Algebra and Discrete Mathematics Number 3. **(2008).** pp. 88 – 97 © Journal "Algebra and Discrete Mathematics"

On a question of A. N. Skiba about totally saturated formations

Vasily G. Safonov

Communicated by L. A. Shemetkov

ABSTRACT. It is proved that the lattice of τ -closed totally saturated formations of finite groups is distributive. This is a solution of Question 4. 2. 15 proposed by A. N. Skiba in his monograph "Algebra of Formations" (1997).

Introduction

All groups under consideration are finite. The notations and definitions we use are borrowed from [1]–[4]. Recall that a formation \mathfrak{F} is called saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$. It is known that if \mathfrak{F} is a non-empty saturated formation, then $\mathfrak{F} = LF(f)$, i. e., \mathfrak{F} has a local satellite f.

In [5] Skiba has offered the following concept of a totally saturated formation. Every group formation is 0-multiply saturated. For $n \geq 1$, a formation $\mathfrak{F} \neq \emptyset$ is called n-multiply saturated, if it has a local satellite f such that every non-empty value f(p) of f is a (n-1)-multiply saturated formation. A formation is called totally saturated if it is n-multiply saturated for all natural n. By definition any totally saturated formation is non-empty.

Let τ be a function such that for any group G, $\tau(G)$ is a set of subgroups of G, and $G \in \tau(G)$. Following [3] we say that τ is a subgroup

The research is supported by the Grant Φ 06MC-017 of BRFFI (Belarus).

²⁰⁰⁰ Mathematics Subject Classification: 20D10, 20F17.

Key words and phrases: formation of finite groups, totally saturated formation, lattice of formations, τ -closed formation.

functor if for every epimorphism $\varphi:A\to B$ and any groups $H\in\tau(A)$ and $T\in\tau(B)$ we have $H^\varphi\in\tau(B)$ and $T^{\varphi^{-1}}\in\tau(A)$.

A group class \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for all $G \in \mathfrak{F}$. The set l_{∞}^{τ} of all τ -closed totally saturated formations is a complete lattice [3].

In [3] Skiba proved that the lattice of all soluble totally saturated formations is distributive. There were some open questions on modularity or distributivity (see [2], Problem 10.11; [6], Question 14.80; [7], Problem 21; [3], Questions 4.2.14). These questions were solved in [8]–[11]. In [10] we proved that l_{∞}^{τ} is modular.

In this paper we prove that l_{∞}^{τ} is distributive; this is a solution of Question 4.2.15 in [3].

1. Definitions, notations and preliminary results

Every function of the form $f: \mathbb{P} \longrightarrow \{formations \ of \ groups\}$ is called a local satellite [12]. A group G is called a pd-group if p divides |G|; $\pi(G)$ is the set of all primes dividing the order of a group G; $\pi(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \pi(G)$; $F_p(G) = O_{p',p}(G)$.

Following [4], we denote by LF(f) the class of all groups G which satisfy the following condition: for any chief factor H/K of G and for all primes p dividing |H/K|, we have $G/C_G(H/K) \in f(p)$. The notation $\mathfrak{F} = LF(f)$ means that f is a local satellite of \mathfrak{F} . It is well known that a non-empty formation has a local satellite if and only if it is saturated.

For any set $\mathfrak X$ of groups, l_∞^τ form $\mathfrak X$ denotes the τ -closed totally saturated formation generated by $\mathfrak X$, i.e., l_∞^τ form $\mathfrak X$ is the intersection of all τ -closed totally saturated formations containing $\mathfrak X$. For any τ -closed totally saturated formations $\mathfrak M$ and $\mathfrak H$, we set $\mathfrak M \vee_\infty^\tau \mathfrak H = l_\infty^\tau$ form $(\mathfrak M \cup \mathfrak H)$. Formations in l_∞^τ are called l_∞^τ -formations.

A satellite f is called l_{∞}^{τ} -valued if all its non-empty values are l_{∞}^{τ} -formations. A local satellite f is called *integrated* if $f(p) \subseteq LF(f)$ for all primes p. If g, h are l_{∞}^{τ} -valued local satellites, then the satellites $f = g \vee_{\infty}^{\tau} h$ and $m = g \cap h$ are defined in the following way:

- (1) if either $g(p) \neq \emptyset$ or $h(p) \neq \emptyset$, then $f(p) = l_{\infty}^{\tau} \text{form}(g(p) \cup h(p))$;
- (2) if $g(p) = \emptyset$ and $h(p) = \emptyset$, then $f(p) = \emptyset$;
- (3) $m(p) = g(p) \cap h(p)$ for all $p \in \mathbb{P}$.

If \mathfrak{F} is an l^{τ}_{∞} -formation, then $\mathfrak{F}^{\tau}_{\infty}$ denotes the minimal l^{τ}_{∞} -valued local satellite of \mathfrak{F} , i.e., $\mathfrak{F}^{\tau}_{\infty} = \cap_{i \in I} f_i$, where $\{f_i | i \in I\}$ is the set of all l^{τ}_{∞} -valued local satellites of \mathfrak{F} .

