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ABSTRACT. Let Z™ be a cubical lattice in the Euclidean space
R™. The generalized dihedral group Dih(Z") is a topologically
discrete group of isometries of Z™ generated by translations and
reflections in all points from Z". We study this group as a group
generated by a (2n + 2)-state time-varying automaton over the
changing alphabet. The corresponding action on the set of words
is described.

Introduction

For any abelian group A the generalized dihedral group Dih(A) is defined
as a semidirect product of A and Zs with Zs acting on A by inverting
elements, i.e.

DZh(A) =A N ZQ,

with ¢(0) the identity and ¢(1) inversion. If A is cyclic, then Dih(A) is
called a dihedral group. The subgroup of Dih(A) of elements (a,0) is a
normal subgroup of index 2, isomorphic to A, while the elements (a,1)
are all their own inverse. This property in fact characterizes generalized
dihedral groups, in the sense that if a group G has a subgroup N of index
2 such that all elements of the complement G — N are of order two, then
N is abelian and G ~ Dih(N).

Let Z™ be a free abelian group of rank n. We may look on it as a
cubical lattice in the Euclidean space R™. The corresponding generalized
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dihedral group Dih(Z") is a topologically discrete group of isometries of
Z"™ generated by translations and reflections in all points from Z". In
case n = 1 this is the isometry group of Z, which is called the infinite
dihedral group and is isomorphic to the free product of two cyclic groups
of order two. For n = 2 it is a type of the so-called wallpaper group - the
mathematical concept to classify repetitive designs on two-dimensional
surfaces. For n = 3 this is the so-called space group of a crystal. Our
new look on the group Dih(Z") is via the time-varying automata theory.
Namely, we realize this group as a group defined by a (2n + 2)-state
time-varying automaton over the changing alphabet.

1. Time-varying automata and groups generated by them

Let Ng = {0,1,2,...} be a set of nonnegative integers. A changing al-
phabet is an infinite sequence

X - (Xt)t€N07

where X; are nonempty, finite sets (sets of letters). A word over the
changing alphabet X is a finite sequence xox1 ...z, where x; € X; for
i=0,1,...,1. We denote by X* the set of all words (including the empty
word ). By |w| we denote the length of the word w € X*. The set of
words of the length ¢ we denote by X (). For any ¢ € Ny we also consider
the set X(; of finite sequences in which the i-th letter (i = 1,2,...)
belongs to the set Xy4;—1. In particular X)) = X*.

Definition 1. A time-varying Mealy automaton is a quintuple

=(Q, X,Y, 0, 1),
where:
1. Q = (Q1)ten, 1S a sequence of sets of inside states,
2. X = (Xy)ten, is a changing input alphabet,
3. Y = (Yi)ien, is a changing output alphabet,
4. © = (p1)ien, 15 a sequence of transitions functions of the form

o1 Qi X Xy — Qit1,

5. = (Pr)ten, is a sequence of output functions of the form

P Qp x Xy — Y.



100 THE GENERALIZED DIHEDRAL GROUPS...

We say that an automaton A is finite if the set

S= @

teNg

of all its inside states is finite. If |S| = n, we say that A is an n-state
automaton.

It is convenient to present a time-varying Mealy automaton as a la-
belled, directed, locally finite graph with vertices corresponding to the
inside states of the automaton. For every t € Ny and every letter x € X,
an arrow labelled by x starts from every state ¢ € @y to the state p;(q, x).
Each vertex q € Q; is labelled by the corresponding state function

Otq: Xe = Yy, orq(x) = Yi(q, x). (1)

To make the graph of the automaton clear, the sets of vertices V;
and Vp corresponding to the sets @)y and Qp respectively, are disjoint
whenever ¢ # t' (in particular, different vertices may correspond to the
same inside state). Moreover, we will substitute a large number of arrows
connecting two fixed states and having the same direction for a one multi-
arrow labelled by suitable letters and if the labelling of such a multi-arrow
is obvious we will omit this labelling.

For instance Figure 1 presents a 2-state time-varying automaton in
which @Q; = {0,1}, X; = Y; = {0,1,...,t + 1} and the state functions
at o = o¢ and 0y = 1 are respectively a cyclical permutation (0,1,...,t+

) and the identity permutation of the set Xj.

