Algebra and Discrete Mathematics Number 3. **(2008).** pp. 88 – 97 © Journal "Algebra and Discrete Mathematics" # On a question of A. N. Skiba about totally saturated formations Vasily G. Safonov Communicated by L. A. Shemetkov ABSTRACT. It is proved that the lattice of τ -closed totally saturated formations of finite groups is distributive. This is a solution of Question 4. 2. 15 proposed by A. N. Skiba in his monograph "Algebra of Formations" (1997). ## Introduction All groups under consideration are finite. The notations and definitions we use are borrowed from [1]–[4]. Recall that a formation \mathfrak{F} is called saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$. It is known that if \mathfrak{F} is a non-empty saturated formation, then $\mathfrak{F} = LF(f)$, i. e., \mathfrak{F} has a local satellite f. In [5] Skiba has offered the following concept of a totally saturated formation. Every group formation is 0-multiply saturated. For $n \geq 1$, a formation $\mathfrak{F} \neq \emptyset$ is called n-multiply saturated, if it has a local satellite f such that every non-empty value f(p) of f is a (n-1)-multiply saturated formation. A formation is called totally saturated if it is n-multiply saturated for all natural n. By definition any totally saturated formation is non-empty. Let τ be a function such that for any group G, $\tau(G)$ is a set of subgroups of G, and $G \in \tau(G)$. Following [3] we say that τ is a subgroup The research is supported by the Grant Φ 06MC-017 of BRFFI (Belarus). ²⁰⁰⁰ Mathematics Subject Classification: 20D10, 20F17. **Key words and phrases:** formation of finite groups, totally saturated formation, lattice of formations, τ -closed formation. functor if for every epimorphism $\varphi:A\to B$ and any groups $H\in\tau(A)$ and $T\in\tau(B)$ we have $H^\varphi\in\tau(B)$ and $T^{\varphi^{-1}}\in\tau(A)$. A group class \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for all $G \in \mathfrak{F}$. The set l_{∞}^{τ} of all τ -closed totally saturated formations is a complete lattice [3]. In [3] Skiba proved that the lattice of all soluble totally saturated formations is distributive. There were some open questions on modularity or distributivity (see [2], Problem 10.11; [6], Question 14.80; [7], Problem 21; [3], Questions 4.2.14). These questions were solved in [8]–[11]. In [10] we proved that l_{∞}^{τ} is modular. In this paper we prove that l_{∞}^{τ} is distributive; this is a solution of Question 4.2.15 in [3]. ## 1. Definitions, notations and preliminary results Every function of the form $f: \mathbb{P} \longrightarrow \{formations \ of \ groups\}$ is called a local satellite [12]. A group G is called a pd-group if p divides |G|; $\pi(G)$ is the set of all primes dividing the order of a group G; $\pi(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \pi(G)$; $F_p(G) = O_{p',p}(G)$. Following [4], we denote by LF(f) the class of all groups G which satisfy the following condition: for any chief factor H/K of G and for all primes p dividing |H/K|, we have $G/C_G(H/K) \in f(p)$. The notation $\mathfrak{F} = LF(f)$ means that f is a local satellite of \mathfrak{F} . It is well known that a non-empty formation has a local satellite if and only if it is saturated. For any set $\mathfrak X$ of groups, l_∞^τ form $\mathfrak X$ denotes the τ -closed totally saturated formation generated by $\mathfrak X$, i.e., l_∞^τ form $\mathfrak X$ is the intersection of all τ -closed totally saturated formations containing $\mathfrak X$. For any τ -closed totally saturated formations $\mathfrak M$ and $\mathfrak H$, we set $\mathfrak M \vee_\infty^\tau \mathfrak H = l_\infty^\tau$ form $(\mathfrak M \cup \mathfrak H)$. Formations in l_∞^τ are called l_∞^τ -formations. A satellite f is called l_{∞}^{τ} -valued if all its non-empty values are l_{∞}^{τ} -formations. A local satellite f is called *integrated* if $f(p) \subseteq LF(f)$ for all primes p. If g, h