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ABSTRACT. A discrete limit theorem in the sense of weak
convergence of probability measures in the space of meromorphic
functions for the Estermann zeta-function with explicitly given the
limit measure is proved.

1. Introduction

Let s = 0 4 it be a complex variable, k and [ be coprime integers, and,
for a € C,
ga(m) = Z d-.
d/m

For ¢ > max(1,1 + Ra), the Estermann zeta-function E(s;%,a) with
parameters % and « is defined by

k 2. oa(m) .k
E<3;7,a> = Z e exp{2mml}.

m=1

The function E(s; %, «) has analytic continuation to the whole complex
plane, except for two simple poles at s =1 and s =1+ a if a # 0, and
a double pole at s = 1 if @ = 0. In view of the equation

k k
E<s;l,a> :E<s—a;l,—a>,
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we may suppose that Ra < 0.

The present paper is a continuation of [6], where a discrete limit
theorem on the complex plane for F(s; %, «) has been proved. To state
the latter theorem, we need some definitions and notation. Denote by
B(S) the class of Borel sets of the space S. Moreover, let

Q: Hr}/pv
p

where 7, = {s € C : |s] = 1} d§f7 for each prime p. The torus Q is a
compact topological Abelian group, therefore, on (2,5(Q2)) the proba-
bility Haar measure my can be defined. This gives a probability space
(Q,B(2), mp). Denote by w(p) the projection of w € € to the coordinate
space Yp, p € P (P denotes the set of all prime numbers), and put, for
m € N,

p*||m

where p® || m means that p® | m but p®*! { m. Now suppose that
Ra < 0 and on the probability space (£2, B(2),mp) define the complex-
valued random element E(o; %, a;w), for o > %, by

B (o1 ) = 35 ) i)

m=1

Let Pga be the distribution of E(o; %, o w), e,

Pgo(A) = my <w € E(o; ];,a;w> € A> , AeB).

In the sequel, for N € Ny = N J{0}, we will use the notation

e S

0<m<N

where in place of dots a condition satisfied by m is to written. In [6], the
following statement has been proved.

Theorem 1. Suppose that Ra < 0 and o > %, and that h > 0 is a fived
number such that exp{ %~} is irrational for all v € Z\ {0}. Then the
probability measure

LN <E(O‘ + imh; I;,a> € A) , AeB(C),
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converges weakly to Pga as N — oo.

The function E(s; %, «) is meromorphic one. Therefore, its asymptotic
behavior is better reflected by a limit theorem in the space of meromor-
phic functions.

Let Coo = CU{o0} be the Riemann sphere with the metric d defined
by

2|81 —52‘ 2
d(s1,82) = d(s,00) = ———,
V1+|s]?

VI+s1Py/T+ 522
s,51,82 € C. Let G be a region on the complex plane. Denote by M (G)
the space of meromorphic on G functions f: G — (Cu,d) equipped
with the topology of uniform convergence on compacta. In this topology,
a sequence {f,} C M(G) converges to f € M(G) if, for every compact
subset K C G,

d(00,00) =0,

lim sup d(fn(8)> f(s)) =0.

=0 seK

All analytic functions on G form a subspace H(G) of M(G).
Let D= {s € C:0>1}. Then, in the case Ra <0,

E <s; I;,a;w> i MGXP {QWimk} ;

- ms l
is an H(D)-valued random element defined on the probability space
(Q, B(Q2),mp). Denote by P its distribution given, for A € B(H(D)),
by

PH(A) =my (wEQ:E(s;?,a;w) EA),

and define the probability measure
‘ k
Pn(A) = pn <E<s + imh; l,a) € A> , AeB(M(D)).

The aim of this paper is to prove a limit theorem for the measure Py.

Theorem 2. Suppose that Ra < 0 and that h > 0 is a fized number
such that exp Q—Zr} is irrational for all v € Z\ {0}. Then the probability
measure Py converges weakly to Pg as N — 0.

