Algebra and Discrete Mathematics Number 3. (2008). pp. 30 – 39 © Journal "Algebra and Discrete Mathematics"

Radical functors in the category of modules over different rings

RESEARCH ARTICLE

Natalia Burban, Omelyan Horbachuk

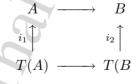
Communicated by M. Ya. Komarnytskyj

ABSTRACT. The category \mathcal{G} of all left modules over all rings is studied. Necessary and sufficient conditions for a preradical functor on \mathcal{G} to be radical are given. Radical functors on essential subcategories of \mathcal{G} are investigated.

All categories in our paper are concrete. Recall that a category is called concrete if all objects are (structured) sets, morphisms from A to B are (structure preserving) mappings from A to B, composition of morphisms is the composition of mappings, and the identities are the identity mappings [1].

Let \mathcal{C} be an arbitrary concrete category. (Though all these things we can do in an arbitrary category.)

Definition. A precadical functor (or simply a precadical) on C is a subfunctor of the identity functor on C. In other words, a precadical functor T assigns to each object A a subobject T(A) in such a way that the diagram



is commutative.

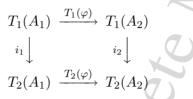
Definition. A precadical functor T is called idempotent if T(T(A)) = T(A) for every $A \in Ob(\mathcal{C})$.

Remark 1. We will consider only idempotent preradical functors.

2000 Mathematics Subject Classification: 16S90, 16D90.

Key words and phrases: *category, functor, radical functor, category of modules, essential subcategory.*

Definition. Let T_1 and T_2 be functors from the category \mathcal{A} to the category \mathcal{B} . The functor T_1 is called a subfunctor of the functor T_2 (denote $T_1 \leq T_2$) if $T_1(A)$ is a subobject of $T_2(A)$ (denote $T_1(A) \subseteq T_2(A)$) for every $A \in Ob(\mathcal{A})$ and the following diagram

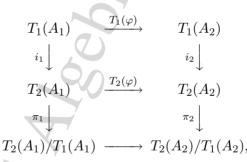


is commutative for every morphism $\varphi \colon A_1 \to A_2, A_1, A_2 \in Ob(\mathcal{A})$. **Definition.** The functor T_1 is called a normal subfunctor of the functor T_2 if $T_1(A)$ is a normal subobject of $T_2(A)$ for every $A \in Ob(A)$.

Recall that A' is called a normal subobject of A (or an ideal) if $A' \to A$ is a kernel of some morphism [2, 3].

As a rule we will consider the cases, when the categories \mathcal{A} and \mathcal{B} coincide.

Definition. Let \mathcal{A} be a category, T_1 and T_2 be functors on \mathcal{A} , such that T_1 is a normal subfunctor of T_2 . A factor-functor T_2/T_1 is a functor such that $(T_2/T_1)(\mathcal{A}) = T_2(\mathcal{A})/T_1(\mathcal{A}) \ \forall \mathcal{A} \in Ob(\mathcal{A})$ and the next diagram is commutative



where i_1, i_2 are normal monomorphisms, π_1, π_2 are canonical epimorphisms.

Definition. A preradical functor T on the category \mathcal{A} is called a radical functor if T(I/T) = 0, where I is an identity functor.

Consider a category \mathcal{G} , such that its objects are R-modules and its morphisms are some semilinear transformations.

Throughout the whole text, all rings are considered to be associative with unit $1 \neq 0$ and all modules are left unitary [5, 6]. Let R be a ring. The category of left R-modules will be denoted by R-Mod, radical functor in the category R-Mod will be denoted by r_R .

All necessary definitions and theorems of Torsion theory and Category theory can be found in [2, 4, 7, 8].