For an arbitrary sequence of primes p_1, p_2, \ldots, p_n and for any set \mathfrak{X} of groups, the class $\mathfrak{X}^{p_1p_2...p_n}$ is defined recursively in the following way:

- (1) $\mathfrak{X}^{p_1} = (A/F_{p_1}(A)|A \in \mathfrak{X});$
- (2) $\mathfrak{X}^{p_1p_2...p_n} = (A/F_{p_n}(A)|A \in \mathfrak{X}^{p_1p_2...p_{n-1}}).$

For any set \mathfrak{X} of groups, we put $\mathfrak{X}^{\tau}_{\infty}(p) = l^{\tau}_{\infty} \text{form} \mathfrak{X}^{p}$, if $p \in \pi(\mathfrak{X})$, and $\mathfrak{X}^{\tau}_{\infty}(p) = \emptyset$ if $p \notin \pi(\mathfrak{X})$.

A sequence of primes p_1, p_2, \ldots, p_n is called *suitable for* \mathfrak{X} (or \mathfrak{X} -suitable) if $p_1 \in \pi(\mathfrak{X})$ and for any $i \in \{2, \ldots, n\}$ we have that $p_i \in \pi(\mathfrak{X}^{p_1 p_2 \ldots p_{i-1}})$.

Let p_1, p_2, \ldots, p_n be an \mathfrak{F} -suitable sequence. Then the *totally local* satellite $\mathfrak{F}_{\infty}^{\tau} p_1 p_2 \ldots p_n$ is defined recursively as follows:

- (1) $\mathfrak{F}_{\infty}^{\tau} p_1 = (\mathfrak{F}_{\infty}^{\tau}(p_1))_{\infty}^{\tau};$
- $(2) \mathfrak{F}_{\infty}^{\tau} p_1 \dots p_n = (\mathfrak{F}_{\infty}^{\tau} p_1 \dots p_{n-1}(p_n))_{\infty}^{\tau}.$

If Θ is a complete lattice, then Θ^l denotes the complete lattice of all saturated formations $\mathfrak{F} = LF(f)$ such that $f(p) \in \Theta$ for every $p \in \pi(\mathfrak{F})$.

A complete lattice Θ is called *inductive* if for any set

$$\{\mathfrak{F}_i = LF(f_i) | \mathfrak{F}_i \in \Theta^l, f_i \text{ is integrated}, i \in I\},$$

the following equality holds:

hity holds:
$$ee_{\Theta^l}(\mathfrak{F}_i|i\in I) = LF(ee_{\Theta}(f_i|i\in I)).$$

For any group G and a non-empty formation \mathfrak{F} , by $G^{\mathfrak{F}}$ we denote the \mathfrak{F} -residual of G, i.e., the intersection of all normal subgroups N of G such that $G/N \in \mathfrak{F}$. $\mathfrak{F}\mathfrak{H} = \{G|G^{\mathfrak{H}} \in \mathfrak{F}\}$ is the product of formations \mathfrak{F} and \mathfrak{H} .

 \mathfrak{S}_{π} is the class of all soluble π -groups (π is a non-empty set of primes); \mathfrak{N}_{p} is the class of all p-groups (p is a prime).

The next lemma is a special case of Lemma 4.1.2 in [3, p. 152].

Lemma 1. Let \mathfrak{F}_i be a τ -closed totally saturated formation, $i \in I$. Then $f = \bigvee_{\infty}^{\tau} (\mathfrak{F}_{i_{\infty}} | i \in I)$ is the minimal l_{∞}^{τ} -valued local satellite of $\mathfrak{F} = \bigvee_{\infty}^{\tau} (\mathfrak{F}_i | i \in I)$.

Lemma 2. [3, p. 33]. Let \mathfrak{X} be a non-empty class of group and $\mathfrak{F} = l_{\infty}^{\tau}$ form \mathfrak{X} . If f is the minimal l_{∞}^{τ} -valued local satellite of \mathfrak{F} , then

- (a) $\pi(\mathfrak{X}) = \pi(\mathfrak{F});$
- (b) $f(p) = l_{\infty}^{\tau} \text{form}(G/F_p(G)|G \in \mathfrak{X}) = l_{\infty}^{\tau} \text{form}(G/F_p(G)|G \in \mathfrak{F})$ for all $p \in \pi(\mathfrak{X})$;
 - (c) $f(p) = \emptyset$ for all $p \notin \pi(\mathfrak{X})$;
 - (d) if $\mathfrak{F} = LF(h)$, where h is an l_{∞}^{τ} -valued local satellite, then

$$f(p) = l_{\infty}^{\tau} \text{form}(A|A \in h(p) \cap \mathfrak{F}, O_p(A) = 1).$$

Lemma 3. [13]. The lattice of τ -closed totally saturated formations is inductive.