@ ;
(o)

)1
N
&

o

Figure 1: an example of a 2-state time-varying automaton

A time-varying automaton may be interpreted as a machine, which
being at a moment ¢ € Ny in a state ¢ € (J; and reading on the input tape
a letter x € Xy, goes to the state ¢;(g,x), types on the output tape the
letter 1¢(q, ), moves both tapes to the next position and then proceeds
further to the next moment ¢ + 1.

The automaton A with a fixed initial state ¢ € Qg is called the initial
automaton and is denoted by A,. The above interpretation defines a
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natural action of A, on the words. Namely, the initial automaton A,
defines a function f;‘: X* — Y™ as follows:

Fit@oxr...mp) = o(qo, o)1 (g1, x1) . Yu(qus 1),

where the sequence qq, q1, . .., q of inside states is defined recursively:

Q0=q ¢=vi-1(g-1,7i-1) for i=1,2,... 1 (2)

This action may be extended in a natural way on the set X“ of infinite
words over X.

The function f;‘ is called the automaton function defined by A,. The
image of a word w = xgx1 . ..x; under a map f;‘ can be easily found using
the graph of the automaton. One must find a directed path starting in
a vertex ¢ € Qo and with consecutive labels xg, z1,...,x;. Such a path
will be unique. If og,01,...,0; are the labels of consecutive vertices in
this path, then the word f;‘(w) is equal to op(xo)o1(x1) ... op(x).

In the set of words over a changing alphabet we consider for any
k € Ny the equivalence relation ~y, as follows:

w ~yp v if and only if w and v have a common prefix of the length k.

Let X and Y be changing alphabets and let f be a function of the
form f: X* — Y*. If f preserves the relation ~j for any k, then we say
that f preserves beginnings of the words. If | f(w)| = |w| for any w € X*,
then we say that f preserves lengths of the words.

Theorem 1. [7] The function f: X* — Y™ is an automaton function
(defined by some initial automaton Ay) if and only if it preserves begin-
nings and lengths of the words.

Definition 2. Let f: X* — Y™ be an automaton function and let w € X*
be a word of the length |w| = n. The function fu,: X ) — Y(y) defined
by the equality

fwv) = f(w) fu(v)
1s called a remainder of f on the word w or simply a w-remainder of f.
Definition 3. Let A = (Q, X, Y, ¢, %) be a time-varying Mealy automa-

ton. For any ty € Ny the automaton Al'® = (Q', X", Y’ ¢, ¢') defined as
follows

/ / ! / !
Qr = Quot+t, Xy = Xtgrt, Yy =Yoot ©p = Pro+ts Vr = Vit

1s called a to-remainder of A.
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If f= f;‘ is defined by the initial automaton A, and w = xox1 ... 2y,
then the w-remainder f,, is an automaton function generated by the
initial automaton B,,, where B = A|' is an l-remainder of A and the
initial state ¢; is defined by (2).

Definition 4. An automaton A in which input and output alphabets co-
incide and every its state function oy q: Xy — Xy is a permutation of X
1s called a permutational automaton.

If A is a permutational automaton, then for every ¢ € Qg the trans-
formation f;‘: X* — X* is a permutation of X*.

The set SA(X) of automaton functions defined by all initial automata
over a common input and output alphabet X forms a monoid with the
identity function as the neutral element. The subset GA(X) of functions
generated by permutational automata is a group of invertible elements in
SA(X). The group GA(X) is an example of residually finite group (see

8])-

Definition 5. Let A = (Q, X, X, ¢,v) be a time-varying permutational
automaton. The group of the form

G(A) = (f: ¢ € Qo)
1s called the group generated by automaton A.

For any permutational automaton A the group G(A) is residually
finite, as a subgroup of GA(X). It turns out that groups of this form
include the class of finitely generated residually finite groups.

Theorem 2. [8] For any n-generated residually finite group G there is
an n-state time-varying automaton A such that G = G(A).