A pair of mappings (φ, ψ) : $(R_1, M_1) \to (R_2, M_2)$, where $\varphi \colon R_1 \to R_2$ is either zero or a surjective ring homomorphism, and $\psi \colon M_1 \to M_2$ is a homomorphism of abelian groups, is called a *semilinear transformation* if $\forall r \in R_1, \forall m \in M_1$

$$\psi(r_1m_1) = \varphi(r_1)\psi(m_1).$$

Let \mathcal{G} be a category of all left modules over all rings. Or, more precisely, the objects of the category \mathcal{G} are the pairs $(R, M) =_R M$, where R is a ring, M is a left module; the set of morphisms $H(_{R_1}M_{1,R_2}M_2)$ is defined as a quotient set of a collection of all semilinear transformations $(\varphi, \psi): (R_1, M_1) \to (R_2, M_2)$ by the equivalence relation \sim , such that $(\varphi, \psi) \sim (\varphi', \psi')$, if $\psi = \psi'$, and product of morphisms is defined naturally. The class, determined by the semilinear transformation (φ, ψ) will be denoted by $(\widetilde{\varphi}, \psi)$, or, more frequently, (φ, ψ) . It is easy to verify that \mathcal{G} is a category. All categories, we consider in the paper, will be subcategories of \mathcal{G} . From the definition of equality of morphisms in the category \mathcal{G} it follows

Remark 2. A class (φ, ψ) is a monomorphism (resp., an epimorphism) in the category \mathcal{G} if ψ is a monomorphism (resp., an epimorphism) in the category of abelian groups.

Lemma 1. If $(0, \psi)$ is a semilinear transformation, then $\psi = 0$.

Proof. By the definition of a semilinear transformation,

$$\psi(m) = \psi(1m) = \varphi(1)\psi(m) = 0 \quad \forall m \in M.$$

The objects (R, 0) and the morphisms (0, 0) are zero objects and zero morphisms in the category \mathcal{G} , respectively.

State some properties of the category \mathcal{G} .

Proposition 1. For arbitrary many of objects (R_i, M_i) of the category \mathcal{G} , where $i \in I$, there exists the direct product belonging to G.

Proof. In fact consider a pair (R, M), where $R = \prod_{i \in I} R_i$ is a direct product of rings R_i and $M = \prod_{i \in I} M_i$ is a direct product of abelian groups M_i . Every abelian group M can be turned into a left R-module putting $rm = (r_1, r_2, \ldots, r_i, \ldots)(m_1, m_2, \ldots, m_i, \ldots) = (r_1m_1, r_2m_2, \ldots, r_im_i, \ldots)$, where $r_i \in R_i$ and $m_i \in M_i$. Consider the following morphims:

$$(s_i, \pi_i) \colon (\prod_{i \in I} R_i, \prod_{i \in I} M_i) \to (R_i, M_i),$$

where s_i is a projection of $\prod_{i \in I} R_i$ onto R_i and π_i is a projection of $\prod_{i \in I} M_i$ onto M_i . It is easy to see that pairs of homomorphisms (s_i, π_i) belong to the category \mathcal{G} . Since R is a direct product of rings R_i and M is a direct product of abelian groups we can verify that the object (R, M) and the morphisms (s_i, π_i) define a direct product of the objects (R_i, M_i) in the category \mathcal{G} .

Proposition 2. Every morphism of \mathcal{G} has the kernel.

