 \subseteq \mathfrak{r} \subseteq L(q)$ be the set consisting of the following elements:

- $[v_i, v_j]$ for all $i, j \in \{1, \ldots, n\}$ such that i < j and $\langle e_i, e_j \rangle_q \neq -1$,
- $[v_i, [v_i, v_j]]$ for all $i, j \in \{1, \ldots, n\}$ such that i < j and $\langle e_i, e_j \rangle_q = -1$,

• $[v_j, [v_i, v_j]]$ for all $i, j \in \{1, \ldots, n\}$ such that i < j and $\langle e_i, e_j \rangle_q = -1$.

Let $\mathfrak{r}_0 \subseteq \mathfrak{r} \subseteq L(q)$ be the set consisting of all elements $[v_{i_1}, \ldots, v_{i_m}]$ of \mathfrak{r} such that $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = 0$. Define $\mathfrak{p} \subseteq \mathfrak{r}$ to be

$$\mathfrak{p} = \mathfrak{r}_1 \cup \mathfrak{r}_0. \tag{6.2}$$

Proposition 6.3. If q is a positive definite quadratic form (2.1), then the ideals (\mathfrak{p}) and (\mathfrak{r}) of the Lie algebra L(q) are equal.

Proof. The inclusion $(\mathfrak{p}) \subseteq (\mathfrak{r})$ is obvious. It is enough to prove that $(\mathfrak{r}) \subseteq (\mathfrak{p})$. Let $v = [v_{i_2}, \ldots, v_{i_m}]$ be a root in L(q) and let $i_1 \in \{1, \ldots, n\}$ be such that $[v_{i_1}, v_{i_2}, \ldots, v_{i_m}] \in \mathfrak{r}$ and $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q \neq 0$. Since $[v_{i_1}, v_{i_2}, \ldots, v_{i_m}]$ is not a root, we have $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q \geq 1$. We claim that $[v_{i_1}, v] \in \mathfrak{p}$.

We precede with induction on $\ell(v) = m - 1$. For $\ell(v) < 3$ our statement easily follows by a case by case inspection on all possible cases.

Let $\ell(v) \geq 3$, then $m \geq 4$, $v = [v_{i_2}, [v_{i_3}, \overline{v}]]$, $\langle e_{i_2}, e_{i_3} + e_{\overline{v}} \rangle_q = -1$, $\langle e_{i_3}, e_{\overline{v}} \rangle_q = -1$ and $\ell(\overline{v}) \geq 1$. Note that $\langle e_{i_1}, e_{i_2} \rangle_q = a_{i_j} \in \{-1, 0, 1\}$, if $i_1 \neq i_2$. Therefore it is enough to consider the following three cases.

1) If $\langle e_{i_1}, e_{i_2} \rangle_q \in \{0, 1\}$, then $\langle e_{i_1}, e_{i_3} + \ldots + e_{i_m} \rangle_q \geq 0$. Therefore $[v_{i_1}, v_{i_2}], [v_{i_1}, [v_{i_3} \ldots, v_{i_m}]] \in \mathfrak{r}$ and by the induction hypothesis we have $[v_{i_1}, [v_{i_3} \ldots, v_{i_m}]], [v_{i_1}, v_{i_2}] \in (\mathfrak{p})$. Finally

$$[v_{i_1},\ldots,v_{i_m}] = -[v_{i_2},[[v_{i_3},\ldots,v_{i_m}],v_{i_1}]] - [[v_{i_3},\ldots,v_{i_m}],[v_{i_1},v_{i_2}]] \in (\mathfrak{p}).$$

2) Let $i_1 = i_2$. Applying the Jacobi identity to $[v_{i_1}, v]$ we get

$$\begin{split} & [v_{i_1}, [v_{i_3}, \overline{v}]]] = -[v_{i_1}, [v_{i_3}, [\overline{v}, v_{i_1}]]] - [v_{i_1}, [\overline{v}, [v_{i_1}, v_{i_3}]]] = \\ & = [v_{i_3}, [[\overline{v}, v_{i_1}], v_{i_1}]] + [[\overline{v}, v_{i_1}], [v_{i_1}, v_{i_3}]] + [\overline{v}, [[v_{i_1}, v_{i_3}], v_{i_1}]] + [[\overline{v}, v_{i_1}], [v_{i_1}, v_{i_3}]]. \end{split}$$

Note that, we have $\langle e_{i_1}, e_{i_1} + e_{\overline{v}} \rangle_q = 2 + \langle e_{i_1}, e_{\overline{v}} \rangle_q \geq 2 + (-1) = 1$, and therefore by the induction hypothesis $[v_{i_1}, [v_{i_1}, \overline{v}]] \in (\mathfrak{p})$. Moreover, $[v_{i_1}, [v_{i_1}, v_{i_3}]] \in (\mathfrak{r}_1) \subseteq (\mathfrak{p})$. Finally $[v_{i_1}, v] = 2[[v_{i_1}, v_{i_3}][v_{i_1}, \overline{v}]]$. If $[v_{i_1}, v_{i_3}] \in (\mathfrak{p})$, then $[v_{i_1}, v] \in (\mathfrak{p})$. Assume that $[v_{i_1}, v_{i_3}] \notin (\mathfrak{p})$. In this case $\langle e_{i_1}, e_{i_3} \rangle_q = -1$ and

$$\langle e_{i_1}, e_{\overline{v}} \rangle_q = \langle e_{i_1}, e_{i_2} + e_{i_3} + e_{\overline{v}} \rangle_q - \langle e_{i_1}, e_{i_2} \rangle_q - \langle e_{i_1}, e_{i_3} \rangle_q \ge 1 - 2 - (-1) = 0$$

Then $[v_{i_1}, v] = 2[[v_{i_1}, v_{i_3}][v_{i_1}, \overline{v}]] \in (\mathfrak{r}_0) \subseteq (\mathfrak{p})$ and we are done.

3) Let $\langle i_1, i_2 \rangle_q = -1$. By Lemma 2.5 (c), $\langle e_{i_1}, e_{i_3} + \ldots + e_{i_m} \rangle \in \{-1, 0, 1\}$, because q is positive definite. On the other hand

$$1 \le \langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = -1 + \langle e_{i_1}, e_{i_3} + \ldots + e_{i_m} \rangle_q \le 0.$$

This contradiction shows that the case 3) does not hold.

This finishes the proof.

Corollary 6.4. If q is a positive definite quadratic form (2.1), then

$$L(q, \mathfrak{r}) \cong L(q, \mathfrak{p}).$$

6.2. The second step of reduction

Let $i_1, \ldots, i_m \in \{1, \ldots, n\}$. Following [5], we call the sequence (i_1, \ldots, i_m) a **chordless cycle** of the form q (2.1), if the following conditions are satisfied:

- the elements i_1, \ldots, i_m are pairwise different,
- $a_{ij} = \langle e_{i_i}, e_{i_k} \rangle_q \neq 0$ if and only if $|k j| = 1 \mod m$.

Chordless cycles are playing an important role in [5], where Lie algebras associated with positive definite quadratic forms are investigated.

A chordless cycle (i_1, \ldots, i_m) is called **positive**, if $\langle e_{i_1}, e_{i_m} \rangle_q = 1$ and $\langle e_{i_j}, e_{i_k} \rangle_q = -1$ for all j, k such that $\{j, k\} \neq \{1, m\}$ and $|j - k| = 1 \mod m$.

Remark 6.5. We note that if (i_1, \ldots, i_m) is a chordless cycle, then (i_1, \ldots, i_m) is a simple cycle in the bigraph B(q). Moreover, if the chordless cycle (i_1, \ldots, i_m) is positive, then the cycle (i_1, \ldots, i_m) in B(q) has exactly one broken edge $i_1 - - i_m$.

Let $\mathfrak{r}_2 \subseteq L(q)$ be the set consisting of all elements $[v_{i_1}, \ldots, v_{i_m}]$ such that (i_1, \ldots, i_m) is a positive chordless cycle.

Lemma 6.6. $\mathfrak{r}_2 \subseteq \mathfrak{p}$.