are l_{∞}^{τ} -valued local satellites, then the satellites $f = g \vee_{\infty}^{\tau} h$ and $m = g \cap h$ are defined in the following way: - (1) if either $g(p) \neq \emptyset$ or $h(p) \neq \emptyset$, then $f(p) = l_{\infty}^{\tau} \text{form}(g(p) \cup h(p))$; - (2) if $g(p) = \emptyset$ and $h(p) = \emptyset$, then $f(p) = \emptyset$; - (3) $m(p) = g(p) \cap h(p)$ for all $p \in \mathbb{P}$. If \mathfrak{F} is an l^{τ}_{∞} -formation, then $\mathfrak{F}^{\tau}_{\infty}$ denotes the minimal l^{τ}_{∞} -valued local satellite of \mathfrak{F} , i.e., $\mathfrak{F}^{\tau}_{\infty} = \cap_{i \in I} f_i$, where $\{f_i | i \in I\}$ is the set of all l^{τ}_{∞} -valued local satellites of \mathfrak{F} . For an arbitrary sequence of primes p_1, p_2, \ldots, p_n and for any set \mathfrak{X} of groups, the class $\mathfrak{X}^{p_1p_2...p_n}$ is defined recursively in the following way: - (1) $\mathfrak{X}^{p_1} = (A/F_{p_1}(A)|A \in \mathfrak{X});$ - (2) $\mathfrak{X}^{p_1p_2...p_n} = (A/F_{p_n}(A)|A \in \mathfrak{X}^{p_1p_2...p_{n-1}}).$ For any set \mathfrak{X} of groups, we put $\mathfrak{X}^{\tau}_{\infty}(p) = l^{\tau}_{\infty} \text{form} \mathfrak{X}^{p}$, if $p \in \pi(\mathfrak{X})$, and $\mathfrak{X}^{\tau}_{\infty}(p) = \emptyset$ if $p \notin \pi(\mathfrak{X})$. A sequence of primes p_1, p_2, \ldots, p_n is called *suitable for* \mathfrak{X} (or \mathfrak{X} -suitable) if $p_1 \in \pi(\mathfrak{X})$ and for any $i \in \{2, \ldots, n\}$ we have that $p_i \in \pi(\mathfrak{X}^{p_1 p_2 \ldots p_{i-1}})$. Let p_1, p_2, \ldots, p_n be an \mathfrak{F} -suitable sequence. Then the *totally local* satellite $\mathfrak{F}_{\infty}^{\tau} p_1 p_2 \ldots p_n$ is defined recursively as follows: - (1) $\mathfrak{F}_{\infty}^{\tau} p_1 = (\mathfrak{F}_{\infty}^{\tau}(p_1))_{\infty}^{\tau};$ - $(2) \mathfrak{F}_{\infty}^{\tau} p_1 \dots p_n = (\mathfrak{F}_{\infty}^{\tau} p_1 \dots p_{n-1}(p_n))_{\infty}^{\tau}.$ If Θ is a complete lattice, then Θ^l denotes the complete lattice of all saturated formations $\mathfrak{F} = LF(f)$ such that $f(p) \in \Theta$ for every $p \in \pi(\mathfrak{F})$. A complete lattice Θ is called *inductive* if for any set $$\{\mathfrak{F}_i = LF(f_i) | \mathfrak{F}_i \in \Theta^l, f_i \text{ is integrated}, i \in I\},$$ the following equality holds: hity holds: $$ee_{\Theta^l}(\mathfrak{F}_i|i\in I) = LF(ee_{\Theta}(f_i|i\in I)).$$ For any group G and a non-empty formation \mathfrak{F} , by $G^{\mathfrak{F}}$ we denote the \mathfrak{F} -residual of G, i.e., the intersection of all normal subgroups N of G such that $G/N \in \mathfrak{F}$. $\mathfrak{F}\mathfrak{H} = \{G|G^{\mathfrak{H}} \in \mathfrak{F}\}$ is the product of formations \mathfrak{F} and \mathfrak{H} . \mathfrak{S}_{π} is the class of all soluble π -groups (π is a non-empty set of primes); \mathfrak{N}_{p} is the class of all p-groups (p is a prime). The next lemma is a special case of Lemma 4.1.2 in [3, p. 152]. **Lemma 1.** Let \mathfrak{F}_i be a τ -closed totally saturated formation, $i \in I$. Then $f = \bigvee_{\infty}^{\tau} (\mathfrak{F}_{i_{\infty}} | i \in I)$ is the minimal l_{∞}^{τ} -valued local satellite of $\mathfrak{F} = \bigvee_{\infty}^{\tau} (\mathfrak{F}_i | i \in I)$. **Lemma 2.** [3, p. 33]. Let \mathfrak{X} be a non-empty class of group and $\mathfrak{F} = l_{\infty}^{\tau}$ form \mathfrak{X} . If f is the minimal l_{∞}^{τ} -valued local satellite of \mathfrak{F} , then - (a) $\pi(\mathfrak{X}) = \pi(\mathfrak{F});$ - (b) $f(p) = l_{\infty}^{\tau} \text{form}(G/F_p(G)|G \in \mathfrak{X}) = l_{\infty}^{\tau} \text{form}(G/F_p(G)|G \in \mathfrak{F})$ for all $p \in \pi(\mathfrak{X})$; - (c) $f(p) = \emptyset$ for all $p \notin \pi(\mathfrak{X})$; - (d) if $\mathfrak{F} = LF(h)$, where h is an l_{∞}^{τ} -valued local satellite, then $$f(p) = l_{\infty}^{\tau} \text{form}(A|A \in h(p) \cap \mathfrak{F}, O_p(A) = 1).$$ **Lemma 3.** [13]. The lattice of τ -closed totally saturated formations is inductive. **Lemma 4.