2. The embedding into the permutational wreath product

In this section we describe a close realtion between time-varying automata
groups and permutational wreath products. Let K and H be finitely
generated groups such that H is a permutation group of a finite set L.
We define the permutational wreath product K }; H as a semidirect
product

(KxKx...xK)xH,

L]

where H acts on the direct product by permuting the factors.
Let G be any subgroup of GA(X). For any ¢ € Ny we define the group

Gi:<fw: fea, weX<i>>,
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which is a group generated by remainders f,, of functions f € G on all
words w € X* of the length |w| = 4. In particular Gy = G.

Proposition 1. For any f,g € SA(X) and any word w € X* we have
(fg)w = fwgf(w)~ (3)
If g € GA(X), then
_ -1
(97 = (Gg1a) - (4)
Proof. For any u € X(},,|) we have
(f9)(wu) = (fg)(w)(fg)w(u)-
On the other hand
(fg)(wu) = g(f(wu)) = g(f(w) fuw(w)) =
= 9(f(W)gyw)(fuwlw) = (f9) (W) (fwgsw)(w),
what gives (3) from the previous equality. The formula (4) follows by
substitution of f for =1 in (3). O
Proposition 2. Let us put the letters of the set X; into the sequence
Zo, X1y Tm—1-
Then the mapping
U(g) = (929 Gwr1s- -+ » Yzm—1)Tg (5)

defines the embedding of the group G; into the permutational wreath prod-
uct Git1 lx, S(X;), where the permutation o, € S(X;) is defined by

og(7) = g().
Proof. The equalities

g(zu) = og(x)gs(u), =€ Xi, u€ Xjq)
imply that ¥ is one-to-one. Next, by Proposition 1 we have:
\Ij(fg) = ((fg)xo’ SRR (fg)xm—l)gfg =

= (fxogof(xo)v sy fxm—lga'f(mmfl)) 0f0g =
- (f$()7 fxlu ... 7f€£m_1)af (gx()?gCCl? ... JgIm_1)Ug = \I’(f)\lj(g)

Hence ¥ is a homomorphism. O
We will rewrite (5) in the form

g = [gxoa 91y - - agftm—l]ag

and call this the decomposition of g. In case o, = 1 (the identity permu-
tation) we will write g = [gags Gays - - s Grpy_1)-
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3. Dih(Z") as a time-varying automaton group

Let mg = 2, m1, mo,... be an infinite sequence of positive even numbers
and let aq,ao,...,ar be a sequence of positive odd numbers such that

sup{ - T .}_oo. (6)
i lal+ay+...+a
Lemma 1. Let r1,79,...,1 be integers such that the congruence
airy +abre + ... +airy =0 (mod my)
holds for any i € Ng. Thenri =19 =...=1r; =0.

Proof. There are integers g;, such that aﬁrl +.. .—i—a};rk = g;m; for i € Ny.
Let us denote ¢ = max{|ry|,...,|rg|}. For any i € Ny we have

lgims| = |airy + ...+ akry| <clad +...+ab).

We show that ¢; = 0 for infinitely many i € Ny. Otherwise, there is
ig € Np such that ¢; # 0 for all 4 > ig. Then

> |gimi > my;
- ail—i—...—&—a}‘; —al .. tag

for all ¢ > ip, what is contrary to the assumption (6). Let i3 <o < ...
be an infinite sequence for which ¢;; = 0, j € No. Thus (rq,...,73) is a
solution of the homogeneous system of linear equations

aijx1+...+a2jxk:0, j=1... k.

The matrix of this system is a generalized Vandermonde k x k matrix. It
is known that its determinant is always positive. Hence all r; are equal
to zero. ]

We define a 2k-state time-varying, permutational automaton A in
which (in point 4 below z +,, y denotes an arithmetical operation mod-
ulo m):

1. Qt:{al,—al,GQ,—GQ,---,ak,_ak},
2. Xt:{O,l,...,mt—l},
3. pi(Fa;,x) = a; - (—1)%,

4. Py(Fa;, ) = x d4p, at.

]
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We are going to show that the group G(A) generated by the automaton
A is isomorphic to the generalized dihedral group Dih(ZF=1).