Proof. In fact, let $(\varphi, \psi) \in H(R_1M_{1,R_2}M_2)$ be a morphism of the category \mathcal{G} . Consider the pair $(R_1, Ker\psi)$, where $Ker\psi$ is the kernel of a homomorphism ψ in the category of abelian groups. Since M_1 is an R_1 -module, $Ker\psi$ is an R_1 -submodule. Prove that the object $(R_1,$ $Ker\psi$) with a monomorphism $(1_{R_1}, i): (R_1, Ker\psi) \to (R_1, M_1)$, where *i* is a canonical injection, is the kernel of the morphism (φ, ψ) . As a matter of fact $(\varphi, \psi)(1_{R_1}, i) = (\varphi, 0) \sim (0, 0)$. Now let a morphism $(\varphi',\psi')\colon (R_3,M_3)\to (R_1,M_1)$ be such that $(\varphi,\psi)(\varphi',\psi')=(\varphi\varphi',0)\sim$ ~ (0,0). Since $\psi\psi' = 0$ it follows that there exists a homomorphism of abelian groups $\psi_3: M_3 \to Ker\psi$ satisfying the condition $\psi' = i\psi_3$. Thus, there exists a pair of homomorphisms $(\varphi', \psi_3) \colon (R_3, M_3) \to (R_1, Ker\psi)$ satisfying the condition $(\varphi', \psi') = (1_{R_1}, i)(\varphi', \psi_3)$. Verify that (φ', ψ_3) is a semilinear transformation. Let $r_3 \in R_3$ and $m_3 \in M_3$. Since (φ', ψ') is a semilinear transformations, $\psi'(r_3m_3) = \varphi'(r_3)\psi'(m_3)$. Hence $\psi'(r_3m_3) = \varphi'(r_3)\psi'(m_3)$. $= i\psi_3(r_3m_3) = \varphi'(r_3)\psi'(m_3) = \varphi'(r_3)i\psi_3(m_3) = i\varphi'(r_3)\psi_3(m_3)$, i. e. $i\psi_3(r_3m_3) = i(\varphi'(r_3)\psi_3(m_3))$. Since i is a monomorphism in the category of abelian groups it follows that $\psi_3(r_3m_3) = \varphi'(r_3)\psi_3(m_3)$. By the construction of kernel, we see that the ideals of the object (R, M) are of the form (R, N), where N is a submodule of the module M.

Proposition 3. Every morphism of \mathcal{G} has the cokernel.

Proof. Let (φ, ψ) : $(R_1, M_1) \to (R_2, M_2)$ be a morphism in \mathcal{G} . Since φ is either zero or a surjective homomorphism it follows by lemma 1 that the group $\psi(M_1)$ is a submodule of an R_2 -module M_2 . Using the scheme dual to the scheme of proving proposition 2 it is easy to see that a quotient object $(R_2, M_2/\psi(M_1))$ of the object (R_2, M_2) with an epimorphism $(1_{R_2}, \pi)$: $(R_2, M_2) \to (R_2, M_2/\psi(M_1))$, where π is a canonical epimorphism of R_2 -modules, is a cokernel of the morphism (φ, ψ) in the category \mathcal{G} .

The construction of the kernel and the cokernel in \mathcal{G} implies

Remark 3. If a subcategory of \mathcal{G} contains each object (R, M) together with the category R-Mod, then it also has properties as in proposition 2 and proposition 3.

Proposition 4. Every morphism of G has the normal image.

Proof. In fact, let (φ, ψ) : $(R_1, M_1) \to (R_2, M_2)$ be a semilinear transformation. In the proof of proposition 3 we recalled that $\psi(M_1)$ is an R_2 -module. This R_2 -module can be turned into R_1 -module.

Consider morphisms $(1_{R_1}, \psi')$: $(R_1, M_1) \to (R_1, \psi(M_1))$ and (φ, i) : $(R_1, \psi(M_1)) \to (R_2, M_2)$, where *i* is a canonical injection of abelian groups, and $\psi'(m_1) = \psi(m_1)$ for all $m_1 \in M_1$. It is easy to verify that these transformations are semilinear. By remark 2, morphisms $(1_{R_1}, \psi')$ and (φ, i) are epimorphism and monomorphism in the category \mathcal{G} , respectively.

Since $(\varphi, \psi) = (\varphi, i)(1_{R_1}, \psi')$ it remains to show that $(1_{R_1}, \psi')$ is a normal epimorphism in the category \mathcal{G} . By the construction of kernel we see that the semilinear transformation $(1_{R_1}, \psi')$ is the cokernel of the semilinear transformation $(1_{R_1}, j): (R_1, Ker\psi) \to (R_1, M_1)$, where j is a canonical injection from $Ker\psi$ to M_1 .