We suppose in the sequel that o < 0, and that exp {%T} is irrational
for all » € Z \ {0}.
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2. Case of absolute convergence

In this section, we will prove a discrete limit theorem in the space of
analytic functions for a function given by absolutely convergent Dirichlet
series and related to the function (s; %, a).
l+4a ifa#0
Let, for brevity, s1 =1, so = ] 70,
1 if =0,

and
2

fsy=T](1—-2%%).

j=1
Then f(sj) =0, j = 1,2, and the point s = 1 is a double zero of f(s) if

o = 0. Define L "
E <5; l,a> = f(s)E (s; l,a)

Then, clearly, E (s; %,a) is an analytic function on the half-plane D.
Moreover, denoting by |.A| the number of elements of a set A, we have
that, for o > 1,

2 . 0o
~ k 253 a(m) .k
E (s; T a> = H <1 — 23) Z e exp {2mml}

It is easily seen that, for all m € Nand j = 0,1, 2,

k
img (:6) < loutm.

Let o1 > % be a fixed number, and, for m,n € N,

i - o {-(2)7)

5 gk o= 0y (,0) vn(m)
En (5, 7’(1) - Z Z 2Jsms ’

7=0m=1

Define

and, for & € (,
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It was observed in [5] that the above series both converge absolutely for

o > % This section is devoted to the weak convergence of probability

measures
~ k
Py = pin (En <S + imh; l,a> € A> , AeB(H(D)),
and

ﬁN,n = uN (En <s + imh; ?,a;@) € A) , AeB(H(D)).

Theorem 3. There exists a probability measure P, on (H(D),B(H(D)))
such that both the measures Py, and Py, converge weakly to P, as
N — oco.

The proof of Theorem 3 is based on a discrete limit theorem on the
torus €2. Define

Qn(A) = pun ((p‘imh peEP)eE A) , AcB(Q).

Lemma 4. The probability measure Qn converges weakly to the Haar
measure mp on (2, B(2)) as N — oo.

Proof of the lemma is given in [6], Lemma 5.

Proof of Theorem 3. Define the function w, : @ — H(D) by the
formula

2 o] k j
_ am.j (§,0) vn(m)w’ (2)w(m)
un(w) - Z Z stms :
7=0m=1
From the absolute convergence for o > % of the series F (s; %, a), we have
that the function w,, is continuous. Moreover, the equality

Un, <(p_imh 'p € P)) = E, <O‘ + imh; ?, oz)
holds. Thus, Py, = QNu,_Ll. This, the continuity of wu,, Lemma 4
and Theorem 5.1 of [1] show that the measure Py, converges weakly to
myu, !
Similarly, in the case of the measure I/D\N’n, we define the function

Up : 2 — H(D) by the formula

as N — oo.

) = 30 3 4 (£:0) P @O0 Qe (m)un ()

278ms
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Then in the above way we obtain that the measure ﬁN’n converges weakly
to myt, ! as N — oco. So, it remains to prove that the measures mgu,; !
and mya, ! coincide. Let, for w € , u(w) = wl. Then

Up (W) = Up (WD) = up(u(w)).
Therefore, using the invariance of the Haar measure my, we find that

-1 1 1

mut," =mpg(un(u) ™ = (mguu, ! =myug?,
and the theorem is proved.

We note that the requirement on the irrationality of exp {2%}, r e
Z \ {0}, is used in the proof of Lemma 4, hence also for the proof of
Theorem 3.

3. Approximation results

Let, for w € 2 and s € D,

2 o0 i
~( k- k W (2)w(m)
E(Sw”““) = 2D amg (zO‘)W

_ :ﬁjzll 283-;(2)) mi::l W@{p {Qm-ml;},

Then E (s; %,a;w) is an H(D)-valued random element defined on the
probability space (2,B(2),mpy). Denote by Pz the distribution of
E (s; %, o w). In this section, we approximate in the mean the functions
E (s; %,a) and F (s; %,a;w) by En (s; %,a) and En (s; %,a;w), respec-
tively.
Theorem 5. Let K be a compact subset of D. Then

N

1
lim lim sup sup
n—=0 N_oo N +1 mZ::OSGK

E(s—i—imh;];,a) - E, <5+imh;];,a>‘ =0.