Lemma 4. [14]. Let \mathfrak{F} be a non-empty τ -closed formation and π be a set of primes such that $\pi(\mathfrak{F}) \subseteq \pi$. Then the formation $\mathfrak{S}_{\pi}\mathfrak{F}$ is τ -closed totally saturated.

Lemma 5. [3, p. 41]. Let A be a monolithic group and let Soc(A) be a non-abelian group. Let \mathfrak{M} be a τ -closed homomorph. If $A \in l_n^{\tau}$ form \mathfrak{M} , then $A \in \mathfrak{M}$.

Lemma 6. [2, p. 168]. Let \mathfrak{F} be a formation, \mathfrak{M} a saturated formation, and let G be a group of minimal oder in $\mathfrak{F} \setminus \mathfrak{M}$. Then

- (a) G is a monolithic group and $Soc(G) = G^{\mathfrak{M}}$;
- (b) if $G^{\mathfrak{M}}$ is a p-group, then $G^{\mathfrak{M}} = C_G(G^{\mathfrak{M}}) = F_p(G)$.

Lemma 7. [2, p. 78]. Let $\mathfrak{F} = LF(f)$. If $G/O_p(G) \in f(p) \cap \mathfrak{F}$, then $G \in \mathfrak{F}$.

Lemma 8. [1, p. 38]. Let $\mathfrak{F} = LF(f)$. Then the following statements are equivalent:

- (a) $G \in \mathfrak{F}$; (b) $G/F_p(G) \in f(p)$ for all $p \in \pi(G)$.

Lemma 9. [3, p. 152]. Let G be a group such that $O_p(G) = 1$, let $N_1 \times \ldots \times N_k = \operatorname{Soc}(G)$, where N_i is a minimal normal subgroup of G $(k \geq 2)$. Let M_i denote a maximal normal subgroup of G, which contains $N_1 \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_k$ and does not contain N_i , $i \in \{1, \ldots, k\}$. Then

- (a) G/M_i is a monolithic and $Soc(G/M_i) = N_iM_i/N_i$ for any $i \in$ $\{1,\ldots,k\};$
 - (b) $N_i M_i / N_i$ is G-isomorphic to N_i ;
 - (c) $O_n(G/M_i) = 1$;
 - (d) $M_1 \cap \ldots \cap M_k = 1$.

2. Main result

The following lemma can be proved by direct calculations.

Lemma 10. Let $\mathfrak{F}_i = LF(f_i)$, where f_i is an integrated l_{∞}^{τ} -valued local satellite of \mathfrak{F}_i , $i \in I$. If $\mathfrak{F} = \cap (\mathfrak{F}_i | i \in I)$, then $f = \cap (f_i | i \in I)$ is an integrated l_{∞}^{τ} -valued local satellite of \mathfrak{F} .

Let $\mathfrak{F}, \mathfrak{M}$, and \mathfrak{X} be τ -closed totally saturated formations. Let p_1, \ldots, p_n be some suitable sequence for \mathfrak{F} , \mathfrak{M} , and \mathfrak{X} . Then by $\widehat{\mathfrak{L}}_{\infty}^{\tau}$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}$, $\widehat{\mathfrak{L}}_{\infty}^{\tau}p_1$, $\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1, \dots, \widehat{\mathfrak{L}}_{\infty}^{\tau} p \dots p_n, \widehat{\mathfrak{H}}_{\infty}^{\tau} p \dots p_n$ we denote a l_{∞}^{τ} -valued local satellites such that

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} = (\mathfrak{X}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau} = (\mathfrak{X}_{\infty}^{\tau} \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}) \cap \mathfrak{F}_{\infty}^{\tau},$$

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_{1} = (\mathfrak{X}_{\infty}^{\tau} p_{1} \cap \mathfrak{F}_{\infty}^{\tau} p_{1}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p_{1} \cap \mathfrak{F}_{\infty}^{\tau} p_{1}),$$

$$\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 = (\mathfrak{X}_{\infty}^{\tau} p_1 \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p_1) \cap \mathfrak{F}_{\infty}^{\tau} p_1, \dots,$$

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_1 p_2 \dots p_n =$$

$$= (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_n \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_n) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_n \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_n),$$
$$\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 p_2 \dots p_n = (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_n \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_n) \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_n.$$

Lemma 11. Let \mathfrak{M} , \mathfrak{X} , and \mathfrak{F} be τ -closed totally saturated formations. If $\mathfrak{L} = (\mathfrak{X} \cap \mathfrak{F}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F})$ and $\mathfrak{H} = (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M}) \cap \mathfrak{F}$, then

