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ABSTRACT. Let I be a finite set without 0 and J a subset
in I x I without diagonal elements (i,7). We define S(I,J) to
be the semigroup with generators e;, where ¢ € I U0, and the
following relations: eg = 0; 2 = ¢; for any i € I; e;e; = 0 for any
(i,4) € J. In this paper we study finite-dimensional representations
of such semigroups over a field k. In particular, we describe all finite
semigroups S(I,J) of tame representation type.

Introduction

We study finite-dimensional representations over a field k of semigroups
generated by idempotents.

Let I be a finite set without 0 and J a subset in I x I without diagonal
elements (7,7). We define S(I,J) to be the semigroup with generators e;,
where ¢ € I U0, and the following relations:

1) €y = 0;
2) €2 = ¢; for any i € I;
3) e;ej = 0 for any pair (i,7) € J.

The set of all semigroups of the form S(I,J) is denoted by Z. We
call S(1,J) € T a semigroup generated by idempotents with partial null
multiplication.
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In this paper we give a criterion for S(I,.J) to be of finite represen-
tation type and a criterion for a finite S(I,J) to be tame (note that any
semigroup S(I, J) of finite type is finite).

1. Formulation of the main results

Throughout the paper, k denotes a field. All vector space are finite-
dimensional vector space over k. Under consideration maps, morphisms,
etc., we keep the right-side notation.

Let S be a semigroup and let M, (k) denotes the algebra of all n x n
matrices with entries in k. A matriz representation of S (of degree n)
over k is a homomorphism T from S to the multiplicative semigroup of
M, (k). If there is an identity (resp. zero) element a € S, we assume that
the matrix 7'(a) is identity (resp. zero). Since M, (k) can be considered
as the algebra of all linear transformations of any fixed n-dimensional
vector space, we can consider representations of the semigroup S in terms
of vector spaces and linear transformations. Thus, a representation of S
over k is a homomorphism ¢ from S to the multiplicative semigroup
of the algebra EndiU with U being a finite-dimensional vector space.
Two representation ¢ : S — EndiU and ¢’ : S — EndiU’ are called

equivalent if there is a linear map o : U — U’ such that po = ¢'.

A representation ¢ : S — EndiU of S is also denoted by (U, ¢). By
the dimension of (U, ) one means the dimension of U. The represen-
tations of S form a category which will be denoted by rep; S (it has as
morphisms from (U, ¢) to (U’, ¢) the maps o such that po = ¢'). Since
representations X, Y € S are equivalent iff they are isomorphic as objects
of rep;, S, we will use both the terms.

In an analogous way we can define representations of the semigroup
S over a (not necessarily finite-dimensional) k-algebra A; in this case
we must take free A-modules of finite rank instead of finite-dimensional
vector spaces.

We say that a semigroup is of finite representation type over k if it
has only finitely many equivalent classes of indecomposable representa-
tions (over k), and of infinite type if otherwise. Further, we say that a
semigroup is of tame (respectively, wild) type, or simply tame (respec-
tively, wild), if so is the problem of classifying its representations (precise
definitions are given below).

Let S = S(I,J) € T and J = {(i,j) € (I xI)\ J|i # j}. We
may assume, without loss of generality, that I = {1,2,...,m}. With the
semigroup S = S(I,J) we associate the quadratic form fg(z) : Z™ — Z
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in the following way:

fs(z)=> 2= Y zz

el (i)

We call fg(z) the quadratic form of the semigroup S.
In this paper we prove the following theorems.

Theorem 1. A semigroup S(I,J) is of finite representation type over k
if and only if its quadratic form is positive (then S(I,J) is finite).

Theorem 2. Let S(I,J) be a finite semigroup. Then S(I,J) is tame
over k if its quadratic form is nonnegative, and wild if otherwise.

2. Connections between representations of S(I,J) and
representations of quivers

We first recall the notion of representations of a quiver [1].

Let @ = (Qo,Q1) be a (finite) quiver, where Qo is the set of its
vertices and ()1 is the set of its arrows o : z — y.