Proof. For n € N, define

s s
! =—I(—|n°
=2 (2w
where I'(s) is the Euler gamma function and o) is defined in Section 2.
Then, see, [5], for o > %,
o1-+100

= k 1 = k dz
En<s,l,a>2i / E<S+z’l’a>ln(2)z (1)

01 —100
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IS

Suppose that min{o : s € K} = % +n,n>0. Now we take o9 = % +
and using (1) obtain by the residue theorem that, for o > o9,

o2 —0+100

~ k 1 ~ k dz =~ k
En<s,l,a>—2m / E<s+z,l,a>ln(z)7+E<s,l,oz).

09 —0—100
(2)
Let L be a simple closed contour lying in D and enclosing the set K, and
let § be the distance of L from K. The an application of the Cauchy
integral formula yields the estimate
sup

E <s—|—imh;k,a> —E’n <8+z’mh;k,a>‘
seK ! !
k’ k:
O

Therefore, taking into account (2), we find that

N

k ~ k
Z ‘ <s—|—imh;l,a> —F, (s—l—imh;l7a>
N N k =R k
Z E<a+imh+iu;l,a> - B, (U—Hmh-i-iu;l,a)’

=0
)dT

N
sup / |ln (02 — o +iT)| lz
0+1u€L |J2 — 0+ Z7_| N m=

N 2\ 2
ln(og — o +ir 1 ~ . . . k
sup / | 2 )| <N E E<02+ZU+ZT+2mh;l,a> ) dr.

o+1u€L ‘0—2 _U+'LT|

L]
< —< sup
N(S <7+zu€L

k
E<02+zu+zT+zmh l,oz)

Since 03 > 1 and Ra < 0, we have by [9] that

T
i 2
/‘E <02+it;l,a> dt < T.
0
Hence, it follows that also
T ~ " 9
/ E <02 + it; 7 a> dt < T, (4)
0
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r k
/‘E’ <02 + it; l,oz)
0

We choose the contour L to satisfy § = 7. Then u is bounded, and the
Gallagher lemma, see [8], Lemma 1.4, together with estimates (4) and
(5) shows that

1 N
¥ 2
m=0

and
2
dt < T. (5)

2

~ k
E(O’Q +iu + 1T + imh; l,a)

1 Nh i 9
<<Nh/ E(az—i-iu—i-iT—i-it;l,a) dt
0
Nh
+1 /E’ +'+‘+‘tk 2dt
-— g MU 1T w, —,
N 2 7l7
0

N[

2
dt

Nh

= ok
. E 02+w+z7'+zt;7,a
0

1
< N(N+ IT]) < 1+ |7]. (6)

This and (3) lead to the estimate

R - k - k
Nr1 mzz:ojglg E (s—f-imh;?,a) -k, <s—|—imh;l,a>‘
< sup / (o — 0+ i7)|(1 4 |7])dr. (7)
U+iUELfoo

By the definition of o9 and the contour L, we have that o9 — 0 < —g for
o +iu € L. Moreover, the definition of the function I, (s) shows that, for
o <0,

(o)

lim lln(o +i1)| (1 4 |7])dt = 0.
n—oo

Therefore, this and (7) imply the assertion of the lemma.

Theorem 6. Let K be a compact subset of D. Then, for almost all
w € Q,

N
1 ~ k ~ k
lim limsu sup |E'| s+imh; -, asw | — E,| s+ imh; —,a;w || =0.
no NﬂoopNHmZ:Osef‘?’ < l ) < l )'
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Proof. In [5] it was observed that, for o > 3, the estimate

T
/ (a + it; — a;w>
0

holds for almost all w € Q. Therefore, the proof repeats the arguments
used in the proof of Theorem 5.

2
dt <T

4. Limit theorems for £ (s; %,04)

On (H(D),B(H(D))), define two probability measures
~ . k
Qn(A) = un <E (S + imh; j,a) € A) ,
and, for w € §,

Qn(A) = un <E <s+imh; ?,a;w) S A) .