** [14]. Let \mathfrak{F} be a non-empty τ -closed formation and π be a set of primes such that $\pi(\mathfrak{F}) \subseteq \pi$. Then the formation $\mathfrak{S}_{\pi}\mathfrak{F}$ is τ -closed totally saturated. **Lemma 5.** [3, p. 41]. Let A be a monolithic group and let Soc(A) be a non-abelian group. Let \mathfrak{M} be a τ -closed homomorph. If $A \in l_n^{\tau}$ form \mathfrak{M} , then $A \in \mathfrak{M}$. **Lemma 6.** [2, p. 168]. Let \mathfrak{F} be a formation, \mathfrak{M} a saturated formation, and let G be a group of minimal oder in $\mathfrak{F} \setminus \mathfrak{M}$. Then - (a) G is a monolithic group and $Soc(G) = G^{\mathfrak{M}}$; - (b) if $G^{\mathfrak{M}}$ is a p-group, then $G^{\mathfrak{M}} = C_G(G^{\mathfrak{M}}) = F_p(G)$. **Lemma 7.** [2, p. 78]. Let $\mathfrak{F} = LF(f)$. If $G/O_p(G) \in f(p) \cap \mathfrak{F}$, then $G \in \mathfrak{F}$. **Lemma 8.** [1, p. 38]. Let $\mathfrak{F} = LF(f)$. Then the following statements are equivalent: - (a) $G \in \mathfrak{F}$; (b) $G/F_p(G) \in f(p)$ for all $p \in \pi(G)$. **Lemma 9.** [3, p. 152]. Let G be a group such that $O_p(G) = 1$, let $N_1 \times \ldots \times N_k = \operatorname{Soc}(G)$, where N_i is a minimal normal subgroup of G $(k \geq 2)$. Let M_i denote a maximal normal subgroup of G, which contains $N_1 \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_k$ and does not contain N_i , $i \in \{1, \ldots, k\}$. Then - (a) G/M_i is a monolithic and $Soc(G/M_i) = N_iM_i/N_i$ for any $i \in$ $\{1,\ldots,k\};$ - (b) $N_i M_i / N_i$ is G-isomorphic to N_i ; - (c) $O_n(G/M_i) = 1$; - (d) $M_1 \cap \ldots \cap M_k = 1$. #### 2. Main result The following lemma can be proved by direct calculations. **Lemma 10.** Let $\mathfrak{F}_i = LF(f_i)$, where f_i is an integrated l_{∞}^{τ} -valued local satellite of \mathfrak{F}_i , $i \in I$. If $\mathfrak{F} = \cap (\mathfrak{F}_i | i \in I)$, then $f = \cap (f_i | i \in I)$ is an integrated l_{∞}^{τ} -valued local satellite of \mathfrak{F} . Let $\mathfrak{F}, \mathfrak{M}$, and \mathfrak{X} be τ -closed totally saturated formations. Let p_1, \ldots, p_n be some suitable sequence for \mathfrak{F} , \mathfrak{M} , and \mathfrak{X} . Then by $\widehat{\mathfrak{L}}_{\infty}^{\tau}$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}$, $\widehat{\mathfrak{L}}_{\infty}^{\tau}p_1$, $\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1, \dots, \widehat{\mathfrak{L}}_{\infty}^{\tau} p \dots p_n, \widehat{\mathfrak{H}}_{\infty}^{\tau} p \dots p_n$ we denote a l_{∞}^{τ} -valued local satellites such that $$\widehat{\mathfrak{L}}_{\infty}^{\tau} = (\mathfrak{X}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau} = (\mathfrak{X}_{\infty}^{\tau} \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}) \cap \mathfrak{F}_{\infty}^{\tau},$$ $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_{1} = (\mathfrak{X}_{\infty}^{\tau} p_{1} \cap \mathfrak{F}_{\infty}^{\tau} p_{1}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p_{1} \cap \mathfrak{F}_{\infty}^{\tau} p_{1}),$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 = (\mathfrak{X}_{\infty}^{\tau} p_1 \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p_1) \cap \mathfrak{F}_{\infty}^{\tau} p_1, \dots,$$ $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_1 p_2 \dots p_n =$$ $$= (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_n \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_n) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_n \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_n),$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 p_2 \dots p_n = (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_n \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_n) \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_n.$$ **Lemma 11.