A representation of the quiver Q = (Qo, Q1) over a field k is a pair
R = (V,~) formed by a collection V- = {V, |z € Qo} of vector spaces
V. and a collection v = {7y, |a :  — y runs through Q1} of linear maps
Yo+ Vo — V4. A morphism from R = (V,v) to R’ = (V',~’) is given by
a collection A = {A\; |z € Qo} of linear maps A, : V; — V| such that
YaAy = Az, for any arrow a @z — y.

The category of representations of @ = (Qo, Q1) will be denoted by
repy Q.

In an analogous way we can define representations of the quiver @) over
a (not necessarily finite-dimensional) k-algebra A; in this case we must
take free A-modules of finite rank instead of finite-dimensional vector
spaces.

A quiver @ is said to be of finite representation type over k if rep;, Q
has only finitely many isomorphism classes of indecomposable represen-
tations (over k), and of infinite representation type if otherwise. Further,
@ is said to be of tame (respectively, wild) representation type, or simply
tame (respectively, wild), if so is the problem of classifying its represen-
tations (precise definitions are given below).

Now we proceed to investigate connections between representations
of S(I,J) and representations of quivers.

We identify a linear map a of U = U1 @ ... Upinto V=V @& ...V,
with the matrix (oy;), i =1,...,p, 7 =1,...,q, where o;; : U; — Vj are
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the linear maps induced by « (then the sum and the composition of maps
are given by the matrix rules).

For a finite set X and Y C X x X, we denote by Q(X,Y’) the quiver
with vertex set X and arrows a — b, (a,b) € Y.

Let S = S(I,J), where, as before, I = {1,2,...,m}. Define the func-
tor F from rep, Q(I,J) to rep, S(I,J) as follows. F = F(I,J) assigns
to each object (V,~) € rep, Q(I,J) the object (V',~v') € rep, S(I,J),
where V' = @i/ Vi, (v'(€:))j; = 1v; if i = j, (v/(eq))ij = v if (4,5) € J,
and (7(e;))js = 0 in all other cases. F assigns to each morphism X of
rep; Q(I, J) the morphism @®;cr\; of rep, S(I,J).

Proposition 1. The functor F = F(I,J) : rep, Q(I,J) — rep, S(I,J)
1s full and faithful.

Proof. It is obvious that the functor F' is faithful. It remains to prove
that it is full. Let § be a morphism from (V,y)F = (V',~’) to (W,0)F =
(W',0’). In other words, § is a linear map of V' into W’ such that
v'(es)d = do'(es) for s = 1,...,m. We will consider these equalities as
matrix ones (taking into account that V' = @;c;V; and W/ = @®;c;Wj;)
and denote by [s, 7, j] the scalar equality (7'(es)d)i; = (d0’(es))sj, induced
by the (matrix) equality v'(es)d = do’(es).

From an equation [j,4,j] with j # i it follows that §;; = 0, and
consequently J is a diagonal matrix: § = §11 B I D - - - D S - Further, if
a @i — jis an arrow of the quiver Q(I,J), then from the equation [i, 1, j|
we have that v,0;; = 0;0,. Consequently, a collection 0 = {0ss|8 =
1,...,m} is a morphism from (V,v) to (W, o). Since § = 611 Do ®- -+ D
Smm, We have that § = AF, where A = §, as claimed. O

Proposition 2. If the quiver Q(I,.J) has no oriented cycles, then each
object of rep;, S(I,J) is isomorphic to an object of the form XF(I,J) @
(W,0), where X is an object of rep, Q(I,J) (W is a wector space of
dimension d > 0 and 0 : W — W is the zero map).

Proof. For simplicity, the quiver Q(I,J) is denoted by Q@ = (Qo, Q1).
The proof will be by induction on m, the case m = 0,1 being trivial.