The graph of A is a disjoint sum of k graphs of the form depicted in
the Figure 2, each one defining a 2-state time-varying automaton with
the set {—a;, a;} of its inside states (the labelling oy constitutes a cyclical
permutation (0,1,...,m; — 1) of the set X;). Directly from the above

Figure 2: the fragment of A corresponding to the states +a; € Qg

graph we see that f(;‘; = ffai fori=1,2...,k, and hence

G(A) = ([ fays -+ fa)-

To simplify, we denote
fi=f2
for i = 1,2,...,k. For any i € {1,2,...,k} and any j € Ny we also
denote by f; ; the remainder of f; on a zero-word 00...0 of the length j.
In particular f; = f;o.

Proposition 3. The decomposition of f;;, € € {=1,1} is as follows

-1 -1 1 4 _edl
fig = igrs fi s figans Fijins s figans fijidlog

In particular f? =1fori=1,2,...,k.

Proof. Let us denote by f;] the remainder of f; on the word 11...1 of
the length j. Directly from the graph of A we have

_ _ _ al

fz’,j = [fz‘,j—f—l;fi,jJrl:fi,j+17f¢7j+1a-- . 7fi,j+17fi,j+1]0jz7
L - - _ —a!
fi,j 7 [fi,j—f—la fi,j+1v fij+1, f@j.;.p s Jiges fi,j+1]0j '

As a; is an odd number, we obtain:

figli; = fijfig = igailijo fijo figevs figeifijyns - i Jigl-
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Hence f;] fij = fij f;] =1 and in consequence f;j = fljjl In particular

1} =120 = fias fidloolfins filoo = [fin £l fid fin]l = 1
[

Since all the generators f; are of order two, every element g € G(A)
is of the form g = f,, fu, ... fu, for some vy, v9,..., v € {1,2,...,k} and
vig1 #vjforj=1,...,r =1

Proposition 4. Let g, be a remainder of g on the wordw € X. Then

_ ) Juil, 1,27 .flsr,l) , if x even,
o fyl,ifuz,z-uflgmil) 5 ifIL’Odd,

where x is the last letter of w.

Proof. By Proposition 1 we may write

Guw = (fl/lfuz oo )w = (fV1)w1(fV2)w2 o (o) wes

where (fy,)w,; (j =1,...,7) is a remainder of f,, on the word

wy = fulfyz .. 'ijfl(w) c X(’L)

From the graph of A and by Proposition 3, the remainder of any generator
fi = f[ﬁ on an arbitrary word v € X is equal to ft;forsomee € {-1,1}.
In consequence

Jw = fV17 fVQy y V‘H

for some e1,e9,...,6, € {—1,1}. Let w’' € X* be a prefix of w of the
length |[w| —1=1¢—1. Then

, — f5/1 €5 fe;
Ju' = Juii—1Jva i1 Ju i1

for some &},¢),...,el. € {~1,1}. By Proposition 1 the element f,f;l is
A
J

. o
equal to ( v, i_1)z' - the remainder of fl,]], ;1 on a one-letter word z’,

where
/_fa’l A €5—1 () + (lzl+ 4+ 11)
T = vi,i—1Jva—1 """ Jw; q1,i—1 T L Tm;_y Ela‘Vl 6] 10y

Since m;—1 is even-and a,,, ..., a,;_, are all odd, the parity of the letter
2’ depends only on j and z in the following way: for x even the letter 2’

is even only for j odd, and for z odd the letter 2’ is even only for j even.

Now, it suffices to see that by Proposition 3 the remainder ( fjj i) 18

equal to f,, ; for 2’ even, or to f;j L for 2’ odd. O
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Let g € G(A) be represented by a group-word

fVlfVQ“'er (7)
(now, we do not assume that v;; # v;). With the group-word (7) we
associate the sequence of integers 1,79, ..., 7, in which

ri:r;—rf

and 7 (r;) denotes the number of occurrences of the generator f; in
even (odd) positions in (7).

Remark 1. Removing in (7) any subword of the form f;f; does not
change the value of any 7.

Proposition 5. Any word w = zox1...2¢ € X* is mapped by g on the
word g(w) = yoy1 ...yt € X*, where

Yi = Tj +m, (—1)%1 (airl + aérg +...+ ai;rk)

fori=0,1,...,t (we assume x_1 =0).