(a) $\pi(\mathfrak{L}) = \pi(\mathfrak{H});$

(b) for any suitable sequence p_1, \ldots, p_n for $\mathfrak{X}, \mathfrak{M}$ and \mathfrak{F} , the satellites $\widehat{\mathfrak{L}}_{\infty}^{\tau}$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}$, $\widehat{\mathfrak{L}}_{\infty}^{\tau}p_1$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}p_1$, ..., $\widehat{\mathfrak{L}}_{\infty}^{\tau}p_1$, ..., p_n , $\widehat{\mathfrak{H}}_{\infty}^{\tau}p_1$, ..., p_n are integrated l_{∞}^{τ} -valued local satellites of the formations \mathfrak{L} , \mathfrak{H} ,

$$\widehat{\mathfrak{L}}_{\infty}^{\tau}(p_1), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau}(p_1), \quad \dots, \quad \widehat{\mathfrak{L}}_{\infty}^{\tau}p_1 \dots p_{n-1}(p_n), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau}p_1 \dots p_{n-1}(p_n),$$

respectively.

Proof. Put $\mathfrak{L}_1 = \mathfrak{X} \cap \mathfrak{F}$, $\mathfrak{L}_2 = \mathfrak{M} \cap \mathfrak{F}$, $\mathfrak{H}_1 = \mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M}$, $l_1 = \mathfrak{X}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}$, $l_2 = \mathfrak{M}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}$, and $h_1 = \mathfrak{X}_{\infty}^{\tau} \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}$. By Lemmas 10 and 1, it follows that $\mathfrak{L}_1 = LF(l_1)$, $\mathfrak{L}_1 = LF(l_1)$, $\mathfrak{H}_1 = LF(l_1)$, and l_1 , l_2 , l_1 are integrated l_{∞}^{τ} -valued local satellites.

- (a) Since the inclusion $\mathfrak{L} \subseteq \mathfrak{H}$ is obvious, we obtain $\pi(\mathfrak{L}) \subseteq \pi(\mathfrak{H})$. Let $p \in \pi(\mathfrak{H}) \setminus \pi(\mathfrak{L})$. Since $p \in \pi(\mathfrak{H}_1)$, we have $h_1(p) \neq \emptyset$, by Lemma 2. If $p \notin \pi(\mathfrak{X}) \cup \pi(\mathfrak{M})$, then it follows from Lemma 2 that $\mathfrak{X}_{\infty}^{\tau}(p) = \emptyset$ and $\mathfrak{M}_{\infty}^{\tau}(p) = \emptyset$. Consequently, $h_1(p) = \emptyset$, a contradiction. Hence $p \in \pi(\mathfrak{X}) \cup \pi(\mathfrak{M})$. But in this case $p \in \pi(\mathfrak{X} \cap \mathfrak{F}) \cup \pi(\mathfrak{M} \cap \mathfrak{F}) = \pi(\mathfrak{L})$. Thus, $\pi(\mathfrak{L}) = \pi(\mathfrak{H})$.
- (b) Since $\mathfrak{L} = \mathfrak{L}_1 \vee_{\infty}^{\tau} \mathfrak{L}_2$ and $\mathfrak{H} = \mathfrak{H}_1 \cap \mathfrak{F}$, it follows from Lemmas 3 and 10 that

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} = l_1 \vee_{\infty}^{\tau} l_2 = (\mathfrak{X}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} \cap \mathfrak{F}_{\infty}^{\tau}),$$

$$\widehat{\mathfrak{H}}_{\infty}^{\tau} = h_1 \cap \mathfrak{F}_{\infty}^{\tau} = (\mathfrak{X}_{\infty}^{\tau} \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}) \cap \mathfrak{F}_{\infty}^{\tau}$$

are integrated l_{∞}^{τ} -valued local satellites of the formations \mathfrak{L} and \mathfrak{H} , respectively.

Let p_1, \ldots, p_n be a suitable sequence for $\mathfrak{X}, \mathfrak{M}$, and \mathfrak{F} .

Since by the definition $\mathfrak{X}_{\infty}^{\tau}p_1 \dots p_i$, $\mathfrak{M}_{\infty}^{\tau}p_1 \dots p_i$, $\mathfrak{F}_{\infty}^{\tau}p_1 \dots p_i$ are minimal l_{∞}^{τ} -valued local satellites of the formations

$$\mathfrak{X}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$$
, $\mathfrak{M}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$, and $\mathfrak{F}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$

 $(i = \overline{1, n})$, respectively, it follows from Lemmas 1, 3, and 10 that

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_1 p_2 \ldots p_i =$$

$$= (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_i \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_i) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_i \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_i),$$

$$\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 p_2 \dots p_i = (\mathfrak{X}_{\infty}^{\tau} p_1 p_2 \dots p_i \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p_1 p_2 \dots p_i) \cap \mathfrak{F}_{\infty}^{\tau} p_1 p_2 \dots p_i$$
are integrated l_{∞}^{τ} -valued local satellites of the formations

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$$
 and $\widehat{\mathfrak{H}}_{\infty}^{\tau} p_1 \dots p_{i-1}(p_i)$,

respectively.