Since every cokernel is a normal epimorphism [2] proposition 4 is proved. $\hfill \Box$

By the construction of a normal image and by the fact that a normal image is determined up to equivalence implies

Remark 4. Every normal epimorphism up to equivalence has the form $(1_R, \psi)$, where ψ is any epimorphism of abelian groups.

Let T be an idempotent preradical functor on the category \mathcal{G} . Consider the class

$$\mathcal{T}(T) = \{(R, M) \mid T(R, M) = (R, M)\}, where(R, M) \in Ob(\mathcal{G}).$$

Proposition 5. The class \mathcal{T} is closed under epimorphic images.

Remark 5. Epimorphisms in the category \mathcal{G} are morphisms (φ, ψ) : $(R_1, M_1) \to (R_2, M_2)$, such that $\varphi: R_1 \to R_2$ is a surjective ring homomorphism, and $\psi: M_1 \to M_2$ is an epimorphism of modules (i. e. a surjective homomorphism). Proof of the proposition 5. Let $(R_1, M_1) \in \mathcal{T}(T)$, $(\varphi, \psi): (R_1, M_1) \to (R_2, M_2)$ be an epimorphism. By the definition of the preradical functor the diagram

$$\begin{array}{ccc} (R_1, M_1) & \xrightarrow{(\varphi, \psi)} & (R_2, M_2) \\ & & & & \\ i_1 \uparrow & & & i_2 \uparrow \\ (R_1, M_1) & \longrightarrow & T(R_2, M_2), \end{array}$$

where i_1, i_2 are monomorphisms, is commutative. Since (φ, ψ) is an epimorphism of the category \mathcal{G} we obtain $T(R_2, M_2) = (R_2, M_2)$. So $(R_2, M_2) \in \mathcal{T}(T)$.

Proposition 6. The class \mathcal{T} possesses the following property: if $(R, M_1) \in \mathcal{T}(T)$ and $(R, M_2) \in \mathcal{T}(T)$ then $(R, M_1 \oplus M_2) \in \mathcal{T}(T)$.

Proof. Verify that the pair $(R, M_1 \oplus M_2)$ is a direct sum of (R, M_1) and (R, M_2) . If we fix the ring then we obtain a subcategory of the category \mathcal{G} , which coincides with the category of modules. But in the category of modules class \mathcal{T} is closed under direct sums [4].

Remark 6. In the category \mathcal{G} there exist two objects, for which the direct sum does not exist, because the direct sum $(R_1 \oplus R_2, M_1 \oplus M_2)$ must be the greatest object, which contains (R_1, M_1) and (R_2, M_2) as subobjects. But if $R_1 \neq R_2$, then such object does not exist, because a morphism $R_i \to R_j$ must be a surjective ring homomorphism or a zero homomorphism.

Proposition 7. Let S be a class of objects of the category G, which is closed under epimorphic images and under direct sums (if they exist). Put

$$T(R,M) = \sum \left\{ (R,M_i) | (R,M_i) \subseteq (R,M), (R,M_i) \in Ob(\mathcal{S}) \right\}.$$

Then T is an idempotent preradical.

Proof. Let T be a radical functor on \mathcal{G} . The restriction of the functor T on the category R-Mod is denoted by T_R . So we can write T(R, M) is equal to $(R, T_R(M)) \forall (R, M) \in Ob(\mathcal{G})$ or simply to $T_R(M)$. In every category R-Mod $T(R, M) = (R, T_R(M))$ is an idempotent preradical functor. So it remains to show that for every $(\varphi, \psi) \colon (R_1, M_1) \to (R_2, M_2)$ the next diagram is commutative

$$(R_1, M_1) \xrightarrow{(\varphi, \psi)} (R_2, M_2)$$

$$i_1 \uparrow \qquad i_2 \uparrow$$

$$T(R_1, M_1) \xrightarrow{T(\varphi, \psi)} T(R_2, M_2),$$

where i_1, i_2 are monomorphisms.

