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Abstract. The category G of all left modules over all rings is

studied. Necessary and sufficient conditions for a preradical func-

tor on G to be radical are given. Radical functors on essential

subcategories of G are investigated.

All categories in our paper are concrete. Recall that a category is
called concrete if all objects are (structured) sets, morphisms from A
to B are (structure preserving) mappings from A to B, composition of
morphisms is the composition of mappings, and the identities are the
identity mappings [1].

Let C be an arbitrary concrete category. (Though all these things we
can do in an arbitrary category.)
Definition. A preradical functor (or simply a preradical) on C is a
subfunctor of the identity functor on C. In other words, a preradical
functor T assigns to each object A a subobject T (A) in such a way that
the diagram

A −−−−→ B

i1

x i2

x

T (A) −−−−→ T (B)

is commutative.
Definition. A preradical functor T is called idempotent if

T (T (A)) = T (A) for every A ∈ Ob(C).

Remark 1. We will consider only idempotent preradical functors.
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essential subcategory.
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Definition. Let T1 and T2 be functors from the category A to the
category B. The functor T1 is called a subfunctor of the functor T2 (denote
T1 6 T2) if T1(A) is a subobject of T2(A) (denote T1(A) ⊆ T2(A)) for
every A ∈ Ob(A) and the following diagram

T1(A1)
T1(ϕ)
−−−−→ T1(A2)

i1

y i2

y

T2(A1)
T2(ϕ)
−−−−→ T2(A2)

is commutative for every morphism ϕ : A1 → A2, A1, A2 ∈ Ob(A).
Definition. The functor T1 is called a normal subfunctor of the functor
T2 if T1(A) is a normal subobject of T2(A) for every A ∈ Ob(A).

Recall that A′ is called a normal subobject of A (or an ideal) if A′ → A
is a kernel of some morphism [2, 3].

As a rule we will consider the cases, when the categories A and B
coincide.
Definition. Let A be a category, T1 and T2 be functors on A, such that
T1 is a normal subfunctor of T2. A factor-functor T2/T1 is a functor such
that (T2/T1)(A) = T2(A)/T1(A) ∀A ∈ Ob(A) and the next diagram is
commutative

T1(A1)
T1(ϕ)
−−−−→ T1(A2)

i1

y i2

y

T2(A1)
T2(ϕ)
−−−−→ T2(A2)

π1

y π2

y

T2(A1)/T1(A1) −−−−→ T2(A2)/T1(A2),

where i1, i2 are normal monomorphisms, π1, π2 are canonical epimor-
phisms.
Definition. A preradical functor T on the category A is called a radical
functor if T (I/T ) = 0, where I is an identity functor.

Consider a category G, such that its objects are R−modules and its
morphisms are some semilinear transformations.

Throughout the whole text, all rings are considered to be associative
with unit 1 6= 0 and all modules are left unitary [5, 6]. Let R be a
ring. The category of left R–modules will be denoted by R−Mod, radical
functor in the category R−Mod will be denoted by rR.

All necessary definitions and theorems of Torsion theory and Category
theory can be found in [2, 4, 7, 8].
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A pair of mappings (ϕ,ψ) : (R1,M1) → (R2,M2), where ϕ : R1 → R2

is either zero or a surjective ring homomorphism, and ψ : M1 → M2 is a
homomorphism of abelian groups, is called a semilinear transformation
if ∀r ∈ R1,∀m ∈M1

ψ(r1m1) = ϕ(r1)ψ(m1).

Let G be a category of all left modules over all rings. Or, more pre-
cisely, the objects of the category G are the pairs (R,M) =R M , where
R is a ring, M is a left module; the set of morphisms H(R1

M1,R2
M2)

is defined as a quotient set of a collection of all semilinear transforma-
tions (ϕ,ψ) : (R1,M1) → (R2,M2) by the equivalence relation ∼, such
that (ϕ,ψ) ∼ (ϕ′, ψ′), if ψ = ψ′, and product of morphisms is defined
naturally. The class, determined by the semilinear transformation (ϕ,ψ)

will be denoted by (ϕ̃, ψ), or, more frequently, (ϕ,ψ). It is easy to verify
that G is a category. All categories, we consider in the paper, will be
subcategories of G. From the definition of equality of morphisms in the
category G it follows

Remark 2. A class (ϕ̃, ψ) is a monomorphism (resp., an epimorphism)
in the category G if ψ is a monomorphism (resp., an epimorphism) in the
category of abelian groups.