Lemma 12. Let \mathfrak{M} , \mathfrak{X} , and \mathfrak{F} be τ -closed totally saturated formations. Let A be a monolithic group with a non-abelian socle. If $A \in \mathfrak{F} \cap (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M})$, then $A \in (\mathfrak{X} \cap \mathfrak{F}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F}).$

Proof. Let $A \in \mathfrak{F} \cap (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M})$ and $\pi = \pi(\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M})$. It follows from Lemma 4 that $\mathfrak{S}_{\pi}\tau$ form $(\mathfrak{X}\cup\mathfrak{M})$ is a τ -closed totally saturated formation. Therefore

$$l_{\infty}^{\tau}$$
form $(\mathfrak{X} \cup \mathfrak{M}) \subseteq \mathfrak{S}_{\pi} \tau$ form $(\mathfrak{X} \cup \mathfrak{M})$.

Since A is a monolithic group and Soc(A) is a non-abelian group, we have $A \in \tau$ form $(\mathfrak{X} \cup \mathfrak{M})$. But then by Lemma 5, it follows that $A \in \mathfrak{X} \cup \mathfrak{M}$. Since $A \in \mathfrak{F}$, we obtain $A \in (\mathfrak{X} \cap \mathfrak{F}) \cup (\mathfrak{M} \cap \mathfrak{F})$. Hence

$$A \in l^{\tau}_{\infty} \text{form}((\mathfrak{X} \cap \mathfrak{F}) \cup (\mathfrak{M} \cap \mathfrak{F})) = (\mathfrak{X} \cap \mathfrak{F}) \vee^{\tau}_{\infty} (\mathfrak{M} \cap \mathfrak{F})$$

 $A \in l^{\tau}_{\infty} \mathrm{form}((\mathfrak{X} \cap \mathfrak{F}) \cup (\mathfrak{M} \cap \mathfrak{F})) = (\mathfrak{X} \cap \mathfrak{F}) \vee^{\tau}_{\infty} (\mathfrak{M} \cap \mathfrak{F}).$ \Box **Theorem 1.** The lattice l^{τ}_{∞} of all τ -closed totally saturated formations is distributive.

Proof. Assume that there exist τ -closed totally saturated formations \mathfrak{M} , \mathfrak{X} , and \mathfrak{F} such that

$$(\mathfrak{X}\cap\mathfrak{F})\vee_{\infty}^{\tau}(\mathfrak{M}\cap\mathfrak{F})\neq(\mathfrak{X}\vee_{\infty}^{\tau}\mathfrak{M})\cap\mathfrak{F}.$$

Put $\mathfrak{L} = (\mathfrak{X} \cap \mathfrak{F}) \vee_{\infty}^{\tau} (\mathfrak{M} \cap \mathfrak{F})$ and $\mathfrak{H} = (\mathfrak{X} \vee_{\infty}^{\tau} \mathfrak{M}) \cap \mathfrak{F}$. Since the inclusion $\mathfrak{L} \subseteq \mathfrak{H}$ is obvious, we obtain $\mathfrak{H} \not\subseteq \mathfrak{L}$. Let A be a group of minimal order in $\mathfrak{H} \setminus \mathfrak{L}$. Since \mathfrak{H} and \mathfrak{L} are τ -closed saturated formations, we see that A is a τ -minimal non- \mathfrak{L} -group with a unique minimal normal subgroup P and $P = A^{\mathfrak{L}} \not\subseteq \Phi(A)$.

If P is a non-abelian group, then $A \in \mathcal{L}$, by Lemma 12. This contradiction shows that P is an abelian p-group for some prime $p \in \pi(\mathfrak{H})$. It follows from Lemma 11 that $p \in \pi(\mathfrak{L})$, $\mathfrak{L} = LF(\widehat{\mathfrak{L}}_{\infty}^{\tau})$, $\mathfrak{H} = LF(\widehat{\mathfrak{H}}_{\infty}^{\tau})$, and $\widehat{\mathfrak{L}}^{ au}_{\infty},\,\widehat{\mathfrak{H}}^{ au}_{\infty}$ are integrated $l^{ au}_{\infty}$ -valued satellites such that

$$\widehat{\mathfrak{L}}^\tau_\infty(p) = (\mathfrak{X}^\tau_\infty(p) \cap \mathfrak{F}^\tau_\infty(p)) \vee_\infty^\tau (\mathfrak{M}^\tau_\infty(p) \cap \mathfrak{F}^\tau_\infty(p)),$$

$$\widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = (\mathfrak{X}_{\infty}^{\tau}(p) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}(p)) \cap \mathfrak{F}_{\infty}^{\tau}(p).$$

Since \mathfrak{L} is a saturated formation and $p \in \pi(\mathfrak{L})$, we see that A is not a p-group and $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \neq \emptyset$. By Lemma 6, it follows that $P = C_A(P) = F_p(A)$. Then $P = O_p(A)$. Since $P \not\subseteq \Phi(A)$, we have $A = [P]A_1$, where A_1 is a maximal subgroup of A such that $P \not\subseteq A_1$.