Theorem 7. There exists a probability measure Q on (H(D),B(H(D)))
such that both the measures Qn and Qn converge weakly to QQ as N — oo.

Proof. By Theorem 3, the probability measures Py, and ]3N,n both
converge weakly to the measure fn Iiet 0 be a random variable defined
on a certain probability space (€2, B(€2),[P) with the distribution

POy =mh) = ——, m=0,1,...,N.
Define "
XN,n = XN,n(S) = E\n <5 +i0N; l7a) )

and denote by X,, = X,,(s) the H(D)-valued random element with the
distribution P,. Then Theorem 3 implies the relation

D
XN,TL Njgo Xn7 (8)

D ey
where, as usual, — denotes the convergence in distribution.

The further proof requires a metric on H (D) which induces its topol-
ogy of uniform convergence on compacta. It is known, see, for example,
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[2], that there exists a sequence {K,, : n € N} of compact subsets of D
o0

such that D = |J K, K,, C K,+1, and if K is a compact of the region
n=1

D, then K C K,, for some n. Then it is easily seen that

_osw | f(s) — g(s)]
Z 1+SS£? | £(s) —g(s)]

is the mentioned metric.
For every M, > 0, the Chebyshev inequality yields

En <s + imh; %a)‘ > MT>

B, (s + imh; I;,a> ‘ . (9

P (Sup | XN n(s)] > Mr) = UN <SUP

SEKT SGKT

N

1
< ——— E su
= M,(N +1) mzose;g

Let L, be a simple closed contour in D enclosing the set K., and let 9,
be the distance of L, from K,. Then by the Cauchy integral formula

E<s+imh;1; > <</‘ <z+zmh >‘\dz\

Therefore, in view of Theorem 5 and (6),

En <5+imh;];,oz>
E(s—l—imh;l,a) —En<3+z'mh;l,a>
1

~ k
E(s + imh; —, 04)
=0 SEKT l

N
: | L]
< C4y + limsup sup
" NS 0r(N A1) piiucr, =

< Cn+Cy ¥ <. (10)

sup
SEKT

N

1
lim sup sup
N—oo N + 1 ’H’LZZOSGKT

N

1
lim sup sup
N—oo N + 1 WLZZ:OSGKT

N
+ lim sup

IN

~ k
E<s+iu—|—imh;l,a>‘
Now let € > 0 be an arbitrary number. We take M, = M, = Cr%.
Then we deduce from (9) and (10) that

limsup P <sup | Xnn(s)] > MT75> < ir
N—oo seK, 2
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for all n,r € N. Since (8) implies the relation

D
sup [ Xnn(s)l v=2, sup [ Xn(s)],

hence we find that

P <sup | X0 (s)] > Mr,e) < ir (11)
SGK’I‘ 2

for all n,r € N. Define

H.={fe€ H(D): sup |f(s)| < Myr > 1}.
seK,

Then the set H is compact on H (D), and, by (11),
P(X,(s) e H)>1—¢

for all n € N. This means that the family of probability measures {P, :
n € N} is tight. Therefore, by the Prokhorov theorem, see, for example,
[1], it is relatively compact. Thus, there exists a subsequence {P,, } C
{P,} such that P,, converges weakly to some probability measure @) on
(H(D),B(H(D))) as k — oo. Then also the relation

X 0 Q (12)

—00

holds.
Now let

~ k
XN :XN(S) =F <8+i9N;l,a> .

Then, by Theorem 5, for every € > 0,
lim limsupP(p (Xn(s), Xn,n(s)) > €)

n—00 N—oo

~ k ~ k
lim lim sup puy (p <E<s+imh; l,a),E <s—|—imh; l,oz)) > e)
n—xX N_o0

N
1 ~ k ~ k
lim limsupm E p<E<s+imh;l,a>,E (s—l—imh;l,a)) =0.
€

n—oo N—o00o m—0

IN

Since the space H(D) is separable, this, (8), (12) together with Theo-
rem 4.2 of [1] show that

Xy 2 Q. (13)

N—o00
This means that the measure QQn converges weakly to QQ as N — .
Moreover, (13) shows that the measure P is independent of the subse-
quence { Py, }. Since {P,} is relatively compact, hence we deduce that
X, 2 Q. (14)

n—oo
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Now let L
Xnn(s) = En <s + 10N T a;w) ,

and L
Xn(s) = En (8 + i0n; l,a;w) i

Then, repeating the above arguments for X ~N.n(s) and X ~N(8), applying
Theorems 3 and 6, as well as taking into account (14), we obtain that
the measure @ ~ also converges weakly to @ as N — oo. The theorem is
proved.