Proof. Let $v = [v_{i_1}, \ldots, v_{i_m}] \in \mathfrak{r}_2$. From the definition of a positive chordless cycle, it follows easily that $[v_{i_k}, \ldots, v_{i_m}]$ is a root for any k > 1. Moreover $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = 0$, and therefore $v \in \mathfrak{p}$

Set

$$\mathfrak{j} = \mathfrak{r}_1 \cup \mathfrak{r}_2. \tag{6.7}$$

For all elements $x, y \in L(q)$ we write $x \equiv y$ if $x - y \in (j)$. Obviously \equiv is an equivalence relation.

Before we prove that the ideals (\mathfrak{p}) and (\mathfrak{j}) of L(q) are equal, we need to prove two technical lemmata.

Lemma 6.8. Let q be a positive definite quadratic form (2.1). Let $m \geq 3$ be an integer, let $v = [v_{i_2}, \ldots, v_{i_m}]$ be a root and let $(\mathfrak{j})_{m-1} = (\mathfrak{p})_{m-1}$. Let $i_1 \in \{1, \ldots, n\}$ be such that $[v_{i_1}, v_{i_2}, \ldots, v_{i_m}] \in \mathfrak{p}$, $\langle e_{i_1}, e_{i_2} \rangle_q = -1$ and $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = 0$. Then $[v_{i_1}, v] \in (\mathfrak{j})$ or there exists $\varepsilon \in \{0, 1\}$ such that $[v_{i_1}, v] \equiv (-1)^{\varepsilon} [v_{i_1}, [a, x]]$, where

- (a) $a = [v_{i_k}, \dots, v_{i_2}], x = [v_{i_{k+1}}, \dots, v_{i_m}], \text{ for some } 2 \le k < m,$
- (b) $\langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all j = 3, ..., k, and
- (c) $\langle e_{i_1}, e_{i_{k+1}} \rangle_q = 1.$

Proof. Let $m \geq 3$ and let $v = [v_{i_2}, \ldots, v_{i_m}]$ be a root. Let $i_1 \in \{1, \ldots, n\}$ be such that $[v_{i_1}, v_{i_2}, \ldots, v_{i_m}] \in \mathfrak{p}, \langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = 0$ and $\langle e_{i_1}, e_{i_2} \rangle_q = -1$. Note that $[v_{i_1}, v] \equiv [v_{i_1}, [\overline{a}, x]]$, where $\overline{a} = [v_{i_1}, \ldots, v_{i_2}], x = [v_{i_{l+1}}, \ldots, v_{i_m}]$ and $\langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all $j = 3, \ldots, l$ (i.e. the conditions (a), (b) are satisfied). Indeed, it is enough to set $l = 2, \overline{a} = x_{i_2}$ and $x = [v_{i_3}, \ldots, v_{i_m}]$.

Fix \overline{a} and \overline{x} such that $[v_{i_1}, v] \equiv [v_{i_1}, [\overline{a}, \overline{x}]]$, where $\overline{a} = [v_{i_l}, \ldots, v_{i_2}]$, $\overline{x} = [v_{i_{l+1}}, \ldots, v_{i_m}]$ and $\langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all $j = 3, \ldots, l$. As we noted above there exists at least one such a presentation of $[v_{i_1}, v]$. Consider the element i_{l+1} . By Lemma 2.5, $\langle e_{i_1}, e_{i_{l+1}} \rangle_q \in \{-1, 0, 1, 2\}$.

• If $\langle e_{i_1}, e_{i_{l+1}} \rangle_q = 1$, then we set k = l and note that $[v_{i_1}, v]$ has the required form, i.e. $[v_{i_1}, v] \equiv [v_{i_1}, [a, x]]$, where $a = [v_{i_k}, \ldots, v_{i_2}]$, $x = [v_{i_{k+1}}, \ldots, v_{i_m}]$, $\langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all $j = 3, \ldots, k$, and $\langle e_{i_1}, e_{i_{k+1}} \rangle_q = 1$.

• If
$$\langle e_{i_1}, e_{i_{l+1}} \rangle_q = -1$$
, then

$$\langle e_{i_1}, e_{i_{l+2}} + \ldots + e_{i_m} \rangle_q = \langle e_{i_1}, e_v \rangle_q - \langle e_{i_1}, e_{\overline{a}} \rangle_q - \langle e_{i_1}, e_{i_{l+1}} \rangle_q$$

= 0 - (-1) - (-1) = 2.

Therefore, by Lemma 2.5, m = l + 2 and $i_1 = i_{l+2}$. Note that

$$\begin{split} & [v_{i_1}, [v_{i_1}, v_{i_{l+1}}]] \in (\mathfrak{r}_1) \subseteq (\mathfrak{j}), \\ & \langle e_{i_1}, e_{i_1} + e_{\overline{a}} \rangle_q = 1, \text{ then } [v_{i_1}, [v_{i_1}, \overline{a}]] \in (\mathfrak{p})_{(m-1)} = (\mathfrak{j})_{(m-1)} \subseteq (\mathfrak{j}), \\ & \langle e_{i_1}, e_{i_{l+1}} + e_{\overline{a}} \rangle_q = -2, \text{ therefore } [v_{i_{l+1}}, \overline{a}] \in (\mathfrak{p})_{(m-1)} = (\mathfrak{j})_{(m-1)} \subseteq (\mathfrak{j}). \end{split}$$

Then we have

$$\begin{split} [v_{i_1}, v] &\equiv & [v_{i_1}, [\overline{a}, [v_{i_{l+1}}, v_{i_1}]]] \\ &= & -[\overline{a}, [[v_{i_{l+1}}, v_{i_1}], v_{i_1}]] - [[v_{i_{l+1}}, v_{i_1}], [v_{i_1}, \overline{a}]] \\ &\equiv & [[v_{i_1}, \overline{a}], [v_{i_{l+1}}, v_{i_1}]] \\ &= & -[v_{i_{l+1}}, [v_{i_1}, [v_{i_1}, \overline{a}]]] - [v_{i_1}, [[v_{i_1}, \overline{a}], v_{i_{l+1}}]] \\ &\equiv & [v_{i_1}, [v_{i_{l+1}}, [v_{i_1}, \overline{a}]]] \\ &= & -[v_{i_1}, [v_{i_1}, [\overline{a}, v_{i_{l+1}}]]] - [v_{i_1}, [\overline{a}, [v_{i_{l+1}}, v_{i_1}]]] \\ &\equiv & -[v_{i_1}, [\overline{a}, [v_{i_{l+1}}, v_{i_1}]]] \\ &\equiv & -[v_{i_1}, v_{i_1}]. \end{split}$$

Therefore $2 \cdot [v_{i_1}, v] \in (\mathfrak{j})$ and $[v_{i_1}, v] \in (\mathfrak{j})$.

• If $\langle e_{i_1}, e_{i_{l+1}} \rangle_q = 2$, then $i_1 = i_{l+1}$ and $[v_{i_1}, v] \equiv [v_{i_1}, [\overline{a}, [v_{i_1}, y]]]$, where $y = [v_{i_{l+2}}, \ldots, v_{i_m}]$. By the bilinearity of $\langle -, - \rangle_q$ and assumptions, we have $\langle e_{i_1}, e_y \rangle_q = -1$. Moreover

$$\langle e_{i_1}, e_{i_1} + e_y \rangle_q = 1$$
, then $[v_{i_1}, [v_{i_1}, y]] \in (\mathfrak{p})_{(m-1)} = (\mathfrak{j})_{(m-1)} \subseteq (\mathfrak{j})$,
 $\langle e_{i_1}, e_{i_1} + e_{\overline{a}} \rangle_q = 1$, then $[v_{i_1}, [v_{i_1}, \overline{a}]] \in (\mathfrak{p})_{(m-1)} = (\mathfrak{j})_{(m-1)} \subseteq (\mathfrak{j})$,
 $\langle e_{i_1}, e_y + e_{\overline{a}} \rangle_q = -2$, therefore $[v_{i_{l+1}}, \overline{a}] \in (\mathfrak{p})_{(m-1)} = (\mathfrak{j})_{(m-1)} \subseteq (\mathfrak{j})$.

Similarly as above we can prove that $[v_{i_1}, v] \in (\mathfrak{j})$.