The inclusion $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subseteq \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$ is obvious. Since $A \in \mathfrak{H} \setminus \mathfrak{L}$, we claim that $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$. Indeed, by Lemma 2, it follows that $A/F_p(A) \in \mathfrak{H}_{\infty}^{\tau}(p)$. If $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) = \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$, then

$$A/O_p(A) = A/F_p(A) \in \mathfrak{H}_{\infty}^{\tau}(p) \subseteq \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$$

and $A \in \mathfrak{L}$, by Lemma 7. It is a contradiction. Therefore $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$. Note also that the condition $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$ implies $\mathfrak{X}_{\infty}^{\tau}(p) \neq \emptyset$ and $\mathfrak{M}_{\infty}^{\tau}(p) \neq \emptyset$, otherwise $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) = \widehat{\mathfrak{H}}_{\infty}^{\tau}(p)$. Hence $p \in \pi(\mathfrak{X}) \cap \pi(\mathfrak{M})$. Thus

$$A_1 \simeq A/F_p(A) \in \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau}(p), \quad \widehat{\mathfrak{L}}_{\infty}^{\tau}(p) \neq \varnothing.$$

It follows from Lemma 11 that $\pi(\widehat{\mathfrak{L}}_{\infty}^{\tau}(p)) = \pi(\widehat{\mathfrak{H}}_{\infty}^{\tau}(p))$, $\widehat{\mathfrak{L}}_{\infty}^{\tau}(p) = LF(\widehat{\mathfrak{L}}_{\infty}^{\tau}p)$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = LF(\widehat{\mathfrak{H}}_{\infty}^{\tau}p)$, and $\widehat{\mathfrak{L}}_{\infty}^{\tau}p$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}p$ are integrated l_{∞}^{τ} -valued local satellites such that

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p = (\mathfrak{X}_{\infty}^{\tau} p \cap \mathfrak{F}_{\infty}^{\tau} p) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau} p \cap \mathfrak{F}_{\infty}^{\tau} p).$$

$$\widehat{\mathfrak{H}}_{\infty}^{\tau} p = (\mathfrak{X}_{\infty}^{\tau} p \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau} p) \cap \mathfrak{F}_{\infty}^{\tau} p.$$

Since $A_1 \notin \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$, by Lemma 8(b), there exists a prime $p_1 \in \pi(A_1)$ such that $A_1/F_{p_1}(A_1) \notin \widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1)$. Since $p_1 \in \pi(\widehat{\mathfrak{H}}_{\infty}^{\tau}(p))$, we have $p_1 \in \pi(\widehat{\mathfrak{L}}_{\infty}^{\tau}(p))$ and $\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) \neq \emptyset$. Obviously,

$$\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) = (\mathfrak{X}_{\infty}^{\tau}p(p_1) \cap \mathfrak{F}_{\infty}^{\tau}p(p_1)) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau}p(p_1) \cap \mathfrak{F}_{\infty}^{\tau}p(p_1)) \subseteq$$

$$\subseteq \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1) = (\mathfrak{X}_{\infty}^{\tau}p(p_1) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}p(p_1)) \cap \mathfrak{F}_{\infty}^{\tau}p(p_1).$$

Besides, since $A_1/F_{p_1}(A_1) \in \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1)$, we have $\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) \subset \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1)$. Therefore $\mathfrak{X}_{\infty}^{\tau}p(p_1) \neq \emptyset$ and $\mathfrak{M}_{\infty}^{\tau}p(p_1) \neq \emptyset$. Hence $p_1 \in \pi(\mathfrak{X}_{\infty}^{\tau}(p)) \cap \pi(\mathfrak{M}_{\infty}^{\tau}(p))$.

Suppose that $F_{p_1}(A_1) = 1$ and let N be a minimal normal subgroup of A. Then N is a non-abelian p_1d -group. If A_1 is a monolithic group, then since

$$A_1 \in \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = (\mathfrak{X}_{\infty}^{\tau}(p) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}(p)) \cap \mathfrak{F}_{\infty}^{\tau}(p),$$

by Lemma 12, it follows that

$$A_1 \in (\mathfrak{X}_{\infty}^{\tau}(p) \cap \mathfrak{F}_{\infty}^{\tau}(p)) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau}(p) \cap \mathfrak{F}_{\infty}^{\tau}(p)) = \widehat{\mathfrak{L}}_{\infty}^{\tau}(p),$$

a contradiction. Therefore the group A_1 is not monolithic.