Proof. By Remark 1 we may assume that vj11 # v; for j = 1,...,7r —
1. Now, the thesis follows by the equality y; = 9z0z,..2;_, (zi) and by
Proposition 4. O

Let r be the length of the group-word (7). In case r even the number
of all the symbols in even positions in (7) is equal to the number of all
the symbols in odd positions, and in case r odd these numbers differ by
one. Hence the sum

E=r1+ro+ ...+ 1k

is equal to (7)2 - the remainder of r modulo 2.

Theorem 3. The mapping

\I](g) = (T17T25 CE) Tk—l) €
defines the isomorphism between the groups G(A) and Dih(ZF1).

Proof. First we show that ¥ is a well-defined, one-to-one mapping from
G(A) to Dih(ZF1). Let g = fu,...fs, and ¢ = fu, ... fu, be any
elements of G(A). Let

Tlyeo ey Ty E=T1+ ...+ 7Tk,

/ / / / /
Tly-w 3Ty, € =771+ ...+ Ty
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be sequences corresponding to the group-words f,, ... f,, and f,, ... f.,
respectively. By Proposition 5 we have: g = ¢’ if and only if

i +m, (,1)961-—1(&%7"1 +...+ a?crk) =X tm,; (—l)xi—l(airi + ..\ a}%r}c)

for any x;_1 € X;_1,x; € X; and any ¢ € Ny. This condition is equivalent
to the congruences:

ai(rl )+ .+ ai(rk — 7)) =0 (mod m;)

for any ¢ € Ng. By Lemma 1 this is equivalent to the equalities: r; = 77
for t = 1,2,...,k. In particular ¢ = ¢/. As a result we have: g = ¢’ if
and only if ¥(g) = ¥(g’). To show ¥ is a homomorphism, let us denote

U(gg') = (R1,...,Rx—1)e". Since g9’ = fu, ... fu, fur - fu,, we have:

7

' =(r+s)2=(r)a2+2(s)2 =e+2¢"

If e = 0, then r is even. Thus for any ¢ € {1,2,...,k — 1} the position
of any symbol f; in the group-word f,, ... f,, has the same parity as in
the group-word f,, ... fu, fu, - - fu,- In consequence R;r = r;r + r§+ and
R, =r; +r, . Thus for i = 1,2,...,k — 1 we have in this case

)

Ri= Ry = Bf = (7 —rf) G4 =" = ri+1)

K3 (3

If e = 1, then r is odd and the positions of any f; in group-words
fur oo fus and fu, ... fu fui - .- fu, are of different parity. In consequence
Rf=rf+r" and R =r; + 7%, Thus for i = 1,2,...,k — 1 we have
in this case

RizRi——Rjz(ri_—Tj)—(rg_—r’~+):7",~—r£.

Hence ¥(gg') = ¥(g)¥(g’). Tho show ¥ is onto we take any sequence
of integers r1,79,...,r, with the sum ¢ = r +ro 4+ ... + 1, € {0,1}.
Then there is a group-word f,, fu, ... f, in the symbols fi, fa,..., fx for
which:

(1) r= [ +[raf + -+ |rl,
(ii) the symbol f; (i = 1,2,...,k) occurs |r;| times in this word,
(iii) if ; > 0 (r; <0), then each f; occurs in the odd (even) position.

Then ¥(g) = (r1,72,...,7k—1) € for the element g = f,, fu, - .. fu,- O
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Corollary 1. Let ||g|| be the length of the shortest presentation of any
g € G(A) as a product of generators fi,..., fr. If

\I/<g) = (7“1,7”2, Ce ,Tk,1)€,
then
gl = |r1] + |re| + .o+ et +r1 +re oo+ — €]

Proof. Any group-word f,, fu, ... f,, satisfying the conditions (i)-(iii) in
the proof of Theorem 3 constitutes the shortest representative of g. [

Using Theorem 3 one may derive the following algorithms solving the
word problem (WP) and the conjugacy problem (CP) in G(A).