Now let m > 1 and let R = (U, ¢) be a representation of S(I,J). Fix
s € Qo such that there is no arrow ¢ — s; obviously, one can assume
that s = m. We consider the subsemigroup S’ of S generated by e;,
i€ I'U0, where I' = {1,...,m — 1}. Then S’ = S(I',J’) with J' =
{(i,5) € I x I|i,j € I'}, and Q" = Q(I',J') is the full subquiver of @Q
with vertex set Qf = I'.

Denote by R’ = (U, ¢') the restriction of R to S’ (¢'(z) = ¢(z) for any
x € 5'). Tt follows by induction that R' = R = X'F(I',J') & (W',0),
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where X’ is a representation of the quiver Q(I’,J'). Let R = (U,¢’)
and X' = (V',) with V! = {V/[i € Qp} and o = {7, |a : i —
j runs through Q}}. Since R’ = R/, there exists a linear map o : U —
U =V/aoVyd...®V) oW’ such that ¢'c = ¢/. Then the representation
R = (U, ¢) is equivalent to the representation R (U, ), where $(e;) =
o (e;) for any i = 1,...,m —1 and @(en,) = p(en)o (because, for i # m,
o (e;) = ¢'(e;)o = p(e;)o, and so p(x) = ¢(z)o for any z € 5).

We consider the representation R = (U, %) in more detail. We set
Vin = W' and consider $ as a matrix (taking into account that U =
VieVed...® V1 ®Vy). For (p,q) € J, we denote by [p,q,1, ]|
the scalar equality [p(ep)®(eq)];; = 0, induced by the (matrix) equality
©(ep)@(eq) = 0 (the last equation holds since epe, = 0 in S(Z,J)). It
follows from |m,q,i,¢q| (for any fixed ¢ # m) that (@(em))iq = 0, and
consequently (@(ey,))i; = 0 for any (i,j) € I x I'.

We first consider two special cases: a) B,,,, = 0; b) Ty = 1 = 1v,,.

In case a) (p)? = p implies p = 0 and so R = X F(I,J)® (W, 0) with
X = (V,7), where V. ={V/ ...,V 1,0}, 7o =, for a € Q}, 7o = 0 for
a¢Q)and W=W"

In case b) an equality [p, m, p, m] for (p,m) ¢ J implies (@)pm = 0 and
so R=XF(I,J)® (W,0) with X = (V,~), where V = {V{..., V! , 0},
Yo =70 fora € Q), 74 =0fora ¢ Q) and W =W".

Now we consider the general case. Since (B,,,,)? = Bnm, there is an
invertible map v = (v1,12) : Vi, — W1 @ Wa such that

_ 1 0
mem(VbV?) = (V17V2) < 0 0 >7

where 1 = 1yy,. Then the representation R = (U gp) is isomorphic to
the the representation R = (U ¢'), where U="0, EBUQEB & Uy with
U VfOl“Z—lA m— lUm—Wl,UmH Wg,andgo(ez)—go( ;) for
P21 =1, ((em))ig = (P em))iy for (1,7) € I'x I, (F(em))is = 0
for i = m,m+1,j € _ I, (¢ "(em))mmj = 1 = 1w, (o' (em))m,m+1 = 0,
(cp (em))mH m =0, ( "(em))m+1,m+1 = 0 (for instance, one can take the
isomorphism 8 : R — R/ with g;’(ei) = u *R'pu, where p =1y, ® ... @
1Um71 b v.

From (¢/(e;))? = ¢/ (e;) it follows that &(em))i,mﬂ =0foranyiel
(see the partial case a)); (then S/D\,(em>)iym+1 =0foranyi=1,...,m+1).
From the scalar equalities [p, m,p, m| for (p,m) ¢ J implies (@)pm = 0
(see the partial case b)). Thus, R = (l?, ®) = R = (U, ) has the form
XF(I,J) & (W,0), where X = (V,7) with V = {U;|i € Qo}, v =
{7Va | i — jruns through Q1 } with 74 = ), for @ € Q, 7o = &(em)ij
for a ¢ Q) (then j =m), and W = V[//n:l, as claimed. O
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Denote by repg S(I,J) the full subcategory of rep, S(I,J) consist-
ing of all objects that have no objects (W,0), with W # 0, as direct
summands.