 $T(R, M) \in Ob(\mathcal{S})$, so $(R_2, \psi(T_{R_1}(M_1))) \in Ob(\mathcal{S})$ and $\psi(T_{R_1}(M_1)) \subseteq T_{R_2}(M_2)$. Hence our diagram is commutative.

Theorem 1. A preradical functor on the category \mathcal{G} is a radical functor if and only if its restriction on every category R-Mod is a radical.

Proof. (\Rightarrow) It is evidently.

 (\Leftarrow) Let T be an idempotent preradical functor on \mathcal{G} , and its restriction T_R on every category R-Mod be a radical, i. e. $T_R(M/T_R(M)) = 0$ $\forall M \in R$ -Mod. We must prove that T(I/T) = 0, where I is an identity functor. For this T(R, M) must be a normal subobject of (R, M), that is $T(R, M) = (R, T_R(M))$. But on the category R-Mod T_R is a radical. \Box

Definition. The surjective ring homomorphism $\varphi \colon R_1 \to R_2$ is called essential in subcategory \mathcal{K} of the category \mathcal{G} if every morphism (φ, ψ) belongs to \mathcal{K} .

Definition. A subcategory \mathcal{K} of the category G is called essential if it has such properties:

1) if (R, M) is an object of \mathcal{K} , then $R - Mod \subseteq \mathcal{K}$;

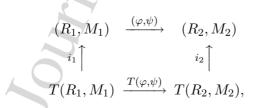
2) if (φ_0, ψ_0) is a morphism of \mathcal{K} , then $(\varphi_0, \psi_0) = (\varphi_1, \psi_1)$, where φ_1 is a surjective homomorphism essential in the category \mathcal{K} ;

3) if objects $(R_1, M_1), (R_2, M_2) \in Ob(K)$, then zero morphism

(0,0): $(R_1, M_1) \to (R_2, M_2)$ belongs to the category \mathcal{K} .

Theorem 2. Let \mathcal{K} be an essential subcategory of \mathcal{G} , r_R be radicals on the categories $R-Mod \subseteq \mathcal{K}$. Radicals r_R generate a radical functor on \mathcal{K} if and only if for every morphism $(\varphi, \psi) : (R_1, M_1) \to (R_2, M_2)$ of the category $\mathcal{K} \quad \psi(r_{R_1}(M_1)) \subseteq r_{R_2}(M_2)$.

Proof. (\Rightarrow) Let radicals r_R generate a radical functor T. So for every $(\varphi, \psi) \colon (R_1, M_1) \to (R_2, M_2)$ the next diagram is commutative



where i_1, i_2 are monomorphisms. But $T(R_1, M_1) = (R_1, r_{R_1}(M_1)), T(R_2, M_2) = (R_2, r_{R_2}(M_2))$, so $\psi(r_{R_1}(M_1)) \subseteq r_{R_2}(M_2)$

(⇐) 1. We want to show that for every (φ, ψ) : $(R_1, M_1) \rightarrow (R_2, M_2)$ the next diagram is commutative

$$(R_1, M_1) \xrightarrow{(\varphi, \psi)} (R_2, M_2)$$

$$i_1 \uparrow \qquad i_2 \uparrow$$

$$T(R_1, M_1) \xrightarrow{T(\varphi, \psi)} T(R_2, M_2),$$

where i_1, i_2 are monomorphisms. Since $T(R_1, M_1) = (R_1, r_{R_1}(M_1))$, $T(R_2, M_2) = (R_2, r_{R_2}(M_2))$ and $\psi(r_{R_1}(M_1)) \subseteq r_{R_2}(M_2)$ it follows the commutativity of the diagram. So T is a preradical functor.