Theorem 8. The probability measure Qn converges weakly to Pg as
N — oo.

Proof. We start with elements of the ergodic theory. Let a; = {p~* :
p € P}, and fr(w) = apw, w € Q. Then f, is a measurable measure
preserving transformation on (2, B(2),mg). It was obtained in [3] that
this transformation is ergodic.

Let A € B(H(D)) be an arbitrary continuity set of the limit measure
@ in Theorem 7. Then, by the latter theorem,

~ k
A}im UN <E (s + imh; T a) € A) =Q(A). (15)
On the space (€2, B(2), mp ), define the random variable 6 by the formula

B _11fE(,,')€A
H_Q(W)_{O 1fE(7i,aw)¢A

Then, denoting by £ the expectation of 6, we have that
~( k
E6 = /Qde =mg <w €N: E(s; l,a;w) € A> = Pz(A).  (16)
Q

Since the transformation fj is ergodic, the classical Birkhoff-Khinchine
theorem, see, for example, [4], shows that

Z 0/ (w (17)

N—>OON

for almost all w € 2. On the other hand, from the definitions of f, and
0, we deduce that
1 N

m _ i ; .k .
mmZOQ(fh (w)) = un <E(s+zmh, l,a,w) € A>.
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This, (16) and (17) give the equality

. -~ - k
]\}EHOOMN (E(s—l—zmh; l,a;w) € A) = Pp(A).

Therefore, in view of (15),
Q(A) = Pp(4) (18)

for all continuity sets of the measure . Since all continuity sets con-
stitute the determining class, (18) holds for all A € B(H(D)), and the
theorem is proved.

5. Two-dimensional theorem

Let H2(D) = H(D) x H(D), and

Fs.00) = 13[ <1 N 25]';(2)) _

Jj=1

On the probability space (Q, B(2), mp), define an H?(D)-valued random
element F'(s,w) by

Fis.w) = (16,00, B (55500 )).

In this section, we consider the weak convergence of the probability mea-
sure

def

Ra(A) Ly <<f(s +imh), B <s + imh; I;a>) e A) . AcB(H(D)).

Theorem 9. The probability measure Ry converges weakly to the distri-
bution Pr of the random element F(s,w) as N — oo.

Proof. The function f(s) is a Dirichlet polynomial. Therefore, the
probability measure

u (f(s +imh) € 4), A€ BH(D)),

converges weakly to the distribution of the random element f(s,w) as
N — oo. Now this, Theorem 8 and an application of the modified
Cramér—Wald criterion, an example of its application is given in [7], leads
to the statement of the theorem.
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6. Proof of the main theorem

Theorem 2 is a consequence of Theorem 9.

Proof of Theorem 2. It is not difficult to see that, for the metric d
defined in Section 1, the equality
1 1
91’ g2

d(gvaQ):d( > 91,92 € H(D),

holds. Therefore, the function u : H2(D) — M (D) defined by the formula
u(gl7g2):%7 g1, 92 EH(D))

is continuous, and Py = Ryu~!. Hence, by Theorem 5.1 of [1] and
Theorem 9, the measure Py converges weakly to the measure Ppu~!,
ie., to

E(s;%,a;w)

mp (w €N F(5.0) € A) , AeB(M(D)). (19)

However, by the definition of the random element E (s; %, Q; w), we have
that

(s, m?

Therefore, (19) coincides with

m=1

mpy (w €eQ:E (s;?,a;w) eA), A€ B(H(D)).

The theorem is proved.
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