Let $Soc(A_1) = N_1 \times ... \times N_k$, where N_i is a minimal normal subgroup of A_1 , and let M_i denotes a maximal normal subgroup of A_1 such that M_i contains $N_1 \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_k$ and does not contain N_i , $i=1,2\ldots,k$. By Lemma 9, it follows that A_1/M_i is a monolithic group with a non-abelian minimal normal subgroup $N_i M_i / N_i$, and $N_i M_i / N_i$ is A_1 -isomorphic to N_i . Set $B_i = A_1/M_i$, $i = 1, 2 \dots, k$. Since

$$B_i \in \widehat{\mathfrak{H}}_{\infty}^{\tau}(p) = (\mathfrak{X}_{\infty}^{\tau}(p) \vee_{\infty}^{\tau} \mathfrak{M}_{\infty}^{\tau}(p)) \cap \mathfrak{F}_{\infty}^{\tau}(p),$$

we have $B_i \in \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$, by Lemma 13. It follows from Lemma 9(d) that A_1 is a subdirect product of B_1, \ldots, B_k . Hence $A_1 \in \widehat{\mathfrak{L}}_{\infty}^{\tau}(p)$, a contradiction. Therefore $F_{p_1}(A_1) \neq 1$.

On the other hand, $F_{p_1}(A_1) \neq A_1$, otherwise $A_1/F_{p_1}(A_1) \simeq 1 \in p(p_1) \neq \emptyset$. $\mathfrak{L}^{\tau}_{\infty}p(p_1)\neq\varnothing.$

Thus

$$A_1/F_{p_1}(A_1) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} p(p_1) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} p(p_1), \ \widehat{\mathfrak{L}}_{\infty}^{\tau} p(p_1) \neq \emptyset, \ 1 \neq F_{p_1}(A_1) \subset A_1.$$

Put $A_2 = A_1/F_{n_1}(A_1)$. It follows from Lemma 11 that

$$\pi(\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1)) = \pi(\widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1)),$$

$$\widehat{\mathfrak{L}}_{\infty}^{\tau}p(p_1) = LF(\widehat{\mathfrak{L}}_{\infty}^{\tau}pp_1), \quad \widehat{\mathfrak{H}}_{\infty}^{\tau}p(p_1) = LF(\widehat{\mathfrak{H}}_{\infty}^{\tau}pp_1),$$

and $\widehat{\mathfrak{L}}_{\infty}^{\tau}pp_1$, $\widehat{\mathfrak{H}}_{\infty}^{\tau}pp_1$ are integrated l_{∞}^{τ} -valued local satellites such that

$$\widehat{\mathfrak{L}}_{\infty}^{\tau}pp_{1} = (\mathfrak{X}_{\infty}^{\tau}pp_{1} \cap \mathfrak{F}_{\infty}^{\tau}pp_{1}) \vee_{\infty}^{\tau} (\mathfrak{M}_{\infty}^{\tau}pp_{1} \cap \mathfrak{F}_{\infty}^{\tau}pp_{1}),$$

$$\widehat{\mathfrak{H}}_{\infty}^{\tau}pp_{1}=(\mathfrak{X}_{\infty}^{\tau}pp_{1}\vee_{\infty}^{\tau}\mathfrak{M}_{\infty}^{\tau}pp_{1})\cap\mathfrak{F}_{\infty}^{\tau}pp_{1}.$$

Since $A_2 \notin \widehat{\mathfrak{L}}_{\infty}^{\tau} p(p_1)$, by Lemma 8(b), there exists $p_2 \in \pi(A_2)$ such that $A_2/F_{p_2}(A_2) \not\in \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1(p_2)$. Hence

$$A_2/F_{p_2}(A_2) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} pp_1(p_2) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1(p_2).$$

Considering A_2 in the same way as the group A_1 , we obtain

$$p_2 \in \pi(\mathfrak{X}_{\infty}^{\tau} p(p_1)) \cap \pi(\mathfrak{M}_{\infty}^{\tau} p(p_1)),$$

$$p_2 \in \pi(\mathfrak{X}_{\infty}^{\tau} p(p_1)) \cap \pi(\mathfrak{M}_{\infty}^{\tau} p(p_1)),$$
$$A_2/F_{p_2}(A_2) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} pp_1(p_2) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1(p_2),$$

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p p_1(p_2) \neq \emptyset$$
, and $1 \neq F_{p_2}(A_2) \subset A_2$.