** Let \mathfrak{M} , \mathfrak{X} , and \mathfrak{F} be τ -closed totally saturated formations. If $\mathfrak{L} = (\mathfrak{X} \cap \mathfrak{F}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F})$ and $\mathfrak{H} = (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M}) \cap \mathfrak{F}$, then (a) $\pi(\mathfrak{L}) = \pi(\mathfrak{H});$ (b) for any suitable sequence p_1, \ldots, p_n for $\mathfrak{X}, \mathfrak{M}$ and \mathfrak{F} , the satellites $\widehat{\mathfrak{L}}_{\infty}^{\tau}$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}$, $\widehat{\mathfrak{L}}_{\infty}^{\tau}p_1$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}p_1$, ..., $\widehat{\mathfrak{L}}_{\infty}^{\tau}p_1$, ..., p_n , $\widehat{\mathfrak{H}}_{\infty}^{\tau}p_1$, ..., p_n are integrated l_{∞}^{τ} -valued local satellites of the formations \mathfrak{L} , \mathfrak{H} , $$\widehat{\mathfrak{L}}_{\infty}^{\tau}(p_1), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau}(p_1), \quad \dots, \quad \widehat{\mathfrak{L}}_{\infty}^{\tau}p_1 \dots p_{n-1}(p_n), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau}p_1 \dots p_{n-1}(p_n),$$ respectively. Proof. Put $\mathfrak{L}_1 = \mathfrak{X} \cap \mathfrak{F}$, $\mathfrak{L}_2 = \mathfrak{M} \cap \mathfrak{F}$, $\mathfrak{H}_1 = \mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M}$, $l_1 = \mathfrak{X}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}$, $l_2 = \mathfrak{M}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}$, and $h_1 = \mathfrak{X}_{\infty}^{\tau} \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}$. By Lemmas 10 and 1, it follows that $\mathfrak{L}_1 = LF(l_1)$, $\mathfrak{L}_1 = LF(l_1)$, $\mathfrak{H}_1 = LF(l_1)$, and l_1 , l_2 , l_1 are integrated l_{∞}^{τ} -valued local satellites. - (a) Since the inclusion $\mathfrak{L} \subseteq \mathfrak{H}$ is obvious, we obtain $\pi(\mathfrak{L}) \subseteq \pi(\mathfrak{H})$. Let $p \in \pi(\mathfrak{H}) \setminus \pi(\mathfrak{L})$. Since $p \in \pi(\mathfrak{H}_1)$, we have $h_1(p) \neq \emptyset$, by Lemma 2. If $p \notin \pi(\mathfrak{X}) \cup \pi(\mathfrak{M})$, then it follows from Lemma 2 that $\mathfrak{X}_{\infty}^{\tau}(p) = \emptyset$ and $\mathfrak{M}_{\infty}^{\tau}(p) = \emptyset$. Consequently, $h_1(p) = \emptyset$, a contradiction. Hence $p \in \pi(\mathfrak{X}) \cup \pi(\mathfrak{M})$. But in this case $p \in \pi(\mathfrak{X} \cap \mathfrak{F}) \cup \pi(\mathfrak{M} \cap \mathfrak{F}) = \pi(\mathfrak{L})$. Thus, $\pi(\mathfrak{L}) = \pi(\mathfrak{H})$. - (b) Since $\mathfrak{L} = \mathfrak{L}_1 \vee_{\infty}^{\tau} \mathfrak{L}_2$ and $\mathfrak{H} = \mathfrak{H}_1 \cap \mathfrak{F}$, it follows from Lemmas 3 and 10 that $$\widehat{\mathfrak{L}}_{\infty}^{\tau} = l_1 \vee_{\infty}^{\tau} l_2 = (\mathfrak{X}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}),$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau} = h_1 \cap \mathfrak{F}_{\infty}^{\tau} = (\mathfrak{X}_{\infty}^{\tau} \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}) \cap \mathfrak{F}_{\infty}^{\tau}$$ are integrated l_{∞}^{τ} -valued local satellites of the formations \mathfrak{L} and \mathfrak{H} , respectively. Let p_1, \ldots, p_n be a suitable sequence for $\mathfrak{X}, \mathfrak{M}$, and \mathfrak{F} . Since by the definition $\mathfrak{X}_{\infty}^{\tau}p_1 \dots p_i$, $\mathfrak{M}_{\infty}^{\tau}p_1 \dots p_i$, $\mathfrak{F}_{\infty}^{\tau}p_1 \dots p_i$ are minimal l_{∞}^{τ} -valued local satellites of the formations $$\mathfrak{X}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$$, $\mathfrak{M}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$, and $\mathfrak{F}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$ $(i = \overline{1, n})$, respectively, it follows from Lemmas 1, 3, and 10 that $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_1 p_2 \ldots p_i =$$ $$= (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_i \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_i) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_i \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_i),$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 p_2 \dots p_i = (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_i \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_i) \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_i$$ are integrated l_{∞}^{τ} -valued local satellites of the formations $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$$ and $\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$, respectively. **Lemma 12.