Lemma 1. If (0, ψ) is a semilinear transformation, then ψ = 0.

Proof. By the definition of a semilinear transformation,

ψ(m) = ψ(1m) = ϕ(1)ψ(m) = 0 ∀m ∈M.

The objects (R, 0) and the morphisms (0̃, 0) are zero objects and zero
morphisms in the category G, respectively.

State some properties of the category G.

Proposition 1. For arbitrary many of objects (Ri,Mi) of the category
G, where i ∈ I, there exists the direct product belonging to G.

Proof. In fact consider a pair (R,M), where R =
∏
i∈I

Ri is a direct prod-

uct of rings Ri and M =
∏
i∈I

Mi is a direct product of abelian groups Mi.

Every abelian group M can be turned into a left R–module putting rm =
= (r1, r2, . . . , ri, . . .)(m1,m2, . . . ,mi, . . .) = (r1m1, r2m2, . . . , rimi, . . .),
where ri ∈ Ri and mi ∈Mi.
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Consider the following morphims:

(si, πi) : (
∏

i∈I

Ri,
∏

i∈I

Mi) → (Ri,Mi),

where si is a projection of
∏
i∈I

Ri onto Ri and πi is a projection of
∏
i∈I

Mi

onto Mi. It is easy to see that pairs of homomorphisms (si, πi) belong to
the category G. Since R is a direct product of rings Ri and M is a direct
product of abelian groups we can verify that the object (R,M) and the
morphisms (si, πi) define a direct product of the objects (Ri,Mi) in the
category G.

Proposition 2. Every morphism of G has the kernel.

Proof. In fact, let (ϕ,ψ) ∈ H(R1
M1,R2

M2) be a morphism of the ca-
tegory G. Consider the pair (R1,Kerψ), where Kerψ is the kernel of
a homomorphism ψ in the category of abelian groups. Since M1 is an
R1−module, Kerψ is an R1−submodule. Prove that the object (R1,
Kerψ) with a monomorphism (1R1

, i) : (R1,Kerψ) → (R1,M1), where
i is a canonical injection, is the kernel of the morphism (ϕ,ψ). As a
matter of fact (ϕ,ψ)(1R1

, i) = (ϕ, 0) ∼ (0, 0). Now let a morphism
(ϕ′, ψ′) : (R3,M3) → (R1,M1) be such that (ϕ,ψ)(ϕ′, ψ′) = (ϕϕ′, 0) ∼
∼ (0, 0). Since ψψ′ = 0 it follows that there exists a homomorphism of
abelian groups ψ3 : M3 → Kerψ satisfying the condition ψ′ = iψ3. Thus,
there exists a pair of homomorphisms (ϕ′, ψ3) : (R3,M3) → (R1,Kerψ)
satisfying the condition (ϕ′, ψ′) = (1R1

, i)(ϕ′, ψ3). Verify that (ϕ′, ψ3) is a
semilinear transformation. Let r3 ∈ R3 and m3 ∈M3. Since (ϕ′, ψ′) is a
semilinear transformations, ψ′(r3m3) = ϕ′(r3)ψ

′(m3). Hence ψ′(r3m3) =
= iψ3(r3m3) = ϕ′(r3)ψ

′(m3) = ϕ′(r3)iψ3(m3) = iϕ′(r3)ψ3(m3), i. e.
iψ3(r3m3) = i(ϕ′(r3)ψ3(m3)). Since i is a monomorphism in the cate-
gory of abelian groups it follows that ψ3(r3m3) = ϕ′(r3)ψ3(m3). By the
construction of kernel, we see that the ideals of the object (R,M) are of
the form (R,N), where N is a submodule of the module M .

Proposition 3. Every morphism of G has the cokernel.