We have as an immediate consequence of Propositions 1 and 2 the
following statement.

Corollary 1. If the quiver Q(I,.J) has no oriented cycles, then the func-
tor F = F(I,J), viewed as a functor from rep;, Q(I,J) to rep§ S(I,J),
18 an equivalence of categories.

3. Proof of Theorems 1 and 2

In [1] P. Gabriel introduced the quadratic Tits form qq : Z9 — 7 of a
quiver Q = (Qo, Q1):

w02) =Y 5 =) uz,

i€Qo i

where ¢ — j runs through @)1, and proved that @ is of finite representation
type if and only if its Tits form is positive.

The definitions of the quadratic Tits form of a quivers and the quad-
ratic form of a semigroup S(I,.J) € Z immediately imply the following
lemma.

Lemma 1. Let S = S(I,J) € T and Q = Q(I,J). Then the quadratic
forms fs(z) and qg(z) coincide.

Now we prove Theorem 1. In [3] one proves that a semigroup S(I,J)
is finite if and only if the quiver Q(I,J) has no oriented cycles (the
Tits form of which are not positive [6]). Then Theorem 1 follows from
Corollary 1, Lemma 1 and the above-mentioned Gabriel’s results.

Before we begin to prove Theorem 2, we recall precise definitions of
tame and wild semigroups (see general definitions in [2]).

For a semigroup S and a k-algebra A, we denote by Rj(S) the set of
all representations of S over A. By L(A) we denote the category of left
finite-dimensional (over k) A-modules.

Let S be a semigroup and A = K; = k[z]. We say that a representa-
tion N = (U, ¢) from rep;, S is generated by a representation M = (V)
from R (S) if, for some X € LIA), NZMeX = (Ve X,Yv®1x) (the
tensor products are considered over A).

We assume first that the field k is separable closed. The semigroup
S is called tame if, for any fixed dimension d, there exist finitely many
elements M; of Ra(S) such that, up to isomorphism, each indecompo-
sable object of rep;, S (of the dimension d) is generated by M; for some
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i. Such a set {M;} is called a parametrizing family of representations of
S of dimension d.

When the field k£ is not separable closed, the semigroup S is called
tame, if it is tame over the separable closure k of k (in the case of infinite
k one can take k itself in place of k).

Now we give a definition of wild semigroups.

Let S be a semigroup and A = Ky = k < x,y > the free associative
k-algebra in two noncommuting variables z and y. A representation
M = (V,9) of S over A is said to be perfect if it satisfies the following
conditions:

1) the representation M @ X = (V ® X,y ® 1x) (of S over k) with
X € L(A) is indecomposable if so is X;

2) the representations M ® X and M ® X’ are nonisomorphic if so
are X and X'

The semigroup S is called wild over k if it has a perfect representation
over A.

In an analogous way one can define tame and wild quivers; the set
of all representations of a quiver ) over an algebra A will be denote by
RA(Q).

Now we prove Theorem 2.

Let S = S(I,J) be a finite semigroup. Then the quiver Q(I,.J) has
no oriented cycles (see above). From the papers [4, 5| on tame quivers
and the paper [6] on integral quadratic forms it follows that a quiver @ is
tame if its Tits form is nonnegative, and wild if otherwise. Then the first
part of Theorem 2 follows from Lemma 1, Corollary 1 and the obvious
fact that, for A = k[z], the map Fn = Fa(I,J) from Rx(Q) to Ra(S),
which is defined analogously to the functor F' = F(I, J) on objects, “pre-
serves” (from left to right) parametrizing families of any fixed dimen-
sion. Analogously, the second part of Theorem 2 follows from Lemma 1,
Corollary 1 and the obvious fact that, for A = k < z,y >], the map
Fr = Fa(1,J) from RA(Q) to RA(S), which is defined analogously to the
functor F' = F(I,J) on objects, “preserves’ (from left to right) perfect
representations over A.

Theorems 1 and 2 are proved.
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