• Let $\langle e_{i_1}, e_{i_{l+1}} \rangle_q = 0$ and $y = [v_{i_{l+2}}, \dots, v_{i_m}]$. Consider

$$\begin{split} [v_{i_1}, [\overline{a}, [v_{i_{l+1}}, y]]] &= \\ &= -[v_{i_1}, [v_{i_{l+1}}, [y, \overline{a}]]] - [v_{i_1}, [y, [\overline{a}, v_{i_{l+1}}]]] = \\ &= [v_{i_{l+1}}, [[y, \overline{a}], v_{i_1}]] + [[y, \overline{a}], [v_{i_1}, v_{i_{l+1}}]] - [v_{i_1}, [[v_{i_{l+1}}, \overline{a}], y]]. \end{split}$$

Note that $[v_{i_1}, v_{i_{l+1}}] \in (\mathfrak{r}_1) \subseteq (\mathfrak{j}), \langle e_{i_1}, e_{\overline{a}} + e_y \rangle_q = 0$ and therefore $[[y, \overline{a}], v_{i_1}] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1} \subseteq (\mathfrak{j})$. Then

$$[v_{i_1}, v] \equiv [v_{i_1}, [\overline{a}, [v_{i_{l+1}}, y]]] \equiv -[v_{i_1}, [[v_{i_{l+1}}, \overline{a}], y]].$$

We may set $\overline{a} := [v_{i_{l+1}}, \overline{a}], \ \overline{x} := y$ and continue this procedure inductively.

Note that there exists k such that $\langle e_{i_1}, e_{i_{k+1}} \rangle_q \geq 1$, because $\langle e_{i_1}, e_{i_2} + \dots + e_{i_m} \rangle_q = 0$ and $\langle e_{i_1}, e_{i_2} \rangle_q = -1$. Therefore continuing this procedure inductively, we prove that $[v_{i_1}, v] \in (\mathfrak{j})$ or $[v_{i_1}, v] \equiv (-1)^{\varepsilon} [v_{i_1}, [a, x]]$, where $a = [v_{i_k}, \dots, v_{i_2}], x = [v_{i_{k+1}}, \dots v_{i_m}], \langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all $j = 3, \dots, k$, and $\langle e_{i_1}, e_{i_{k+1}} \rangle_q = 1$.

Lemma 6.9. Assume that q is a positive definite quadratic form (2.1). Let $m \ge 3$ be an integer, $v = [v_{i_2}, \ldots, v_{i_m}]$ be a root and $(\mathfrak{j})_{m-1} = (\mathfrak{p})_{m-1}$. Let $i_1 \in \{1, \ldots, n\}$ be such that $[v_{i_1}, v_{i_2}, \ldots, v_{i_m}] \in \mathfrak{p}$, $\langle e_{i_1}, e_{i_2} \rangle_q = -1$ and $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = 0$. Moreover assume that $[v_{i_1}, v] \equiv (-1)^{\varepsilon} [v_{i_1}, [a, x]]$ and the conditions (a)-(c) of Lemma 6.8 are satisfied. Then $[v_{i_1}, v] \in (\mathfrak{j})$ or $[v_{i_1}, v] \equiv [v_{i_1}, [a, x]] \equiv [v_{i_1}, [a, [b, y]]]$, where

(i)
$$a = [v_{i_k}, \dots, v_{i_2}], b = [v_{i_s}, v_{i_{s-1}}, \dots, v_{i_{k+1}}], y = [v_{i_{s+1}}, \dots, v_{i_m}],$$

(ii) $\langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all $j = 3, \dots, k$ and $j = k + 2, \dots, s$,
(iii) $\langle e_{i_1}, e_{i_2} \rangle_q = -1, \langle e_{i_1}, e_{i_{k+1}} \rangle_q = 1,$
(iv) $\langle e_{b_i}, e_{a_j} \rangle_q = 0,$
(iv) $\langle e_{b_i}, e_{a_j} \rangle_q = 0,$

(v) if s < m then $\langle e_{i_{s+1}}, e_a \rangle_q = -1$ and $\langle e_{i_{s+1}}, e_b \rangle_q = -1$.

Proof. Note that $[v_{i_1}, v] \equiv [v_{i_1}, [a, x]] \equiv [v_{i_1}, [a, [b, y]]]$, where $b = v_{i_{k+1}}$, $y = [v_{i_{k+2}}, \ldots, v_{i_m}]$ and the conditions (i), (ii), (iii) are satisfied, if we put s = k + 1. We may assume that the condition (iv) is also satisfied. Indeed, it is enough to show that $\langle e_{i_{k+1}}, e_a \rangle_q = 0$.

• If $\langle e_{i_{k+1}}, e_a \rangle_q = -1$, then $\langle e_{i_{k+1}}, e_a + e_y \rangle_q = -2$. Therefore $[a, y] \in (\mathfrak{r})_{m-1} = (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1} \subseteq (\mathfrak{j})$. Then

$$\begin{split} [v_{i_1}, [a, [v_{i_{k+1}}, y]]] &= -[v_{i_1}, [v_{i_{k+1}}, [y, a]]] - [v_{i_1}, [y, [a, v_{i_{k+1}}]]] \\ &\equiv [v_{i_1}, [[a, v_{i_{k+1}}], y]] \\ &= -[[a, v_{i_{k+1}}], [y, v_{i_1}]] - [y, [v_{i_1}, [a, v_{i_{k+1}}]]]. \end{split}$$

Since $\langle e_{i_1}, e_y \rangle_q = 0 = \langle e_{i_1}, e_{i_{k+1}} + e_a \rangle_q$, then $[y, v_{i_1}] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1}$ and $[v_{i_1}, [a, v_{i_{k+1}}]] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1}$. Therefore we have $[v_{i_1}, [a, [v_{i_{k+1}}, y]]] \in (\mathfrak{j})$.

• If $\langle e_{i_{k+1}}, e_a \rangle_q = 2$, then $a = v_{i_{k+1}}$. It is a contradiction, because

$$\langle e_{i_1}, e_{i_{k+1}} \rangle_q = 1 \neq -1 = \langle e_{i_1}, e_a \rangle_q.$$

• If $\langle e_{i_{k+1}}, e_a \rangle_q = 1$, then $\langle e_{i_{k+1}}, e_a + e_y \rangle_q = 0$. Therefore $[v_{i_{k+1}}, [y, a]]$, $[a, v_{i_{k+1}}] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1}$ and

$$[v_{i_1}, [a, [v_{i_{k+1}}, y]]] = -[v_{i_1}, [v_{i_{k+1}}, [y, a]]] - [v_{i_1}, [y, [a, v_{i_{k+1}}]]] \in (\mathfrak{j}).$$

Finally, we can assume that $\langle e_{i_{k+1}}, e_a \rangle_q = \langle e_b, e_a \rangle_q = 0$ and the condition (iv) is satisfied. Therefore $[v_{i_1}, [a, [b, y]]] \equiv [v_{i_1}, [b, [a, y]]]$, because $\langle e_b, e_a \rangle_q = 0$.

If k + 1 = m, then we are done. Assume that k + 1 < m and consider the element i_{k+2} .

- 1. Let $\langle e_{i_{k+2}}, e_b \rangle_q = -1$.
 - (a) If $\langle e_{i_{k+2}}, e_a \rangle_q = -1$, then we put s = k+1 and we are done.
 - (b) If $\langle e_{i_{k+2}}, e_a \rangle_q \ge 0$, then $[v_{i_{k+2}}, a] \in (\mathfrak{j})_{m-1}$. If m = k+2, then

$$[v_{i_1}, v] \equiv -[v_{i_1}, [b, [v_{i_{k+2}}, a]]] - [v_{i_1}, [v_{i_{k+2}}, [a, b]]] \in (\mathfrak{j})$$

and we are done.