** Let \mathfrak{M} , \mathfrak{X} , and \mathfrak{F} be τ -closed totally saturated formations. Let A be a monolithic group with a non-abelian socle. If $A \in \mathfrak{F} \cap (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M})$, then $A \in (\mathfrak{X} \cap \mathfrak{F}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F}).$ *Proof.* Let $A \in \mathfrak{F} \cap (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M})$ and $\pi = \pi(\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M})$. It follows from Lemma 4 that $\mathfrak{S}_{\pi}\tau$ form $(\mathfrak{X}\cup\mathfrak{M})$ is a τ -closed totally saturated formation. Therefore $$l_{\infty}^{\tau}$$ form $(\mathfrak{X} \cup \mathfrak{M}) \subseteq \mathfrak{S}_{\pi} \tau$ form $(\mathfrak{X} \cup \mathfrak{M})$. Since A is a monolithic group and Soc(A) is a non-abelian group, we have $A \in \tau$ form $(\mathfrak{X} \cup \mathfrak{M})$. But then by Lemma 5, it follows that $A \in \mathfrak{X} \cup \mathfrak{M}$. Since $A \in \mathfrak{F}$, we obtain $A \in (\mathfrak{X} \cap \mathfrak{F}) \cup (\mathfrak{M} \cap \mathfrak{F})$. Hence $$A \in l^{\tau}_{\infty} \text{form}((\mathfrak{X} \cap \mathfrak{F}) \cup (\mathfrak{M} \cap \mathfrak{F})) = (\mathfrak{X} \cap \mathfrak{F}) \vee^{\tau}_{\infty} (\mathfrak{M} \cap \mathfrak{F})$$ $A \in l^{\tau}_{\infty} \mathrm{form}((\mathfrak{X} \cap \mathfrak{F}) \cup (\mathfrak{M} \cap \mathfrak{F})) = (\mathfrak{X} \cap \mathfrak{F}) \vee^{\tau}_{\infty} (\mathfrak{M} \cap \mathfrak{F}).$ \Box **Theorem 1.** The lattice l^{τ}_{∞} of all τ -closed totally saturated formations is distributive. *Proof.* Assume that there exist τ -closed totally saturated formations \mathfrak{M} , \mathfrak{X} , and \mathfrak{F} such that $$(\mathfrak{X}\cap\mathfrak{F})\vee_{\infty}^{\tau}(\mathfrak{M}\cap\mathfrak{F})\neq(\mathfrak{X}\vee_{\infty}^{\tau}\mathfrak{M})\cap\mathfrak{F}.$$ Put $\mathfrak{L} = (\mathfrak{X} \cap \mathfrak{F}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F})$ and $\mathfrak{H} = (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M}) \cap \mathfrak{F}$. Since the inclusion $\mathfrak{L} \subseteq \mathfrak{H}$ is obvious, we obtain $\mathfrak{H} \not\subseteq \mathfrak{L}$. Let A be a group of minimal order in $\mathfrak{H} \setminus \mathfrak{L}$. Since \mathfrak{H} and \mathfrak{L} are τ -closed saturated formations, we see that A is a τ -minimal non- \mathfrak{L} -group with a unique minimal normal subgroup P and $P = A^{\mathfrak{L}} \not\subseteq \Phi(A)$. If P is a non-abelian group, then $A \in \mathcal{L}$, by Lemma 12. This contradiction shows that P is an abelian p-group for some prime $p \in \pi(\mathfrak{H})$. It follows from Lemma 11 that $p \in \pi(\mathfrak{L})$, $\mathfrak{L} = LF(\widehat{\mathfrak{L}}_{\infty}^{\tau})$, $\mathfrak{H} = LF(\widehat{\mathfrak{H}}_{\infty}^{\tau})$, and $\widehat{\mathfrak{L}}^{ au}_{\infty},\,\widehat{\mathfrak{H}}^{ au}_{\infty}$ are integrated $l^{ au}_{\infty}$ -valued satellites such that $$\widehat{\mathfrak{L}}^\tau_\infty(p) = (\mathfrak{X}^\tau_\infty(p) \cap \mathfrak{F}^\tau_\infty(p)) \vee_\infty^\tau (\mathfrak{M}^\tau_\infty(p) \cap \mathfrak{F}^\tau_\infty(p)),$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = (\mathfrak{X}_{\infty}^{\tau}(p) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}(p)) \cap \mathfrak{F}_{\infty}^{\tau}(p).