Proof. Let (ϕ,ψ) : (R1,M1) → (R2,M2) be a morphism in G. Since
ϕ is either zero or a surjective homomorphism it follows by lemma 1
that the group ψ(M1) is a submodule of an R2–module M2. Using the
scheme dual to the scheme of proving proposition 2 it is easy to see that
a quotient object (R2,M2/ψ(M1)) of the object (R2,M2) with an epi-
morphism (1R2

, π) : (R2,M2) → (R2,M2/ψ(M1)), where π is a canonical
epimorphism of R2–modules, is a cokernel of the morphism (ϕ,ψ) in the
category G.
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The construction of the kernel and the cokernel in G implies

Remark 3. If a subcategory of G contains each object (R,M) together
with the category R–Mod, then it also has properties as in proposition 2
and proposition 3.

Proposition 4. Every morphism of G has the normal image.

Proof. In fact, let (ϕ,ψ) : (R1,M1) → (R2,M2) be a semilinear trans-
formation. In the proof of proposition 3 we recalled that ψ(M1) is an
R2–module. This R2–module can be turned into R1–module.

Consider morphisms (1R1
, ψ′) : (R1,M1) → (R1, ψ(M1)) and (ϕ, i) :

(R1, ψ(M1)) → (R2,M2), where i is a canonical injection of abelian
groups, and ψ′(m1) = ψ(m1) for all m1 ∈ M1. It is easy to verify that
these transformations are semilinear. By remark 2, morphisms (1R1

, ψ′)
and (ϕ, i) are epimorphism and monomorphism in the category G, re-
spectively.

Since (ϕ,ψ) = (ϕ, i)(1R1
, ψ′) it remains to show that (1R1

, ψ′) is a
normal epimorphism in the category G. By the construction of kernel
we see that the semilinear transformation (1R1

, ψ′) is the cokernel of the
semilinear transformation (1R1

, j) : (R1,Kerψ) → (R1,M1), where j is a
canonical injection from Kerψ to M1.

Since every cokernel is a normal epimorphism [2] proposition 4 is
proved.

By the construction of a normal image and by the fact that a normal
image is determined up to equivalence implies

Remark 4. Every normal epimorphism up to equivalence has the form
(1R, ψ), where ψ is any epimorphism of abelian groups.

Let T be an idempotent preradical functor on the category G. Con-
sider the class

T (T ) = {(R,M) | T (R,M) = (R,M)}, where(R,M) ∈ Ob(G).

Proposition 5. The class T is closed under epimorphic images.

Remark 5. Epimorphisms in the category G are morphisms (ϕ,ψ) :
(R1,M1) → (R2,M2), such that ϕ : R1 → R2 is a surjective ring homo-
morphism, and ψ : M1 → M2 is an epimorphism of modules (i. e. a
surjective homomorphism ).
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Proof of the proposition 5. Let (R1,M1) ∈ T (T ), (ϕ,ψ) : (R1,M1) →
(R2,M2) be an epimorphism. By the definition of the preradical functor
the diagram

(R1,M1)
(ϕ,ψ)
−−−−→ (R2,M2)

i1

x i2

x

(R1,M1) −−−−→ T (R2,M2),

where i1, i2 are monomorphisms, is commutative. Since (ϕ,ψ) is an
epimorphism of the category G we obtain T (R2,M2) = (R2,M2). So
(R2,M2) ∈ T (T ).

Proposition 6. The class T possesses the following property:
if (R,M1) ∈ T (T ) and (R,M2) ∈ T (T ) then (R,M1 ⊕M2) ∈ T (T ).

Proof. Verify that the pair (R,M1 ⊕M2) is a direct sum of (R,M1) and
(R,M2). If we fix the ring then we obtain a subcategory of the category
G, which coincides with the category of modules. But in the category of
modules class T is closed under direct sums [4].

Remark 6. In the category G there exist two objects, for which the
direct sum does not exist, because the direct sum (R1 ⊕ R2,M1 ⊕M2)
must be the greatest object, which contains (R1,M1) and (R2,M2) as
subobjects. But if R1 6= R2, then such object does not exist, because a
morphism Ri → Rj must be a surjective ring homomorphism or a zero
homomorphism.

Proposition 7. Let S be a class of objects of the category G, which is
closed under epimorphic images and under direct sums (if they exist).
Put

T (R,M) =
∑

{(R,Mi)|(R,Mi) ⊆ (R,M), (R,Mi) ∈ Ob(S)} .

Then T is an idempotent preradical.