Assume that m > k + 2. We can assume that $\langle e_{i_{k+1}}, e_a \rangle_q = 0$. Indeed, since $[v_{i_{k+2}}, a] \in (\mathfrak{j})_{m-1}$, we have

$$\begin{array}{lll} [v_{i_1}, v] & \equiv & [v_{i_1}, [b, [a, [v_{i_{k+2}}, v_{i_{k+3}}, \dots, v_{i_m}]]]] \\ & \equiv & [v_{i_1}, [b, [v_{i_{k+2}}, [a, [v_{i_{k+3}}, \dots, v_{i_m}]]]]]. \end{array}$$

If $\langle e_{i_{k+2}}, e_a \rangle_q \ge 1$, then $\langle e_{i_{k+2}}, e_a + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q \ge 1 - 1 = 0$. It follows that

$$[v_{i_{k+2}}, [a, [v_{i_{k+3}}, \dots, v_{i_m}]]] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1}$$

Therefore we can assume that $\langle e_{i_{k+2}}, e_a \rangle_q = 0$. Moreover

because $\langle e_{i_{k+2}}, e_b \rangle_q = -1$ and $\langle e_{i_{k+2}}, e_a + e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = -2$. We can assume that $\langle e_{i_1}, e_{i_{k+2}} \rangle_q = 0$. Indeed, if $\langle e_{i_1}, e_{i_{k+2}} \rangle_q = -1$, then

$$0 = \langle e_{i_1}, e_v \rangle_q = \langle e_{i_1}, e_a + e_b + e_{i_{k+2}} \rangle_q + \langle e_{i_1}, e_{i_{k+3}} + \dots + e_{i_m} \rangle_q$$
$$= -1 + \langle e_{i_1}, e_{i_{k+3}} + \dots + e_{i_m} \rangle_q.$$

It follows that $\langle e_{i_1}, e_{i_{k+3}} + \ldots + v_{i_m} \rangle_q = 1$, $\langle e_{i_1}, e_a + e_{i_{k+3}} + \ldots + v_{i_m} \rangle_q = 0$ and $[v_{i_1}, [a, [v_{i_{k+3}}, \ldots, v_{i_m}]]] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1}$. Therefore

$$\begin{array}{ll} [v_{i_1},v] & \equiv & -[v_{i_1},[[v_{i_{k+2}},b],[a,[v_{i_{k+3}},\ldots,v_{i_m}]]]] \\ & \equiv & -[[v_{i_{k+2}},b],[v_{i_1},[a,[v_{i_{k+3}},\ldots,v_{i_m}]]]] \in (\mathfrak{j}), \end{array}$$

because $\langle e_{i_1}, e_{i_{k+2}} + e_b \rangle_q = 0$. If $\langle e_{i_1}, e_{i_{k+2}} \rangle_q \ge 1$, then

$$\begin{array}{lll} 0 = \langle e_{i_1}, e_v \rangle_q & = & \langle e_{i_1}, e_a + e_b + e_{i_{k+2}} \rangle_q + \langle e_{i_1}, e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q \\ & \geq & 1 + \langle e_{i_1}, e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q. \end{array}$$

It follows that $\langle e_{i_1}, e_{i_{k+3}} + \ldots + v_{i_m} \rangle_q \leq -1$, $\langle e_{i_1}, e_a + e_{i_{k+3}} + \ldots + v_{i_m} \rangle_q \leq -2$ and $[a, [v_{i_{k+3}}, \ldots, v_{i_m}]] \in (\mathfrak{p})_{m-1} = (\mathfrak{j})_{m-1}$. Therefore, $[v_{i_1}, v] \in (\mathfrak{j})$ and we are done. Finally, $\langle e_{i_{k+2}}, e_a \rangle_q = 0$, $\langle e_{i_1}, e_{i_{k+2}} \rangle_q = 0$, $\langle e_{i_{k+2}} + e_b, e_a \rangle_q = 0$ and

$$\begin{array}{ll} [v_{i_1}, v] & \equiv & -[v_{i_1}, [[v_{i_{k+2}}, b], [a, [v_{i_{k+3}}, \dots, v_{i_m}]]]] \\ & \equiv & -[v_{i_1}, [a, [[v_{i_{k+2}}, b], [v_{i_{k+3}}, \dots, v_{i_m}]]]]. \end{array}$$

We set $\overline{a} = a$, $\overline{b} = [v_{i_{k+2}}, b]$, $\overline{y} = [v_{i_{k+3}}, \dots, v_{i_m}]$ and continue this procedure inductively using $[v_{i_1}, [\overline{a}, [\overline{b}, \overline{y}]]]$ instead of $[v_{i_1}, [a, [b, y]]]$.

2. Let $\langle e_{i_{k+2}}, e_b \rangle_q \neq -1$, then $[v_{i_{k+2}}, b] \in (\mathfrak{j})_{m-1}$. If m = k+2, then $[v_{i_1}, v] \equiv [v_{i_1}, [a, [b, v_{i_{k+2}}]]] \in (\mathfrak{j})$ and we are done. Assume that m > k+2. Since $[v_{i_{k+2}}, b] \in (\mathfrak{j})_{m-1}$, we have

$$[v_{i_1}, [a, [b, [v_{i_{k+2}}, [v_{i_{k+3}}, \dots, v_{i_m}]]]]] \equiv [v_{i_1}, [a, [v_{i_{k+2}}, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]]]]$$

For the sake of simplicity we present partial results in tables. In the first column of the following table we consider all possible values of $\langle e_{i_{k+2}}, e_b \rangle_q$. In the second column we give the corresponding value of $\langle e_{i_{k+2}}, e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q$. The third column contains the sign "+", if we can deduce that $X = [v_{i_{k+2}}, [b, [v_{i_{k+3}}, \ldots, v_{i_m}]]] \in (j)_{m-1}$, and the sign "-", otherwise.

$\langle e_{i_{k+2}}, e_b \rangle_q$	$\langle e_{i_{k+2}}, e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q$	$X \in (\mathfrak{j})_{m-1}$
0	-1	—
1	0	+
2	1	+

Therefore we may assume that $\langle e_{i_{k+2}}, e_b \rangle_q = 0$, because otherwise

$$[v_{i_1}, v] \equiv [v_{i_1}, [a, [v_{i_{k+2}}, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]]]] \in (\mathfrak{j}).$$

(a) Assume that $\langle e_{i_{k+2}}, e_a \rangle_q \neq -1$. Then $[v_{i_{k+2}}, a] \in (\mathfrak{j})_{m-1}$ and

In the first column of the following table we consider all possible values of $\langle e_{i_{k+2}}, e_a \rangle_q$. In the second column we give the corresponding value of $x = \langle e_{i_{k+2}}, e_a + e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q$. The third column contains the sign "+", if we can deduce that

$$X = [v_{i_{k+2}}, [a, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]]] \in (\mathfrak{j})_{m-1},$$

and the sign "-", otherwise.

$\langle e_{i_{k+2}}, e_a \rangle_q$	x	$X \in (\mathfrak{j})_{m-1}$
0	-1	—
1	0	+
2	1	+

Therefore we may assume that $\langle e_{i_{k+2}}, e_a \rangle_q = 0$, because otherwise $[v_{i_1}, v] \in (j)$. Moreover,

$$\begin{aligned} [v_{i_1}, [v_{i_{k+2}}, [a, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]]]] &\equiv \\ &\equiv [v_{i_1}, [v_{i_{k+2}}, [b, [a, [v_{i_{k+3}}, \dots, v_{i_m}]]]]], \end{aligned}$$

because $\langle e_a, e_b \rangle_q = 0$.

In the first column of the following table we consider all possible values of $\langle e_{i_1}, e_{i_{k+2}} \rangle_q$. In the second column we present a consequences of the information contained in the first column. Finally, in the second table we present conclusions of the results presented in the first table.

$\langle e_{i_1}, e_{i_{k+2}} \rangle_q$	consequences
-1	$\langle e_{i_1}, e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = 2$
0	$\langle e_{i_1}, e_a + e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = 0$
1	$\langle e_{i_1}, e_a + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = -2$
2	$\langle e_{i_1}, e_a + e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = -2$
$\langle e_{i_1}, e_{i_{k+2}} \rangle_q$	conclusions
-1	$[b, [v_{i_{k+3}}, \dots, v_{i_m}]] \in (\mathfrak{j})_{m-1}$
0	$[v_{i_1}, [a, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]]] \in (\mathfrak{j})_{m-1}$
1	$[a, [v_{i_{k+3}}, \dots, v_{i_m}]] \in (\mathfrak{j})_{m-1}$
2	$[a, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]] \in (\mathfrak{j})_{m-1}$

All these cases imply that $[v_{i_1}, v] \in (\mathfrak{j})$.