$$ Since \mathfrak{L} is a saturated formation and $p \in \pi(\mathfrak{L})$, we see that A is not a p-group and $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \neq \emptyset$. By Lemma 6, it follows that $P = C_A(P) = F_p(A)$. Then $P = O_p(A)$. Since $P \not\subseteq \Phi(A)$, we have $A = [P]A_1$, where A_1 is a maximal subgroup of A such that $P \not\subseteq A_1$. The inclusion $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subseteq \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$ is obvious. Since $A \in \mathfrak{H} \setminus \mathfrak{L}$, we claim that $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$. Indeed, by Lemma 2, it follows that $A/F_p(A) \in \mathfrak{H}_{\infty}^{\tau}(p)$. If $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) = \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$, then $$A/O_p(A) = A/F_p(A) \in \mathfrak{H}_{\infty}^{\tau}(p) \subseteq \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$$ and $A \in \mathfrak{L}$, by Lemma 7. It is a contradiction. Therefore $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$. Note also that the condition $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$ implies $\mathfrak{X}_{\infty}^{\tau}(p) \neq \emptyset$ and $\mathfrak{M}_{\infty}^{\tau}(p) \neq \emptyset$, otherwise $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) = \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$. Hence $p \in \pi(\mathfrak{X}) \cap \pi(\mathfrak{M})$. Thus $$A_1 \simeq A/F_p(A) \in \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau}(p), \quad \widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \neq \varnothing.$$ It follows from Lemma 11 that $\pi(\widehat{\mathfrak{L}}_{\infty}^{\tau}(p)) = \pi(\widehat{\mathfrak{H}}_{\infty}^{\tau}(p))$, $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) = LF(\widehat{\mathfrak{L}}_{\infty}^{\tau}p)$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = LF(\widehat{\mathfrak{H}}_{\infty}^{\tau}p)$, and $\widehat{\mathfrak{L}}_{\infty}^{\tau}p$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}p$ are integrated l_{∞}^{τ} -valued local satellites such that $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p = (\mathfrak{X}_{\infty}^{\tau} p \cap \mathfrak{F}_{\infty}^{\tau} p) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p \cap \mathfrak{F}_{\infty}^{\tau} p).$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau} p = (\mathfrak{X}_{\infty}^{\tau} p \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p) \cap \mathfrak{F}_{\infty}^{\tau} p.$$ Since $A_1 \notin \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$, by Lemma 8(b), there exists a prime $p_1 \in \pi(A_1)$ such that $A_1/F_{p_1}(A_1) \notin \widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1)$. Since $p_1 \in \pi(\widehat{\mathfrak{H}}_{\infty}^{\tau}(p))$, we have $p_1 \in \pi(\widehat{\mathfrak{L}}_{\infty}^{\tau}(p))$ and $\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) \neq \emptyset$. Obviously, $$\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) = (\mathfrak{X}_{\infty}^{\tau}p(p_1) \cap \mathfrak{F}_{\infty}^{\tau}p(p_1)) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau}p(p_1) \cap \mathfrak{F}_{\infty}^{\tau}p(p_1)) \subseteq$$ $$\subseteq \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1) = (\mathfrak{X}_{\infty}^{\tau}p(p_1) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}p(p_1)) \cap \mathfrak{F}_{\infty}^{\tau}p(p_1).