2. It is easy to see that T is an idempotent, because every r_R is an idempotent.

3. T(I/T) = 0 by the theorem 1.

Let *I* be an arbitrary left ideal of the ring *R*. Define a class \mathcal{R}_I of left *R*-modules in such a way that: $N \in Ob(\mathcal{R}_I) \Leftrightarrow IN = N$, where *IN* consists of all sums of the form $\sum_{j=1}^{k} i_j n_j$, where $i_j \in I, n_j \in N$ and $k \in \mathbb{N}$. Show that \mathcal{R}_I is a radical class [4, 7].

It is necessary to show that \mathcal{R}_I is closed under 1) epimorphic images, 2) direct sums and 3) extensions.

1). Let $f: N \to M$ be an epimorphism of R-modules and $N \in Ob(\mathcal{R}_I)$ and m be any element of M. There exists $n \in N$ such that m = f(n). Since $N \in Ob(\mathcal{R}_I)$, $n = \sum_{j=1}^k i_j n_j$, where $i_j \in I, n_j \in N$ and $k \in \mathbb{N}$.

 $k\in\mathbb{N}.$ Therefore $m=f(n)=f(\sum_{j=1}^k i_jn_j)=\sum_{j=1}^k i_jf(n_j).$ Hence $m\in \in IM,$ i. e. M=IM.

2). It is clear.

3). We have short exact sequence

$$0 \longrightarrow N \xrightarrow{\varphi_1} M \xrightarrow{\varphi_2} M/N \longrightarrow 0$$

and IN = N, I(M/N) = M/N. We shall show that IM = M. Let $m \in M$, so $\varphi_2(m) = m_1 = \sum_{j=1}^n a_j k_j$, $n \in \mathbb{N}$, $m_1, k_j \in M/N$, $\varphi_2(m_j) = k_j$. Consider such expression: $m - \sum_{j=1}^n a_j m_j$, $m_j \in M$. Then $\varphi_2(m - \sum_{j=1}^n a_j m_j) = \varphi_2(m) - \sum_{j=1}^n a_j \varphi_2(m_j) = 0$. So $(m - \sum_{j=1}^n a_j m_j) \in K$ er φ_2 implies $(m - \sum_{j=1}^n a_j m_j) \in N$, it follows $m - \sum_{j=1}^n a_j m_j = \sum b_j n_j$. So $m \in IM$, i. e. M = IM.

A radical functor, defined by the radical class \mathcal{R}_I is called an *I*-radical functor (or simply an *I*-radical).

Let \mathcal{C} be an arbitrary essential subcategory of the category \mathcal{G} , such that $R-\text{Mod} \subseteq \mathcal{C}$ and I(R) be a left ideal of the ring R. Then in every category $R-\text{Mod} \subseteq \mathcal{C}$ we can define I(R)-radical r_R .

Theorem 3. If $\varphi(I(R_1)) \subseteq I(R_2)$ for every surjective ring homomorphism $\varphi: R_1 \to R_2$, which is essential in essential subcategory C, then I(R)-radicals generate a radical functor T on the category C.

Proof. Define a functor T in such a way: $T(R, M) = (R, r_R(M))$ and $T(\varphi, \psi) = (\varphi, \psi_{r_R(M)})$ for every (R, M) and (φ, ψ) belonging to the category \mathcal{C} , where $\psi_{r_R(M)}$ is a restriction of the homomorphism ψ on the module $r_R(M)$. It remains to show that inclusions $\psi(r_{R_1}(M_1)) \subseteq r_{R_2}(M_2)$ hold true for every morphism $(\varphi, \psi) : (R_1, M_1) \to (R_2, M_2)$ of the category \mathcal{C} . The surjective homomorphism φ can be considered as essential in \mathcal{C} , because the category \mathcal{C} is essential. Since $\varphi(I(R_1)) \subseteq I(R_2)$, it follows by the definition of an $I(R_2)$ -radical in R_2 -Mod, $\psi(r_{R_1}(M_1)) = \psi(I(R_1)r_{R_1}(M_1)) = \varphi(I(R_1))\psi(r_{R_1}(M_1))$.

