Random walks on finite groups converging after finite number of steps

A.L. Vyshnevetskiy, E. M. Zhmud'
Communicated by B. V. Novikov

Abstract

Let P be a probability on a finite group $G, P^{(n)}=$ $P * \ldots * P(n$ times $)$ be an n-fold convolution of P. If $n \rightarrow \infty$, then under mild conditions $P^{(n)}$ converges to the uniform probability $U(g)=\frac{1}{|G|}(g \in G)$. We study the case when the sequence $P^{(n)}$ reaches its limit U after finite number of steps: $P^{(k)}=P^{(k+1)}=$ $\cdots=U$ for some k. Let $\Omega(G)$ be a set of the probabilities satisfying to that condition. Obviously, $U \in \Omega(G)$. We prove that $\Omega(G) \neq U$ for "almost all" non-Abelian groups and describe the groups for which $\Omega(G)=U$. If $P \in \Omega(G)$, then $P^{(b)}=U$, where b is the maximal degree of irreducible complex representations of the group G.

Let G be a finite group, P be a probability on $G, P^{(n)}=P * \ldots * P(n$ times) be an n-fold convolution of probability P. If $n \rightarrow \infty$, then under well known conditions (see for example [1]), the sequence $P^{(n)}$ converges to the uniform probability U, where $U(g)=\frac{1}{|G|}(g \in G)$.

In this paper we study the case when the sequence $P^{(n)}$ reaches its limit U after some finite number of steps:

$$
\begin{equation*}
P^{(k)}=P^{(k+1)}=\cdots=U \tag{1}
\end{equation*}
$$

($k \in \mathbf{N}$ where \mathbf{N} is the set of natural numbers). The set $\Omega(G)$ of the probabilities satisfying (1) is not empty as $U \in \Omega(G)$. It turns out that probabilities from $\Omega(G)$ are tightly connected with nilpotent elements of the group algebra $\mathbf{R} G$ of the group G over the field \mathbf{R} of real numbers and that such probabilities exist for "almost all" non-Abelian groups.

Key words and phrases: random walks on groups, finite groups, group algebra.

The main result of the paper is the following.
Theorem. For a finite group G the following conditions are equivalent:
(a) $\Omega(G)=U$;
(b) G is either an Abelian group or Hamiltonian 2-group, i.e. $G=A \times Q$ where A is an elementary Abelian 2-group, Q is the quaternion group of order 8;
(c) The zero is the only nilpotent element of the algebra $\mathbf{R} G$.

1. The set $\Omega(G)$

In what follows we write \sum_{g} instead of $\sum_{g \in G}$.
The set $F(G)$ of all functions $G \rightarrow \mathbf{R}$ is an algebra over \mathbf{R} with respect to operations of addition and convolution

$$
F_{1} * F_{2}(h)=\sum_{g} F_{1}\left(h g^{-1}\right) F_{2}(g), \quad F_{1}, F_{2} \in F(G)
$$

A map $\varphi: F \rightarrow f=\sum_{g} F(g) g$ is an isomorphism of this algebra on the group algebra $\mathbf{R} G$. We denote functions from $F(G)$ by capital letters and their φ-images by corresponding small letters: if $F \in F(G)$, then $\varphi(F)=f$. For example, $\varphi(U)=u=\frac{1}{|G|} \sum_{g} g$.

A probability on G is a non-negative function $P: G \rightarrow \mathbf{R}$ such that $\sum_{g} P(g)=1$.

Let $\Pi(G)$ be the set of all probabilities on a group G. For an arbitrary element $x=\sum_{g} X(g) g \in \mathbf{R} G$ we denote $|x|=\sum_{g} X(g)$. If $P \in \Pi(G)$, then $|p|=1$.

For any $x, y \in \mathbf{R} G$ we have

$$
\begin{equation*}
|x+y|=|x|+|y|, \quad|x-y|=|x|-|y| \tag{2}
\end{equation*}
$$

As

$$
\begin{equation*}
x u=u x=|x| u \tag{3}
\end{equation*}
$$

and $x y u=x y u^{2}=x u \cdot y u$, we have

$$
\begin{equation*}
|x y|=|x| \cdot|y| \tag{4}
\end{equation*}
$$

Let $\operatorname{Nil}(A)$ be the set of all nilpotent elements of an arbitrary algebra A.

Lemma 1.1. $|x|=0$ for each $x \in \operatorname{Nil}(A)$.

Proof. As $x^{k}=0$ for some $k \in \mathbf{N}$, then $0=\left|x^{k}\right|=|x|^{k}$ by (4), so $|x|=0$.

Lemma 1.2. If $P \in \Pi(G)$ and $x=p-u$, then $p^{n}=x^{n}+u$ for any $n \in \mathbf{N}$.

Proof. As $|x|=|p|-|u|=0$, then by (3) $x u=u x=0$. Under the binomial formula, $p^{n}=(x+u)^{n}=x^{n}+u^{n}=x^{n}+u$.