$$ Besides, since $A_1/F_{p_1}(A_1) \in \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1)$, we have $\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1)$. Therefore $\mathfrak{X}_{\infty}^{\tau}p(p_1) \neq \emptyset$ and $\mathfrak{M}_{\infty}^{\tau}p(p_1) \neq \emptyset$. Hence $p_1 \in \pi(\mathfrak{X}_{\infty}^{\tau}(p)) \cap \pi(\mathfrak{M}_{\infty}^{\tau}(p))$. Suppose that $F_{p_1}(A_1) = 1$ and let N be a minimal normal subgroup of A. Then N is a non-abelian p_1d -group. If A_1 is a monolithic group, then since $$A_1 \in \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = (\mathfrak{X}_{\infty}^{\tau}(p) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}(p)) \cap \mathfrak{F}_{\infty}^{\tau}(p),$$ by Lemma 12, it follows that $$A_1 \in (\mathfrak{X}_{\infty}^{\tau}(p) \cap \mathfrak{F}_{\infty}^{\tau}(p)) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau}(p) \cap \mathfrak{F}_{\infty}^{\tau}(p)) = \widehat{\mathfrak{L}}_{\infty}^{\tau}(p),$$ a contradiction. Therefore the group A_1 is not monolithic. Let $Soc(A_1) = N_1 \times ... \times N_k$, where N_i is a minimal normal subgroup of A_1 , and let M_i denotes a maximal normal subgroup of A_1 such that M_i contains $N_1 \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_k$ and does not contain N_i , $i=1,2\ldots,k$. By Lemma 9, it follows that A_1/M_i is a monolithic group with a non-abelian minimal normal subgroup $N_i M_i / N_i$, and $N_i M_i / N_i$ is A_1 -isomorphic to N_i . Set $B_i = A_1/M_i$, $i = 1, 2 \dots, k$. Since $$B_i \in \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = (\mathfrak{X}_{\infty}^{\tau}(p) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}(p)) \cap \mathfrak{F}_{\infty}^{\tau}(p),$$ we have $B_i \in \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$, by Lemma 13. It follows from Lemma 9(d) that A_1 is a subdirect product of B_1, \ldots, B_k . Hence $A_1 \in \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$, a contradiction. Therefore $F_{p_1}(A_1) \neq 1$. On the other hand, $F_{p_1}(A_1) \neq A_1$, otherwise $A_1/F_{p_1}(A_1) \simeq 1 \in p(p_1) \neq \emptyset$. $\mathfrak{L}^{\tau}_{\infty}p(p_1)\neq\varnothing.$ Thus $$A_1/F_{p_1}(A_1) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} p(p_1) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} p(p_1), \ \widehat{\mathfrak{L}}_{\infty}^{\tau} p(p_1) \neq \emptyset, \ 1 \neq F_{p_1}(A_1) \subset A_1.$$ Put $A_2 = A_1/F_{n_1}(A_1)$. It follows from Lemma 11 that $$\pi(\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1)) = \pi(\widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1)),$$ $$\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) = LF(\widehat{\mathfrak{L}}_{\infty}^{\tau}pp_1), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1) = LF(\widehat{\mathfrak{H}}_{\infty}^{\tau}pp_1),$$ and $\widehat{\mathfrak{L}}_{\infty}^{\tau}pp_1$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}pp_1$ are integrated l_{∞}^{τ} -valued local satellites such that $$\widehat{\mathfrak{L}}_{\infty}^{\tau}pp_{1} = (\mathfrak{X}_{\infty}^{\tau}pp_{1} \cap \mathfrak{F}_{\infty}^{\tau}pp_{1}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau}pp_{1} \cap \mathfrak{F}_{\infty}^{\tau}pp_{1}),$$ $$\widehat{\mathfrak{H}}_{\infty}^{\tau}pp_{1}=(\mathfrak{X}_{\infty}^{\tau}pp_{1}\vee_{\infty}^{\tau}\mathfrak{M}_{\infty}^{\tau}pp_{1})\cap\mathfrak{F}_{\infty}^{\tau}pp_{1}.$$ Since $A_2 \notin \widehat{\mathfrak{L}}_{\infty}^{\tau} p(p_1)$, by Lemma 8(b), there exists $p_2 \in \pi(A_2)$ such that $A_2/F_{p_2}(A_2) \not\in \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1(p_2)$. Hence $$A_2/F_{p_2}(A_2) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} pp_1(p_2) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1(p_2).$$ Considering A_2 in the same way as the group A_1 , we obtain $$p_2 \in \pi(\mathfrak{X}_{\infty}^{\tau} p(p_1)) \cap \pi(\mathfrak{M}_{\infty}^{\tau} p(p_1)),$$ $$p_2 \in \pi(\mathfrak{X}_{\infty}^{\tau} p(p_1)) \cap \pi(\mathfrak{M}_{\infty}^{\tau} p(p_1)),$$ $$A_2/F_{p_2}(A_2) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} pp_1(p_2) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1(p_2),$$ $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p p_1(p_2) \neq \emptyset$$, and $1 \neq F_{p_2}(A_2) \subset A_2$. Put $A_3 = A_2/F_{p_2}(A_2)$. According to the same argument, we see that the group A_3 satisfies the analogous conditions: there exists $$p_3 \in \pi(\mathfrak{X}_{\infty}^{\tau} pp_1(p_2)) \cap \pi(\mathfrak{M}_{\infty}^{\tau} pp_1(p_2))$$ such that $$A_3/F_{p_3}(A_3) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} pp_1p_2(p_3) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1p_2(p_3),$$ $\widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1p_2(p_3) \neq \emptyset$, and $1 \neq F_{p_3}(A_3) \subset A_3.