(b) Assume that $\langle e_{i_{k+2}}, e_a \rangle_q = -1$. In this case

$$\langle e_{i_{k+2}}, e_a + e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = -2.$$

It follows that

$$[a, [b, [v_{i_{k+3}}, \dots, v_{i_m}]]] \in (\mathfrak{j})_{m-1}$$

and

Consider $\langle e_{i_1}, e_{i_{k+2}} \rangle_q$ and

$$\begin{split} &-[v_{i_1}, [[v_{i_{k+2}}, a], [b, [v_{i_{k+3}}, \dots, v_{i_m}]]]] = \\ &= [[v_{i_{k+2}}, a], [[b, [v_{i_{k+3}}, \dots, v_{i_m}]], v_{i_1}]] + \\ &+ [[b, [v_{i_{k+3}}, \dots, v_{i_m}]], [v_{i_1}, [v_{i_{k+2}}, a]]]. \end{split}$$

$\langle e_{i_1}, e_{i_{k+2}} \rangle_q$	consequences	
-1	$\langle e_{i_1}, e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = 2$	
1	$\langle e_{i_1}, e_b + e_{i_{k+3}} + \ldots + e_{i_m} \rangle_q = 0$	
	and $\langle e_{i_1}, e_{i_{k+2}} + e_a \rangle_q = 0$	
2	$i_1 = i_{k+2}$	
$\langle e_{i_1}, e_{i_{k+2}} \rangle_q$	conclusions	
-1	$[b, [v_{i_{k+3}}, \dots, v_{i_m}]] \in (\mathfrak{j})_{m-1}$	
1	$[[b, [v_{i_{k+3}}, \dots, v_{i_m}]], v_{i_1}] \in (\mathfrak{j})_{m-1}$	
	and $[v_{i_1}, [v_{i_{k+2}}, a]] \in (\mathfrak{j})_{m-1}$	
2	contradiction, because	
	$\langle e_{i_1}, e_b \rangle_q = 1 \neq 0 = \langle e_{i_{k+2}}, e_b \rangle_q$	

We present again partial results in tables.

Therefore, we can assume that $\langle e_{i_1}, e_{i_{k+2}} \rangle_q = 0$, because otherwise $[v_{i_1}, v] \in (j)$. Moreover

$$\begin{array}{ll} [v_{i_1},v] & \equiv & -[v_{i_1},[[v_{i_{k+2}},a],[b,[v_{i_{k+3}},\ldots,v_{i_m}]]]] \\ & \equiv & -[v_{i_1},[b,[[v_{i_{k+2}},a],[v_{i_{k+3}},\ldots,v_{i_m}]]]], \end{array}$$

because $\langle e_{i_{k+2}} + e_a, e_b \rangle_q = 0$. Therefore

$$[v_{i_1}, v] \equiv -[v_{i_1}, [\overline{a}, [\overline{b}, \overline{y}]]],$$

where $\overline{a} = [v_{i_{k+2}}, a], \ \overline{b} = b, \ \overline{y} = [v_{i_{k+3}}, \dots, v_{i_m}]$ and the conditions (i)-(iv) are satisfied.

Continuing this procedure inductively we show that $[v_{i_1}, v] \in (j)$ or $[v_{i_1}, v] \equiv [v_{i_1}, [a, x]] \equiv [v_{i_1}, [a, [b, y]]]$ and the conditions (i)-(v) are satisfied.

Proposition 6.10. Let q be a positive definite quadratic form. The ideals (j) and (p) of the Lie algebra L(q) are equal.

Proof. The inclusion $(\mathbf{j}) \subseteq (\mathbf{p})$ is obvious. It is enough to prove that $(\mathbf{p}) \subseteq (\mathbf{j})$. Let $v = [v_{i_2}, \ldots, v_{i_m}]$ be a root in L(q) and let $i_1 \in \{1, \ldots, n\}$ be such that $[v_{i_1}, v_{i_2}, \ldots, v_{i_m}] \in \mathbf{p}$ and $\langle e_{i_1}, e_{i_2} + \ldots + e_{i_m} \rangle_q = 0$. We claim that $[v_{i_1}, v] \in \mathbf{j}$.

We prove our claim by induction on $\ell(v) = m - 1$. For $\ell(v) < 3$ our statement easily follows by a case by case inspection on all possible cases.

Let $\ell(v) \geq 3$, then $m \geq 4$, $v = [v_{i_2}, [v_{i_3}, \overline{v}]]$, $\langle e_{i_2}, e_{i_3} + e_{\overline{v}} \rangle_q = -1$, $\langle e_{i_3}, e_{\overline{v}} \rangle_q = -1$ and $\ell(\overline{v}) \geq 1$. By Lemma 2.5, it is enough to consider the

following three cases.

1) If $\langle e_{i_1}, e_{i_2} \rangle_q = 0$, then by the bilinearity of $\langle -, - \rangle_q$, we have $\langle e_{i_1}, e_{i_3} + \ldots + e_{i_m} \rangle_q = 0$. Moreover

 $[v_{i_1}, v] = -[v_{i_2}, [[v_{i_3}, \dots, v_{i_m}], v_{i_1}]] - [[v_{i_3}, \dots, v_{i_m}], [v_{i_1}, v_{i_2}]].$

By definitions, $[v_{i_1}, v_{i_2}] \in \mathfrak{j}$ and $[v_{i_1}, [v_{i_3}, \ldots, v_{i_m}]] \in \mathfrak{r}$. Then, by Proposition 6.3, $[v_{i_1}, [v_{i_3}, \ldots, v_{i_m}]] \in (\mathfrak{p})$ and by the induction hypothesis we have $[v_{i_1}, [v_{i_3}, \ldots, v_{i_m}]] \in (\mathfrak{j})$. Finally, $[v_{i_1}, v] \in (\mathfrak{j})$.

2) If $i_1 = i_2$, then $\langle e_{i_1}, e_{i_2} \rangle_q = 2$ and $\langle e_{i_1}, e_{i_3} + \ldots + e_{i_m} \rangle_q = -2$. This is a contradiction with Lemma 2.5 and therefore the case 2) does not hold.

3) Let $\langle e_{i_1}, e_{i_2} \rangle_q \in \{1, -1\}$. In this case we apply the Jacobi identity and develop Lemmata 6.8, 6.9 to find an element $w \in L(q)$ such that $[v_{i_1}, v] - w \in (\mathfrak{j})$ (i.e. $[v_{i_1}, v] \equiv w$). Finally we show that $w \in (\mathfrak{j})$, which implies that $[v_{i_1}, v] \in (\mathfrak{j})$.

3.1) Let $\langle e_{i_1}, e_{i_2} \rangle_q = 1$. We reduce this case to the case 3.2) presented below. Since $\langle e_{i_1}, e_v \rangle_q = 0$ and $\langle e_{i_1}, e_{i_2} \rangle_q = 1$, then there exists $k \in \{3, \ldots, m\}$ such that $\langle e_{i_1}, e_{i_k} \rangle_q = -1$. Choose k minimal with this property. We may assume that k < m, because $[v_{i_{m-1}}, v_{i_m}] = -[v_{i_m}, v_{i_{m-1}}]$ and we can work with -v instead of v. Note that for all $s = 3, \ldots, k-1$, we have $\langle e_{i_1}, e_{i_s} \rangle_q = 0$. Indeed, if there exists $s = 3, \ldots, k-1$ such that $\langle e_{i_1}, e_{i_s} \rangle_q \neq 0$, then by the choice of k, we have $\langle e_{i_1}, e_{i_s} \rangle_q \geq 1$. Then $\langle e_{i_1}, e_{i_k} + \ldots + e_{i_m} \rangle_q \leq \langle e_{i_1}, e_{i_2} \rangle_q - \langle e_{i_1}, e_{i_s} \rangle_q = -2$ and we get a contradiction, because $[v_{i_k}, \ldots, v_{i_m}]$ is a root.