Corollary 1.3. $P \in \Omega(G)$ if and only if $x \in \operatorname{Nil}(\mathbf{R} G)$.
Proof. $P \in \Omega(G)$ if and only if $p^{n}=u$ for the some $n \in \mathbf{N}$.
Theorem 1.4. If $P \in \Omega(G)$, then $P^{(b)}=U$, where b is the maximal degree of irreducible representations of G over the field \mathbf{C} of complex numbers.

Proof. By Lemma 1.2 it is enough to prove that $x^{b}=0$, where $x=p-u$. For this purpose, in turn, it is enough to prove that $\Gamma\left(x^{b}\right)=0$ for any irreducible C-representation Γ of group G, extended by linearity to the group algebra $\mathbf{C} G$.

Let n be the degree of a representation $\Gamma, F(t)$ be the characteristic polynomial of a matrix $\Gamma(x)$. As $\operatorname{deg} F(t)=n$ and matrix $\Gamma(x)$ is nilpotent by Corollary 1.3, then $F(t)=t^{n}$. By Hamilton-Cayley theorem $(\Gamma(x))^{n}=$ 0 , and as $n \leq b$, then $\Gamma\left(x^{b}\right)=(\Gamma(x))^{b}=0$. The theorem is proved.

If $P \in \Pi(G)$, then $P * U=U$. Therefore condition (1) is equivalent to $P^{(n)}=U$ for some $n \in \mathbf{N}$. By Theorem 1.4 condition (1) for $k=b$ holds for any probability $P \in \Omega(G)$.

A function X on a group G is called a class function if X is constant on each class of conjugate elements of G. For a class function X its φ-image x is in the center $Z(\mathbf{R} G)$ of the algebra $\mathbf{R} G$.

Lemma 1.5. If $P \in \Omega(G)$ is a class function, then $P=U$.
Proof. Let $x=p-u$. As $p, u \in Z(\mathbf{R} G)$, then $x \in Z(\mathbf{R} G)$. By Corollary $1.3 x \in \operatorname{Nil}(\mathbf{R} G)$, so $x y \in \operatorname{Nil}(\mathbf{R} G)$ for any $y \in \mathbf{R} G$. Therefore the principal ideal of algebra $\mathbf{R} G$, generated by element x, is nilpotent. As $\mathbf{R} G$ is semisimple, then $x=0$, i.e. $P=U$.

For $f \in \mathbf{R} G$ and $a \in \mathbf{R}$ we write $f \geq a$ if $F(g) \geq a$ for any $g \in G$ (we recall that $F=\varphi^{-1}(f)$, see the first paragraph of this section).

Let $N(G)=\left\{x \in \operatorname{Nil}(\mathbf{R} G) \left\lvert\, x \geq-\frac{1}{|G|}\right.\right\}$. Since $\operatorname{Nil}(\mathbf{R} G)=\{\mathbf{R} x \mid x \in$ $N(G)\}$, then

$$
\begin{equation*}
N i l(\mathbf{R} G)=\{0\} \Leftrightarrow N(G)=\{0\} \tag{5}
\end{equation*}
$$

Theorem 1.6. There is a bijection $\theta: N(G) \rightarrow \Omega(G)$.

Proof. For $x \in N(G)$ we let $\theta_{1}: x \rightarrow x+u$. Then $\theta_{1}(x) \geq 0$ by definition of $N(G)$; by (2) and Lemma $1.1\left|\theta_{1}(x)\right|=|x|+|u|=1$. Let $\theta=\varphi^{-1} \cdot \theta_{1}$ (composition of mappings); then $\theta(x) \in \Pi(G)$. Since $x=\theta_{1}(x)-u \in \operatorname{Nil}(\mathbf{R} G)$, then by Corollary $1.3 \theta(x) \in \Omega(G)$. So $\theta(N(G)) \subset \Omega(G)$.

Since φ is a bijection and θ_{1} is an injection, then θ is an injection. Let $P \in \Omega(G)$ and $x=p-u$. By Corollary $1.3 x \in \operatorname{Nil}(\mathbf{R} G)$. Since $p \geq 0$, then $x \geq-\frac{1}{|G|}$. So $x \in N(G)$. Since $p=\theta_{1}(x)$, then $P=\varphi^{-1}(p)=\theta(x)$. So θ is a surjection. Thus θ is a bijection.

The proof of Theorem 1.6 gives a way to obtain every probability of $\Omega(G)$: for $x \in N(G)$ a function $P=\varphi^{-1}(x+u)$ is in $\Omega(G)$ and any $P \in \Omega(G)$ can be obtained this way.

Now we name the groups we study.
Definition. A group is called S-group if $\Omega(G)=\{U\}$.

2. Description of S-groups

Let $M_{n}(K)$ be the algebra of all $n \times n$ matrices over a skew field K.
Lemma 2.1. $\operatorname{Nil}\left(M_{n}(K)\right)=\{0\}$ if and only if $n=1$, i.e. $M_{n}(K)=K$.
Proof. If $n=1$, then $M_{n}(K)=K$ is a skew field, so $\operatorname{Nil}\left(M_{n}(K)\right)=$ $\{0\}$. If $n>1$, matrix units $E_{i j}$ are nilpotent if $i \neq j$ ($E_{i j}$ is a matrix which (i, j)-th element is 1 and others are 0$)$.