Proof. Let T be a radical functor on G. The restriction of the functor T on
the category R−Mod is denoted by TR. So we can write T (R,M) is equal
to (R, TR(M)) ∀(R,M) ∈ Ob(G) or simply to TR(M). In every category
R−Mod T (R,M) = (R, TR(M)) is an idempotent preradical functor. So
it remains to show that for every (ϕ,ψ) : (R1, M1) → (R2,M2) the next
diagram is commutative

(R1,M1)
(ϕ,ψ)
−−−−→ (R2,M2)

i1

x i2

x

T (R1,M1)
T (ϕ,ψ)
−−−−→ T (R2,M2),
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where i1, i2 are monomorphisms.

T (R,M) ∈ Ob(S), so (R2, ψ(TR1
(M1))) ∈ Ob(S) and ψ(TR1

(M1)) ⊆
⊆ TR2

(M2). Hence our diagram is commutative.

Theorem 1. A preradical functor on the category G is a radical functor
if and only if its restriction on every category R−Mod is a radical.

Proof. (⇒) It is evidently.

(⇐)Let T be an idempotent preradical functor on G, and its restriction
TR on every category R−Mod be a radical, i. e. TR (M/TR(M)) = 0
∀M ∈ R−Mod. We must prove that T (I/T ) = 0, where I is an identity
functor. For this T (R,M) must be a normal subobject of (R,M), that is
T (R,M) = (R, TR(M)). But on the category R−Mod TR is a radical.

Definition. The surjective ring homomorphism ϕ : R1 → R2 is called
essential in subcategory K of the category G if every morphism (ϕ,ψ)
belongs to K.

Definition.A subcategory K of the category G is called essential if it has
such properties:

1) if (R,M) is an object of K, then R−Mod ⊆ K;

2) if (ϕ̃0, ψ0) is a morphism of K, then (ϕ̃0, ψ0) = (ϕ̃1, ψ1), where ϕ1

is a surjective homomorphism essential in the category K;

3) if objects (R1,M1), (R2,M2) ∈ Ob(K), then zero morphism

(0̃, 0) : (R1,M1) → (R2,M2) belongs to the category K.

Theorem 2. Let K be an essential subcategory of G, rR be radicals on
the categories R−Mod ⊆ K. Radicals rR generate a radical functor on
K if and only if for every morphism (ϕ,ψ) : (R1,M1) → (R2,M2) of the
category K ψ(rR1

(M1)) ⊆ rR2
(M2).

Proof. (⇒) Let radicals rR generate a radical functor T . So for every
(ϕ,ψ) : (R1,M1) → (R2,M2) the next diagram is commutative

(R1,M1)
(ϕ,ψ)
−−−−→ (R2,M2)

i1

x i2

x

T (R1,M1)
T (ϕ,ψ)
−−−−→ T (R2,M2),

where i1, i2 are monomorphisms. But T (R1,M1) = (R1, rR1
(M1)), T (R2,

M2) = (R2, rR2
(M2)), so ψ(rR1

(M1)) ⊆ rR2
(M2)
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(⇐) 1. We want to show that for every (ϕ,ψ) : (R1,M1) → (R2,M2)
the next diagram is commutative

(R1,M1)
(ϕ,ψ)
−−−−→ (R2,M2)

i1

x i2

x

T (R1,M1)
T (ϕ,ψ)
−−−−→ T (R2,M2),

where i1, i2 are monomorphisms. Since T (R1,M1) = (R1, rR1
(M1)),

T (R2,M2) = (R2, rR2
(M2)) and ψ(rR1

(M1)) ⊆ rR2
(M2) it follows the

commutativity of the diagram. So T is a preradical functor.
2. It is easy to see that T is an idempotent, because every rR is an

idempotent.
3. T (I/T ) = 0 by the theorem 1.

Let I be an arbitrary left ideal of the ring R. Define a class RI of
left R−modules in such a way that: N ∈ Ob(RI) ⇔ IN = N , where
IN consists of all sums of the form

∑k
j=1 ijnj , where ij ∈ I, nj ∈ N and

k ∈ N. Show that RI is a radical class [4, 7].
It is necessary to show that RI is closed under 1) epimorphic images,

2) direct sums and 3) extensions.
1). Let f : N → M be an epimorphism of R−modules and N ∈

∈ Ob(RI) and m be any element of M . There exists n ∈ N such that
m = f(n). Since N ∈ Ob(RI), n =