Now applying the Jacobi identity we get

$$\begin{split} [v_{i_2}, \dots, v_{i_{k-1}}, [v_{i_k}, y]] &= \\ &= [v_{i_2}, \dots, v_{i_k}, [v_{i_{k-1}}, y]] + [v_{i_2}, \dots, v_{i_{k-2}}, [[v_{i_{k-1}}, v_{i_k}], y]] \end{split}$$

By Lemma 3.6 (a), the element $[v_{i_k}, [v_{i_{k-1}}, y]]$ or the element $[v_{i_{k-1}}, v_{i_k}]$ is not a root, then $[v_{i_{k-1}}, v_{i_k}] \in (\mathfrak{p})$ or $[v_{i_k}, [v_{i_{k-1}}, y]] \in (\mathfrak{p})$. By the induction hypothesis $[v_{i_k}, [v_{i_{k-1}}, y]] \in (\mathfrak{j})$ or $[v_{i_{k-1}}, v_{i_k}] \in (\mathfrak{j})$. Therefore $v \equiv$ $[v_{i_2}, \ldots, v_{i_{k-2}}, [x, z]]$, where $x = v_{i_k}$ and $z = [v_{i_{k-1}}, y]$ or $x = [v_{i_{k-1}}, v_{i_k}]$, z = y. In both cases $\langle e_{i_1}, e_x \rangle_q = -1$. Continuing this procedure (i.e. xplays a role of v_{i_k} and z plays a role of y), we get

$$[v_{i_1}, v] \equiv [v_{i_1}, [v_{i_2}, [x, z]]],$$

where $\langle e_{i_1}, e_x \rangle_q = -1$. Applying the Jacobi identity, we get

$$[v_{i_2}, [x, z]] = [x, [v_{i_2}, z]] + [[v_{i_2}, x], z].$$

By Lemma 3.6 (b), $[v_{i_2}, z]$ or $[v_{i_2}, x]$ is not a root, then $[x, [v_{i_2}, z]] \in (\mathfrak{p})$ or $[v_{i_2}, x] \in (\mathfrak{p})$. By the induction hypothesis $[x, [v_{i_2}, z]] \in (\mathfrak{j})$ or $[v_{i_2}, x] \in$ (\mathfrak{j}). Therefore $[v_{i_1}, v] \equiv [v_{i_1}, [x, [v_{i_2}, z]]]$ or $[v_{i_1}, v] \equiv [v_{i_1}, [[v_{i_2}, x], z]]$. If $[v_{i_1}, v] \equiv [v_{i_1}, [x, [v_{i_2}, z]]]$, then applying Lemma 3.8 we get a reduction to the case 1) or to the case 3.2) below. If $[v_{i_1}, v] \equiv [v_{i_1}, [[v_{i_2}, x], z]]$, then

$$[v_{i_1}, v] \equiv [v_{i_1}, [[v_{i_2}, x], z]] = -[[v_{i_2}, x], [z, v_{i_1}]] - [z, [v_{i_1}, [v_{i_2}, x]]].$$

Note that $\ell(z) \geq 1$, because we choose k with the property k < m. Then $\langle e_{i_1}, e_z \rangle_q = \langle e_{i_1}, e_v \rangle_q - \langle e_{i_1}, e_x \rangle_q - \langle e_{i_1}, e_{i_2} \rangle_q = 0 - (-1) - 1 = 0$ and $\langle e_{i_1}, e_{i_2} + e_x \rangle_q = 1 - 1 = 0$, and therefore by the induction hypothesis

$$[v_{i_1}, v] = -[[v_{i_2}, x], [z, v_{i_1}]] - [z, [v_{i_1}, [v_{i_2}, x]]] \in (\mathfrak{j})$$

3.2) Let $\langle e_{i_1}, e_{i_2} \rangle_q = -1$. Applying Lemma 6.8 and 6.9 we get

 $[v_{i_1}, v] \in (\mathfrak{j})$

or

$$[v_{i_1}, v] \equiv [v_{i_1}, [a, x]] \equiv [v_{i_1}, [a, [b, y]]],$$

where

(i)
$$a = [v_{i_k}, \dots, v_{i_2}], b = [v_{i_s}, v_{i_{s-1}}, \dots, v_{i_{k+1}}], y = [v_{i_{s+1}}, \dots, v_{i_m}],$$

(ii) $\langle e_{i_1}, e_{i_j} \rangle_q = 0$, for all $j = 3, \dots, k$ and $j = k + 2, \dots, s$,
(iii) $\langle e_{i_1}, e_{i_2} \rangle_q = -1, \langle e_{i_1}, e_{i_{k+1}} \rangle_q = 1$,
(iv) $\langle e_{b}, e_{a} \rangle_q = 0$,
(v) if $s < m$ then $\langle e_{i_{s+1}}, e_{a} \rangle_q = -1$ and $\langle e_{i_{s+1}}, e_{b} \rangle_q = -1$.

Consider the following cases.

(a) If s = m, then $[v_{i_1}, v] \equiv [v_{i_1}, [a, b]]$ and

$$q(e_a + e_b) = q(e_a) + q(e_b) + \langle e_a, e_b \rangle_q = 1 + 1 + 0 = 2.$$

Therefore $e_a + e_b$ is not a root of q, by the induction hypothesis $[a, b] \in (\mathfrak{j})$ and $[v_{i_1}, v] \equiv [v_{i_1}, [a, b]] \in (\mathfrak{j})$.

We may assume that s < m and consider $\langle e_{i_1}, e_{i_{s+1}} \rangle_q$. Partial results

$\langle e_{i_1}, e_{i_{s+1}} \rangle_q$	consequence
-1	$\begin{array}{l} q(e_{i_1} + (e_{i_{s+1}} + e_a)) = \\ q(e_{i_1}) + q(e_{i_{s+1}} + e_a) + \langle e_{i_1}, e_{i_{s+1}} + e_a \rangle_q = \\ 1 + 1 - 1 - 1 = 0 \end{array}$
1	$\begin{array}{l} q(-e_{i_1}+(e_{i_{s+1}}+e_b))=\\ q(e_{i_1})+q(e_{i_{s+1}}+e_b)-\langle e_{i_1},e_{i_{s+1}}+e_b\rangle_q=\\ 1+1-1-1=0 \end{array}$
2	$i_1 = i_{s+1}$
$\langle e_{i_1}, e_{i_{s+1}} \rangle_q$	conclusions
-1	contradiction, because q is positive definite
1	$\begin{array}{c} q \text{ is positive definite} \\ \hline \\ contradiction, because \\ q \text{ is positive definite} \\ \end{array}$
2	contradiction, because $\langle e_{i_{s+1}}, e_b \rangle_q = -1 \neq 1 = \langle e_{i_1}, e_b \rangle_q$

are presented in the following tables.

Therefore, we may assume that $\langle e_{i_1}, e_{i_{s+1}} \rangle_q = 0$. (b) Let $m \ge s+2$. Then

$$[v_{i_1}, v] \equiv [v_{i_1}, [a, [b, [v_{i_{s+1}}, z]]]],$$

where $\ell(z) \geq 1$. Moreover $\langle e_{i_{s+1}}, e_b + e_z \rangle_q = -1 - 1 = -2$, then [z, b] is not a root and by the induction hypothesis $[z, b] \in (j)$. Therefore

$$\begin{array}{ll} [v_{i_1}, [a, [b, [v_{i_{s+1}}, z]]]] & = & -[v_{i_1}, [a, [v_{i_{s+1}}, [z, b]]]] - [v_{i_1}, [a, [z, [b, v_{i_{s+1}}]]]] \\ & \equiv & [v_{i_1}, [a, [[b, v_{i_{s+1}}], z]]]. \end{array}$$

Applying the Jacobi identity, we get

$$[v_{i_1}, [a, [[b, v_{i_{s+1}}], z]]] = -[v_{i_1}, [[b, v_{i_{s+1}}], [z, a]]] - [v_{i_1}, [z, [a, [b, v_{i_{s+1}}]]]].$$

Note that $\langle e_{i_{s+1}}, e_a + e_z \rangle_q = -1 - 1 = -2$, then [z, a] is not a root and by the induction hypothesis $[z, a] \in (\mathfrak{j})$. Therefore

$$\begin{array}{lll} [v_{i_1}, [a, [[b, v_{i_{s+1}}], z]]] & \equiv & [v_{i_1}, [[a, [b, v_{i_{s+1}}]], z]] \\ & = & -[[a, [b, v_{i_{s+1}}]], [z, v_{i_1}]] - [z, [v_{i_1}, [a, [b, v_{i_{s+1}}]]]]]. \end{array}$$

Note that $\langle e_{i_1}, e_a + e_b + e_{i_{s+1}} \rangle_q = -1 + 1 + 0 = 0$ and $\langle e_{i_1}, e_z \rangle_q = \langle e_{i_1}, e_v \rangle_q - \langle e_{i_1}, e_a + e_b + e_{i_{s+1}} \rangle_q = 0$. By the induction hypothesis $[v_{i_1}, [a, [b, v_{i_{s+1}}]]] \in (\mathfrak{j})$ and $[z, v_{i_1}] \in (\mathfrak{j})$. Therefore $[v_{i_1}, v] \in (\mathfrak{j})$.