Put $A_3 = A_2/F_{p_2}(A_2)$. According to the same argument, we see that the group A_3 satisfies the analogous conditions: there exists

$$p_3 \in \pi(\mathfrak{X}_{\infty}^{\tau} pp_1(p_2)) \cap \pi(\mathfrak{M}_{\infty}^{\tau} pp_1(p_2))$$

such that

$$A_3/F_{p_3}(A_3) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} pp_1p_2(p_3) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1p_2(p_3),$$

 $\widehat{\mathfrak{L}}_{\infty}^{\tau} pp_1p_2(p_3) \neq \emptyset$, and $1 \neq F_{p_3}(A_3) \subset A_3.$

Continuing this line of reasoning, we construct the groups

$$A_4 = A_3/F_{p_3}(A_3), \ldots, A_n = A_{n-1}/F_{p_{n-1}}(A_{n-1}), \ldots$$

such that for any i, the following conditions are satisfied:

$$p_{i-1} \in \pi(\mathfrak{X}_{\infty}^{\tau} p p_{1} \dots p_{i-3}(p_{i-2})) \cap \pi(\mathfrak{M}_{\infty}^{\tau} p p_{1} \dots p_{i-3}(p_{i-2})),$$

$$A_{i} = A_{i-1} / F_{p_{i-1}}(A_{i-1}) \in \widehat{\mathfrak{H}}_{\infty}^{\tau} p p_{1} \dots p_{i-2}(p_{i-1}) \setminus \widehat{\mathfrak{L}}_{\infty}^{\tau} p p_{1} \dots p_{i-2}(p_{i-1}),$$

$$\widehat{\mathfrak{L}}_{\infty}^{\tau} p p_{1} \dots p_{i-2}(p_{i-1}) \neq \emptyset, \text{ and } 1 \neq F_{p_{i-1}}(A_{i-1}) \subset A_{i-1}.$$

Since $F_{p_{i-1}}(A_{i-1}) \neq 1$, we see that for the constructed sequence $A, A_1, A_2, A_3, \ldots, A_n, \ldots$ of groups, it follows that

$$|A| > |A_1| > |A_2| > |A_3| > \dots > |A_n| > \dots$$

Since A is finite, we obtain $A_m = 1$ for some number m. But $A_m = A_{m-1}/F_{p_{m-1}}(A_{m-1})$. This implies that $F_{p_{m-1}}(A_{m-1}) = A_{m-1}$, a contradiction.

Thus, our assumption is not true and $\mathfrak{H} \subseteq \mathfrak{L}$. Hence $\mathfrak{H} = \mathfrak{L}$.

Let τ be the trivial subgroup functor. Then from Theorem 1 we obtain

Corollary 1. [11]. The lattice l_{∞} of all totally saturated formations is distributive.

In the case when $\tau(G) = S(G)$ is the set of all subgroups of G, from Theorem 1 we have the following.

Corollary 2. The lattice of hereditary totally saturated formations is distributive.

References

- [1] Shemetkov L.A., Formations of finite groups, Nauka, Moscow, 1978.
- [2] Shemetkov L.A., Skiba A.N., Formations of algebraic systems, Nauka, Moscow, 1989.
- [3] Skiba A.N., Algebra of formations, Belarus. Navuka, Minsk, 1997.
- [4] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.

- [5] Skiba A.N., Characteristics of soluble groups with given nilpotent length, Problems in Algebra, N.3, 1987, pp.21-31.
- [6] V.D.Mazurov, E.I.Khukhro, editors. Unsolved problems in Group Theory: The Kourovka Notebook, Inst. Math. SO RAN, Novosibirsk, N. 15, 2002.
- [7] W. Guo, *The Theory of Classes of Groups*, Sci. Press Kluwer Acad. Publ., Beijing; New York; Dordrecht; Boston; London, 2000.
- [8] Safonov V.G. On two quations of totally saturated formations theory, Dokl. NAN Belarusi, vol. 49, N. 5, 2005, pp. 16–20.
- [9] Safonov V.G. On modularity of the lattice of totally saturated formations of finite groups, Comm. Algebra, vol. 35, N. 11, 2007, pp. 3495–3502.
- [10] Safonov V.G. On modularity of the lattice of τ -closed totally saturated formations of finite groups, Ukrain. Math. Journal, vol. 58, N. 6, 2006, pp. 852–858.
- [11] Safonov V.G. On a question of the theory of totally saturated formations of finite groups, Algebra Colloquium, vol. 15. N. 1, 2008, pp. 119–128.
- [12] Shemetkov L.A., Skiba A.N., Multiply ω -Local Formations and Fitting Classes of Finite Groups, Siberian Advances in Mathematics, vol. 10. No. 2, 2000, pp.112–141.
- [13] Vorob'ev N.N. On one question of the theory of local classes of finite groups, Problems in Algebra, N. 14, 1999, pp. 132–140.
- [14] Safonov V.G. Characterization of soluble one-generated totally saturated formations of finite groups, Siberian Math. Journal, vol. 48, N. 1, 2008, pp. 185–191.

CONTACT INFORMATION

V. G. Safonov

Department of Mathematics, F. Skorina Gomel State University, Sovetskaya Str., 104, 246019 Gomel, Belarus

E-Mail: safonov@minedu.unibel.by

Received by the editors: 17.12.2007 and in final form 14.10.2008.