∑k
j=1 ijnj , where ij ∈ I, nj ∈ N and

k ∈ N.
Therefore m = f(n) = f(

∑k
j=1 ijnj) =

∑k
j=1 ijf(nj). Hence m ∈

∈ IM , i. e. M = IM .
2). It is clear.
3). We have short exact sequence

0 −−−−→ N
ϕ1

−−−−→ M
ϕ2

−−−−→ M/N −−−−→ 0

and IN = N , I(M/N) = M/N . We shall show that IM = M . Let
m ∈ M , so ϕ2(m) = m1 =

∑n
j=1 ajkj , n ∈ N, m1, kj ∈ M/N , ϕ2(mj) =

= kj . Consider such expression: m−
∑n

j=1 ajmj , mj ∈M . Then ϕ2(m−
−

∑n
j=1 ajmj) = ϕ2(m) −

∑n
j=1 ajϕ2(mj) = 0. So (m −

∑n
j=1 ajmj) ∈

∈ Kerϕ2 implies (m −
∑n

j=1 ajmj) ∈ N , it follows m −
∑n

j=1 ajmj =
=

∑
bjnj . So m ∈ IM , i. e. M = IM .

A radical functor, defined by the radical class RI is called an I−ra-
dical functor (or simply an I−radical).

Let C be an arbitrary essential subcategory of the category G, such
that R−Mod ⊆ C and I(R) be a left ideal of the ring R. Then in every
category R−Mod ⊆ C we can define I(R)−radical rR.
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Theorem 3. If ϕ(I(R1)) ⊆ I(R2) for every surjective ring homomor-
phism ϕ : R1 → R2, which is essential in essential subcategory C, then
I(R)−radicals generate a radical functor T on the category C.

Proof. Define a functor T in such a way: T (R,M) = (R, rR(M)) and
T (ϕ,ψ) = (ϕ,ψrR(M)) for every (R,M) and (ϕ,ψ) belonging to the cate-
gory C, where ψrR(M) is a restriction of the homomorphism ψ on the mo-
dule rR(M). It remains to show that inclusions ψ(rR1

(M1)) ⊆ rR2
(M2)

hold true for every morphism (ϕ,ψ) : (R1,M1) → (R2,M2) of the cate-
gory C. The surjective homomorphism ϕ can be considered as essential
in C, because the category C is essential. Since ϕ(I(R1)) ⊆ I(R2), it
follows by the definition of an I(R2)−radical in R2−Mod, ψ(rR1

(M1)) =
= ψ(I(R1)rR1

(M1)) = ϕ(I(R1))ψ(rR1
(M1)).

Let I(R) be a left ideal of the ring R, rI(R) is an I(R)−radical in
R−Mod.

Definition. A left ideal J(R) is called a maximal left ideal for the
I(R)−radical rI(R) if rI(R) = rJ(R) implies I(R) ⊆ J(R).

Proposition 8. If I(R) is a maximal left ideal for the radical rI(R), then
ψ(rI(R1)(M1)) ⊆ rI(R2)(M2) for every morphism (ϕ,ψ) : (R1,M1) →
(R2,M2) of the category G if and only if ϕ(I(R1)) ⊆ I(R2).

Proof. (⇒)ψ(rR1
(M1)) = ϕ(I(R1))ψ(rR1

(M1)) (see the proof of the the-
orem 3). rI(R2)(M2) = I(R2)rI(R2)(M2) implies ψ(rR1

(M1)) = I(R2)×
×ψ(rR1

(M1)). Since ϕ is a surjective ring homomorphism, R2− Mod ⊆
⊆ R1− Mod and since I(R2) is a maximal, it follows ϕ(I(R1)) ⊆ I(R2)

(⇐) See the proof of the theorem 3.

Now let L be a subcategory of G, where R is a noetherian ring.

For a noetherian ring we can chose a maximal ideal for an I−radical
functor, so we have

Theorem 4. Let R be a noetherian ring and I(R) be a left ideal of R,
which is maximal for the radical rI(R). Radicals rI(R) in R−Mod generate
I(R)−radical functor on the category L if and only if ϕ(I(R1)) ⊆ I(R2)
for every morphism (ϕ,ψ) : (R1,M1) → (R2,M2) of the category L.

Proof. (⇒) Apply Theorem 2 and Proposition 8.

(⇐) See Theorem 3.
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