ALGORITHMS: Let f,, ... f,, and f,, ... fu,, be any group-words in
fi,--., fr. Calculate their sequences: rq,... 7, and r,... 7, €. Then

(WP) the group-words define the same element if and only if r; = 7/ for
i=1,...,k,

(CP) the group-words define the conjugate elements if and only if € = 0
and r; = —r for i =1,...,k, orif ¢ = 1 and r; = 7} (mod 2) for
1=1,...,k.

4. The action on the set of words

With the group G = G(A) we associate the following subgroups:

1. Stg(w) ={g € G: g(w) = w} - the stabilizer of the word w € X*,

2. Stg(n) = ()  Ste(w)- the stabilizer of the n-th level, which is
weX(n)
the intersection of the stabilizers of the words of the length n,

3. P, - the stabilizer of an infinite word u € X* (the so called parabolic
subgroup).

Theorem 4. Letn € N, w € X and u € X¥. Then
Stg(w) = Stg(n) ~ /s

and the parabolic subgroup P, is a trivial group.
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Proof. Let ¥(g) = (r1,...,7k—1)e. By proposition 5 we have g € Stg(w)
if and only if g € Stg(n) if and only if e = 0 and

(a’i — ai)rl + (aé — a}%)rz 4.+ (az_l — a};)rk_l = 0 (mod m;)

for 0 < ¢ < m. Thus in case n = 1 we have: g € Stg(w) if and only
if g € Stg(n) if and only if e = 0. Hence Stg(w) = Stg(l) ~ Z*~! in
this case. Thus for n > 1 the stabilizer Stg(w) = Stg(n) < Stg(1) is
isomorphic with a free abelian group of rank I < k—1. On the other hand,
if each r; is divisible by the product mims...m,_1, then the element ¢
with ¥(g) = (r1,...,7,—1)0 is an element of the stabilizer Stg(n). In
consequence Stg(n) contains Z*~! as a subgroup. Thus Stg(n) must
be isomorphic with Z¥~1. The triviality of any parabolic subgroup is a
direct consequence of Lemma 1. ]

Let w = xgx1 ... 2+ € X* be any word over the changing alphabet X
and let

Orb(w) = {g(w): g € G}

be its orbit. From Proposition 5 and Theorem 3 we see that the word
v = yoy1 ...y € X* belongs to Orb(w) if and only if there are integers
T1,72,...,Tk—1,€ with € € {0, 1} such that

k-1
Vi = ;i +m, (—1)9“*15%f +m, (—1)%1 a — ak (8)
i=1

.

for : =0,1,...,t. Since, all m; are even and all a; are odd, this implies:
Yi — Yo = z; — xo (mod 2) for ¢ = 0,1,...¢. In particular the action of
the group G(A) on the set X* is not spherically transitive. By adding
some additional assumption on m;, we may obtain a nice description of
this action.

Theorem 5. Let p1 < p2 < p3 < ... be a sequence of odd primes such
that p; > i(a% +.. .+a}'€) and let m; = 2p; fori=1,2.... Then the words
W= xox1... Tt and v = Yoy - . . Y belong to the same orbit if and only if

Yi —yo = x; — o (mod 2) (9)
fori=0,1,...,t. In particular

(G : Stg(t+1)] = momy ... my /2"

fort=20,1,2,....
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Proof. The equalities p; > i(al + ...+ al) assure that the condition (6)
holds. Thus, it suffices to prove, that if w and v satisfy (9), then there

is a sequence 11,79, ...,Tk—1,€ with € € {0, 1} which satisfies (8). Let us
denote: € = (yo— )2 and z; = (y; —x;) - (—=1)% -1 —eal, b; = (a} —a})/2
fori =0,1,...,¢t. Then all z; are even, and for ¢ = 1,2, ..., ¢ the numbers

b; and p; are coprime. Using the Chinese Remainder Theorem we can find
an integer r such that

zi/2 = rb; (mod p;)

for : = 1,2,...,t. Then the sequence r1,72,...,7%_1,€ in which r; = r
and 19 = ... =rg_1 = 0 satisfies (8). As a consequence we obtain

[G: Stg(t+1)] = [G : Stg(w)] = |Orb(w)| = momy ... my/2".
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