(c) Let m = s+1. We recall that $\langle e_{i_1}, e_{i_2} \rangle_q = -1$, $\langle e_{i_1}, e_{i_{s+1}} \rangle_q = 1$ and $\langle e_{i_1}, e_{i_j} \rangle_q = 0$ for all $j = 3, \ldots, s$. Applying 1) and the Jacobi identity, it is straightforward to prove the following conditions:

(i) $[v_{i_1}, v] \equiv (-1)^{\varepsilon} [v_{i_1}, v_{i_2}, \dots, v_{i_k}, v_{i_{s+1}}, v_{i_s}, \dots, v_{i_{k+1}}],$

(ii) $[v_{i_1}, v] \equiv (-1)^{\varepsilon} [v_{i_1}, [[v_{i_j}, \dots, v_{i_2}], v_{i_{j+1}}, \dots, v_{i_{k+1}}]]$, for all $j = 2, \dots, k, s+1, s \dots, k+2$.

Without loss of generality, we can assume that in both cases $\varepsilon = 0$. It follows from (i) that there exists a numbering of elements $\{i_2, \ldots, i_{s+1}\}$, such that

$$[v_{i_1}, v] \equiv [v_{i_1}, v_{i_2}, \dots, v_{i_{s+1}}]$$

where, $[v_{i_2}, \ldots, v_{i_{s+1}}]$ is a root, $\langle e_{i_1}, e_{i_2} \rangle_q = -1$, $\langle e_{i_1}, e_{i_{s+1}} \rangle_q = 1$ and $\langle e_{i_1}, e_{i_j} \rangle_q = 0$ for $j = 3, \ldots, s$. Moreover, it follows from (ii) that the elements $[v_{i_j}, \ldots, v_{i_2}]$ for all $j = 2, \ldots, k, s + 1, s \ldots, k + 2$, are roots, because otherwise $[v_{i_j}, \ldots, v_{i_2}] \in \mathfrak{j}$ and $[v_{i_1}, v] \in \mathfrak{j}$.

We claim that $\langle e_{i_j}, e_{i_{j+1}} \rangle_q = -1$ for all $j = 2, \ldots, s$. Assume, for the contrary, that there exists $j = 2, \ldots, s$, such that $\langle e_{i_j}, e_{i_{j+1}} \rangle \neq -1$. If j = s, then $[v_{i_2}, \ldots, v_{i_{s+1}}]$ is not a root. If j = 2, then $[v_{i_2}, v_{i_3}] \in j$. Applying the Jacobi identity we get

$$[v_{i_1}, [v_{i_2}, \dots, v_{i_{s+1}}]] \equiv [v_{i_1}, [v_{i_3}, [v_{i_2}, [v_{i_4}, \dots, v_{i_{s+1}}]]]]$$

and, by the case 1), $[v_{i_1}, v] \in j$. Therefore we can assume that $j = 3, \ldots, s-1$. Since $[v_{i_2}, \ldots, v_{i_{s+1}}]$ is a root, $\langle e_{i_j}, e_{i_{j+1}} + \ldots + e_{i_{s+1}} \rangle_q = -1$ and $\langle e_{i_j}, e_{i_{j+2}} + \ldots + e_{i_{s+1}} \rangle_q \geq -1$. By the bilinearity of $\langle -, - \rangle_q$, Lemma 2.5(c) and our assumptions, we have $\langle e_{i_j}, e_{i_{j+2}} + \ldots + e_{i_{s+1}} \rangle = -1$ and $\langle e_{i_j}, e_{i_{j+1}} \rangle = 0$. By assumptions and (ii), the elements $[v_{i_j}, v_{i_{j-1}}, \ldots, v_{i_2}]$ and $[v_{i_{j+1}}, v_{i_{j+2}}, \ldots, v_{i_{s+1}}]$ are roots. Moreover $\langle e_{i_{j+1}}, e_{i_2} + \ldots + e_{i_{j-1}} \rangle_q = \langle e_{i_{j+1}}, e_{i_2} + \ldots + e_{i_{j-1}} + e_{i_j} \rangle_q = -1$. Set $y = [v_{i_{j-1}}, \ldots, v_{i_2}]$ and $x = [v_{i_{j+2}}, \ldots, v_{i_{s+1}}]$, then

$$1 = q(v) = q(e_y + e_{i_j} + e_{i_{j+1}} + e_x) = q(e_y + e_{i_j}) + q(e_{i_{j+1}} + e_x) + \langle e_y + e_{i_j}, e_{i_{j+1}} + e_x \rangle_q = 2 + \langle e_y, e_{i_{j+1}} \rangle_q + \langle e_y, e_x \rangle_q + \langle e_{i_j}, e_{i_{j+1}} \rangle_q + \langle e_{i_j}, e_x \rangle_q = 2 + (-1) + \langle e_y, e_x \rangle_q + 0 + (-1) = \langle e_a, e_x \rangle_q.$$

It follows

$$\begin{array}{rcl} q(-e_x + (e_y + e_{i_1})) &=& q(e_x) + q(e_y + e_{i_1}) - \langle e_x, e_y + e_{i_1} \rangle_q \\ &=& 1 + 1 - \langle e_x, e_y \rangle_q - \langle e_x, e_{i_1} \rangle_q \\ &=& 2 - 1 - 1 = 0, \end{array}$$

because $\langle e_x, e_{i_1} \rangle_q = \langle e_{i_{s+1}}, e_{i_1} \rangle_q = 1$. This is a contradiction, because q is positive definite. Finally, we proved that $\langle e_{i_j}, e_{i_{j+1}} \rangle_q = -1$ for all $j = 2, \ldots, s$.

If $\langle e_{i_j}, e_{i_l} \rangle_q \leq 0$ for all $2 \leq j < l \leq s+1$, then $(i_1, i_2, \ldots, i_{s+1})$ is a positive chordless cycle and therefore $[v_{i_1}, v_{i_2}, \ldots, v_{i_{s+1}}] \in \mathfrak{j}$. Indeed, if $(i_1, i_2, \ldots, i_{s+1})$ is not a positive chordless cycle, then there exists $2 \leq j < l \leq s+1$ such that $l \neq j, j+1$ and $\langle e_{i_j}, e_{i_l} \rangle_q = -1$. Therefore $q(e_{i_2} + \ldots + e_{i_{s+1}}) \leq s - (s-1) + \langle e_{i_j}, e_{i_l} \rangle_q = 0$ and q is not positive definite.

Assume that $\langle e_{i_j}, e_{i_l} \rangle_q > 0$ for some $2 \leq j < l \leq s+1$. Choose j, l such that $2 \leq j < l-1 \leq s+1$ and l-j is minimal with the property $\langle e_{i_j}, e_{i_l} \rangle_q \neq 0$.

If $\langle e_{i_j}, e_{i_l} \rangle_q = -1$, then $q(e_{i_j} + \ldots + e_{i_l}) = 0$. If $\langle e_{i_j}, e_{i_l} \rangle_q = 2$, then $q(e_{i_j} + \ldots + e_{i_l}) = -1$. In both cases q is not positive definite.

Therefore $\langle e_{i_j}, e_{i_l} \rangle_q = 1$. Note that in this case $(i_j, i_{j+1}, \ldots, i_l)$ is a positive chordless cycle and $[v_{i_l}, v_{i_{l-1}}, \ldots, v_{i_{j+1}}]$ is a root. If l = s + 1, then

$$v \equiv [v_{i_2}, \ldots, v_{i_j}, \ldots, v_{i_l}] \in \mathfrak{j},$$

by the definition. Therefore we can assume that l < s + 1. If j = 2, then

$$\begin{array}{lll} [v_{i_1}, v] & \equiv & [v_{i_j}, [[v_{i_l}, v_{i_{l-1}}, \dots, v_{i_{j+1}}], [v_{i_{l+1}}, \dots, v_{i_{s+1}}]] \\ & \equiv & [[v_{i_l}, v_{i_{l-1}}, \dots, v_{i_{j+1}}], [v_{i_j}[v_{i_{l+1}}, \dots, v_{i_{s+1}}]], \end{array}$$

because $[v_{i_j}, [v_{i_l}, v_{i_{l-1}}, \dots, v_{i_{j+1}}]] \in j$. It follows by 1), that $[v_{i_1}, v] \in j$, because $\langle e_{i_1}, e_{i_{j+1}} + \ldots + e_{i_l} \rangle_q = 0$. Therefore we can assume that 2 < j < l < s+1 and