Let I(R) be a left ideal of the ring R, $r_{I(R)}$ is an I(R)-radical in R-Mod.

Definition. A left ideal J(R) is called a maximal left ideal for the I(R)-radical $r_{I(R)}$ if $r_{I(R)} = r_{J(R)}$ implies $I(R) \subseteq J(R)$.

Proposition 8. If I(R) is a maximal left ideal for the radical $r_{I(R)}$, then $\psi(r_{I(R_1)}(M_1)) \subseteq r_{I(R_2)}(M_2)$ for every morphism (φ, ψ) : $(R_1, M_1) \rightarrow (R_2, M_2)$ of the category \mathcal{G} if and only if $\varphi(I(R_1)) \subseteq I(R_2)$.

Proof. $(\Rightarrow)\psi(r_{R_1}(M_1)) = \varphi(I(R_1))\psi(r_{R_1}(M_1))$ (see the proof of the theorem 3). $r_{I(R_2)}(M_2) = I(R_2)r_{I(R_2)}(M_2)$ implies $\psi(r_{R_1}(M_1)) = I(R_2) \times \psi(r_{R_1}(M_1))$. Since φ is a surjective ring homomorphism, R_2 - Mod $\subseteq C_{R_1}$ - Mod and since $I(R_2)$ is a maximal, it follows $\varphi(I(R_1)) \subseteq I(R_2)$ (\Leftarrow) See the proof of the theorem 3.

Now let \mathcal{L} be a subcategory of \mathcal{G} , where R is a noetherian ring.

For a noetherian ring we can chose a maximal ideal for an I-radical functor, so we have

Theorem 4. Let R be a noetherian ring and I(R) be a left ideal of R, which is maximal for the radical $r_{I(R)}$. Radicals $r_{I(R)}$ in R-Mod generate I(R)-radical functor on the category \mathcal{L} if and only if $\varphi(I(R_1)) \subseteq I(R_2)$ for every morphism $(\varphi, \psi) : (R_1, M_1) \to (R_2, M_2)$ of the category \mathcal{L} .

Proof. (\Rightarrow) Apply Theorem 2 and Proposition 8. (\Leftarrow) See Theorem 3.

References

- Kilp M., Knauer U., Mikhalev A. V., Monoids, acts and categories: with applications to wreath products and graphs; a handbook for students and researchers, Berlin; New York: de Gruyter, 2000.
- [2] Mitchell B., Theory of categories, New York, London Acad. Press, 1965.
- [3] Shulgeifer E.H., Functor characteristic of strong radical in categories. Sibir. Math. VII, N 6, 1966, p.1412-1421 (in Russian)
- [4] Kashu A.I., Radicals and torsions in modules, Kishinev: Stiinca, 1983 (in Russian).
- [5] Anderson F. W., Fuller K. R., Rings and categories of modules, Berlin-Heidelberg-New York, 1973.
- [6] Faith C., Algebra: Rings, Modules and Categories. V. 1, Moskow, 1977 (in Russian).
- [7] Stenström B., Rings of Quotients, Berlin, Springer, 1975.
- [8] Freyd P., Abelian categories, New York, Evanston & London: Harper & Row, 1966.

CONTACT INFORMATION

N. Burban Department of Mechanics and Mathematics, Lviv National University, Universytetska str.1, Lviv 79000,Ukraine *E-Mail*: n_burban@mail.ru

O. Horbachuk Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Naukova str. 3B, Lviv 79060, Ukraine *E-Mail:* o_horbachuk@yahoo.com

Received by the editors: 17.07.2008 and in final form 14.10.2008.