$ Continuing this line of reasoning, we construct the groups $$A_4 = A_3/F_{p_3}(A_3), \ldots, A_n = A_{n-1}/F_{p_{n-1}}(A_{n-1}), \ldots$$ such that for any i, the following conditions are satisfied: $$p_{i-1} \in \pi(\mathfrak{X}_{\infty}^{\tau} p p_{1} \dots p_{i-3}(p_{i-2})) \cap \pi(\mathfrak{M}_{\infty}^{\tau} p p_{1} \dots p_{i-3}(p_{i-2})),$$ $$A_{i} = A_{i-1} / F_{p_{i-1}}(A_{i-1}) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} p p_{1} \dots p_{i-2}(p_{i-1}) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} p p_{1} \dots p_{i-2}(p_{i-1}),$$ $$\widehat{\mathfrak{L}}_{\infty}^{\tau} p p_{1} \dots p_{i-2}(p_{i-1}) \neq \emptyset, \text{ and } 1 \neq F_{p_{i-1}}(A_{i-1}) \subset A_{i-1}.$$ Since $F_{p_{i-1}}(A_{i-1}) \neq 1$, we see that for the constructed sequence $A, A_1, A_2, A_3, \ldots, A_n, \ldots$ of groups, it follows that $$|A| > |A_1| > |A_2| > |A_3| > \dots > |A_n| > \dots$$ Since A is finite, we obtain $A_m = 1$ for some number m. But $A_m = A_{m-1}/F_{p_{m-1}}(A_{m-1})$. This implies that $F_{p_{m-1}}(A_{m-1}) = A_{m-1}$, a contradiction. Thus, our assumption is not true and $\mathfrak{H} \subseteq \mathfrak{L}$. Hence $\mathfrak{H} = \mathfrak{L}$. Let τ be the trivial subgroup functor. Then from Theorem 1 we obtain Corollary 1. [11]. The lattice l_{∞} of all totally saturated formations is distributive. In the case when $\tau(G) = S(G)$ is the set of all subgroups of G, from Theorem 1 we have the following. **Corollary 2.** The lattice of hereditary totally saturated formations is distributive. ## References - [1] Shemetkov L.A., Formations of finite groups, Nauka, Moscow, 1978. - [2] Shemetkov L.A., Skiba A.N., Formations of algebraic systems, Nauka, Moscow, 1989. - [3] Skiba A.N., Algebra of formations, Belarus. Navuka, Minsk, 1997. - [4] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992. - [5] Skiba A.N., Characteristics of soluble groups with given nilpotent length, Problems in Algebra, N.3, 1987, pp.21-31. - [6] V.D.Mazurov, E.I.Khukhro, editors. Unsolved problems in Group Theory: The Kourovka Notebook, Inst. Math. SO RAN, Novosibirsk, N. 15, 2002. - [7] W. Guo, *The Theory of Classes of Groups*, Sci. Press Kluwer Acad. Publ., Beijing; New York; Dordrecht; Boston; London, 2000. - [8] Safonov V.G. On two quations of totally saturated formations theory, Dokl. NAN Belarusi, vol. 49, N. 5, 2005, pp. 16–20. - [9] Safonov V.G. On modularity of the lattice of totally saturated formations of finite groups, Comm. Algebra, vol. 35, N. 11, 2007, pp. 3495–3502. - [10] Safonov V.G. On modularity of the lattice of τ -closed totally saturated formations of finite groups, Ukrain. Math. Journal, vol. 58, N. 6, 2006, pp. 852–858. - [11] Safonov V.G. On a question of the theory of totally saturated formations of finite groups, Algebra Colloquium, vol. 15. N. 1, 2008, pp. 119–128. - [12] Shemetkov L.A., Skiba A.N., Multiply ω -Local Formations and Fitting Classes of Finite Groups, Siberian Advances in Mathematics, vol. 10. No. 2, 2000, pp.112–141. - [13] Vorob'ev N.N. On one question of the theory of local classes of finite groups, Problems in Algebra, N. 14, 1999, pp. 132–140. - [14] Safonov V.G. Characterization of soluble one-generated totally saturated formations of finite groups, Siberian Math. Journal, vol. 48, N. 1, 2008, pp. 185–191. ### CONTACT INFORMATION ## V. G. Safonov Department of Mathematics, F. Skorina Gomel State University, Sovetskaya Str., 104, 246019 Gomel, Belarus E-Mail: safonov@minedu.unibel.by Received by the editors: 17.12.2007 and in final form 14.10.2008.