$$[v_{i_1}, v] \equiv [v_{i_1}, [x, [v_{i_j}, [b, y]]]],$$

where $x = [v_{i_{j-1}}, \ldots, v_{i_2}], b = [v_{i_l}, v_{i_{l-1}}, \ldots, v_{i_{j+1}}]$ and $y = [v_{i_{l+1}}, \ldots, v_{i_{s+1}}]$. Since $e_x, e_{i_j} + e_b + e_y$ and $e_x + e_{i_j} + e_b + e_y$ are roots of q, by Lemma 2.5(b') we have $\langle e_x, e_{i_j} + e_b + e_y \rangle_q = -1$. Consider

$$q(-e_y + (e_{i_1} + e_x)) = q(e_y) + q(e_{i_1} + e_x) - \langle e_{i_1} + e_x, e_y \rangle_q$$

$$= 1 + 1 - \langle e_{i_1}, e_y \rangle_q - \langle e_x, e_y \rangle_q$$

$$= 1 - \langle e_x, e_y \rangle_q,$$

because $\langle e_{i_1}, e_y \rangle_q = \langle e_{i_1}, e_{i_{s+1}} \rangle_q = 1$ and $\langle e_{i_1}, e_x \rangle_q = \langle e_{i_1}, e_{i_2} \rangle_q = -1$. On the other hand

$$[v_{i_1}, v] \equiv [v_{i_1}, [x, [v_{i_j}, [b, y]]]] = -[v_{i_1}, [v_{i_j}, [[b, y], x]]] - [v_{i_1}, [[b, y], [x, v_{i_j}]]].$$

Therefore $\langle e_{i_j}, e_x \rangle_q = -1$, because otherwise by the induction hypothesis we have $[x, v_{i_j}] \in \mathfrak{j}$, and by 1),

$$[v_{i_1}, v] \equiv [v_{i_1}, [x, [v_{i_j}, [b, y]]]] = -[v_{i_1}, [v_{i_j}, [[b, y], x]]] \in \mathfrak{j}$$

Similarly we have $\langle e_x, e_b \rangle_q = -1$, because otherwise

$$[v_{i_1}, v] \equiv [v_{i_1}, [x, [v_{i_j}, [b, y]]]] \equiv [v_{i_1}, [x, [b, [v_{i_j}, y]]]] \equiv [v_{i_1}, [b, [[y, v_{i_j}], x]]] \in \mathfrak{j},$$

by the case 1).

Finally

 $\langle e_x, e_y \rangle_q = -1 - \langle e_x, e_{i_j} + e_b \rangle_q = -1 - \langle e_x, e_{i_j} \rangle_q - \langle e_x, e_b \rangle_q = 1$

and $q(-e_y + (e_x + e_{i_1})) = 1 - \langle e_x, e_y \rangle_q = 0$. This is a contradiction, because q is positive definite. This finishes the proof.

7. Examples and final remarks

In this section we present some examples and remarks that illustrate basic results of this paper.

Theorem 7.1. If $A = \mathbb{C}Q/I$ is a representation directed \mathbb{C} -algebra, such that its Tits form q_A is positive definite, then the map

$$\Phi: L(q_A, \mathfrak{j}) \to \mathcal{K}(A) \tag{7.2}$$

given by $v_i \mapsto u_i$ is an isomorphism of Lie algebras. Moreover $L(q_A, \mathfrak{j}) \cong G^+(q_A)$.

Proof. By Corollary 5.2, the map $\Phi : L(q_A, \mathfrak{r}) \to \mathcal{K}(A)$, given by $\Phi(v_i) = u_i$, is an isomorphism of Lie algebras. By Propositions 6.3 and 6.10, we have $L(q_A, \mathfrak{j}) = L(q_A, \mathfrak{r})$, because q_A is positive definite. The isomorphism $L(q_A, \mathfrak{j}) \cong G^+(q_A)$ follows from Proposition 4.4.

Remark 7.3. Let A be a representation directed \mathbb{C} -algebra and let q_A be its Tits form. It is well-known (see [6]) that q_A is weakly positive. It follows that the set $\mathcal{R}_{q_A}^+$ of positive roots of q_A is finite. Therefore $\dim_{\mathbb{C}} \mathcal{K}(A) = |\mathcal{R}_{q_A}^+|$ is finite. In this case, the subset \mathfrak{r} of $L(q_A)$ is finite, even if q_A is not positive definite. Moreover, we are able to describe an algorithm that constructs the set \mathfrak{r} . Indeed, it is enough to develop Definition 3.7 and construct all Weyl roots of q (see [8, Remark 4.15]).

If q_A is positive definite, then $L(q_A, j) = L(q_A, \mathfrak{r})$. The set j is a minimal set generating the ideal (\mathfrak{r}) and j is smaller than \mathfrak{r} (see Example 7.4).

If q_A is not positive definite, then $(\mathfrak{j}) \subsetneq (\mathfrak{r})$ in general (see Example 7.5).

Example 7.4. Let *L* be the following poset

and let KL be the incidence algebra of the poset L (see [15]). It is easy to see that KL is representation directed, q_{KL} is positive definite and $B(q_{KL})$ has the form

Then

$$\begin{split} \mathfrak{j} &= \{[u_2, u_3], [u_1, u_4], [u_1, [u_1, u_2]], [u_1, [u_1, u_3]], [u_2, [u_1, u_2]], [u_3, [u_1, u_3]], \\ & [u_2, [u_2, u_4]], [u_3, [u_3, u_4]], [u_4, [u_2, u_4]], [u_4, [u_3, u_4]], [u_1[u_2, u_4]], \\ & [u_1, [u_3, u_4]] \} \end{split}$$

and $L(q_{KL}, \mathfrak{j}) \cong \mathcal{K}(KL)$. Note that

Example 7.5. Consider the following graph

Let $A = \mathbb{C}Q/I$, where I = (ab, cd). The form q_A is not positive definite and $B(q_A)$ has the following form

Note that $[u_4, [u_3, [u_2, u_1]]] \in (\mathfrak{r})$, but $[u_4, [u_3, [u_2, u_1]]] \notin (\mathfrak{j})$. On the other hand, the algebra A is representation directed and q_A is weakly positive. By Corollary 5.2, $\mathcal{K}(A) \cong L(q_A, \mathfrak{r})$.

References

- R. K. Amayo and I. Stewart, *Infinite dimensional Lie algebras*, Noordhoff International Publishing, 1974.
- [2] I. Assem, D. Simson and A. Skowroński, "Elements of the Representation Theory of Associative Algebras", Vol. I: Techniques of Representation Theory, London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.
- [3] M. Auslander, I. Reiten and S. Smalø, "Representation theory of Artin algebras", Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, 1995.
- [4] M. Barot, D. Kussin and H. Lenzing, The Lie algebra associated to a unit form, J. Algebra 296 (2007), 1-17.
- [5] M. Barot and D. Rivera, Generalized Serre relations for Lie algebras associated to positive unit forms, J. Pure Appl. Algebra 211 (2007), 360-373.
- [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469.
- [7] S. Kasjan and J. Kosakowska, On Lie algebras associated with representation directed algebras, arXiv:0902.3348v1 [math.RT].
- [8] J. Kosakowska, A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations, Coll. Math. 87 (2001), 27-77.
- J. Kosakowska, Prinjective Ringel-Hall algebras for posets of finite prinjective type, Acta Math. Sinica, in press.
- [10] J. Kosakowska, A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra, Acta Math. Sinica, English Series, 24(2008), 1687-1702.
- [11] Ch. Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170 (1994), 526-546.
- [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, Vol. 1099 (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1984).

- [13] C. M. Ringel, Hall algebras, Banach Center Publications, Vol. 26, Warsaw 1990, 433-447.
- [14] C. M. Ringel, From representations of quivers via Hall and Loewy algebras to quantum groups, Proceedings Novosibirsk Conference 1989. Contemporary Mathematics 131.2 (1992), 381-401.
- [15] D. Simson, "Linear Representations of Partially Ordered Sets and Vector Space Categories", Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publishers, 1992.

CONTACT INFORMATION

J. Kosakowska Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland *E-Mail:* justus@mat.uni.torun.pl *URL:* www.mat.uni.torun.pl/~justus

Received by the editors: 15.08.2008 and in final form 27.09.2008.