The following theorem is a key one.
Theorem 2.2. The following conditions are equivalent:
(a) G is a S-group;
(b) $\operatorname{Nil}(\mathbf{R} G)=\{0\}$;
(c) The algebra $\mathbf{R} G$ is an orthogonal direct sum of skew fields.

Proof. (a) \Leftrightarrow (b). By definition, the statement (a) means that $|\Omega(G)|=1$. By Theorem 1.6 it is equivalent to $|N(G)|=1$, i.e. $N(G)=$ $\{0\}$. By (5) it means that $\operatorname{Nil}(\mathbf{R} G)=\{0\}$.
(b) $\Leftrightarrow(\mathrm{c})$. By Wedderburn's theorem algebra $\mathbf{R} G$ decomposes into orthogonal direct sum of matrix algebras over skew fields. The equality $\operatorname{Nil}(\mathbf{R} G)=\{0\}$ is equivalent to $\operatorname{Nil}\left(M_{n}(K)\right)=\{0\}$ for each of such algebras $M_{n}(K)$, and by Lemma 2.1, to $M_{n}(K)=K$.

Note 2.3. For a S-group G let a skew field K be one of direct summands of $\mathbf{R} G$ (see point (c) of Theorem 2.2). As K is a finite-dimensional algebra over R, then by well known theorem of Frobenius ([2], p. 465), K is isomorphic either to field \mathbf{R}, or to field \mathbf{C} of complex numbers, or to quaternion skew field \mathbf{Q}.

Lemma 2.4. Subgroups of an S-group are S-groups.
Proof. Let H be a subgroup of S-group G. By Theorem 2.2 we have $\operatorname{Nil}(\mathbf{R} G)=\{0\}$. As $\operatorname{Nil}(\mathbf{R} H) \subset \operatorname{Nil}(\mathbf{R} G)$, then by Theorem $2.2 H$ is S-group.

Let $Z(G)$ be the center of G.
Lemma 2.5. If $x \in \operatorname{Nil}(\mathbf{R} G)$, then $X(g)=0$ for any $g \in Z(G)$.
Proof. Let T be the regular representation of a group G, ρ be its character, extended by linearity on algebra $\mathbf{R} G$. As $\rho(g)=0(g \neq 1)$ and $\rho(1)=|G|$, then

$$
\rho(x)=\sum_{g} X(g) \rho(g)=X(1)|G|
$$

On the other hand, the matrix $T(x)$ is nilpotent, so $\rho(x)=\operatorname{tr}(T(x))=0$. Therefore $X(1)=0$, and lemma is proved for special case $g=1$.

For proof in general case we let $y=g^{-1} x$. Then $y \in \operatorname{Nil}(\mathbf{R} G)$. By the above paragraph $Y(1)=0$. As $Y(1)=X(g)$, the proof is complete.

Corollary 2.6. Abelian groups are S-groups.
Proof. For an Abelian group G we have $G=Z(G)$, so $\operatorname{Nil}(\mathbf{R} G)=$ $\{0\}$. By Theorem 2.2, G is S-group.

Another proof we obtain from Lemma 1.5, since any function on Abelian group is a class function.

A non-Abelian group is called Hamiltonian if all its subgroups are normal.

Lemma 2.7. ([3], p. 308). A group G is Hamiltonian if and only if

$$
\begin{equation*}
G=N \times A \times Q \tag{6}
\end{equation*}
$$

where N is an Abelian group of odd order, A is an elementary Abelian 2 -group, Q is the quaternion group of order 8 .

Let G be a Hamiltonian S-group. As its subgroup N is Abelian, then algebra $\mathbf{R} N$ decomposes into an orthogonal direct sum of fields:

$$
\begin{equation*}
\mathbf{R} N=\Lambda_{1} \oplus \ldots \oplus \Lambda_{r} \tag{7}
\end{equation*}
$$

Lemma 2.8. We have
(a) $\Lambda_{i} \cong \mathbf{R}(i=1, \ldots, r)$;
(b) G is a 2-group.

Proof. (a) If statement (a) does not hold, then by note $2.3, \Lambda_{i} \cong \mathbf{C}$ for some i. The algebra $\mathbf{R} Q$ is an orthogonal direct sum of skew fields, and as the group Q is non-Abelian, then one of these skew fields (say, K) is isomorphic to the quaternion skew field \mathbf{Q}. By (6) the algebra $\mathbf{R} Q$ contains an ideal $I=\Lambda_{i} \cdot K \cong \mathbf{C} \otimes \mathbf{Q}$. As the ring $\mathbf{C} \otimes \mathbf{Q}$ is isomorphic to the full matrix ring $M_{2}(\mathbf{C})$ and $\operatorname{Nil}\left(M_{2}(\mathbf{C})\right) \neq 0$ (Lemma 2.1), then $\operatorname{Nil}(I) \neq 0$ whence $\operatorname{Nil}(\mathbf{R} G) \neq 0$. As it contradicts to Theorem 2.2, the statement (a) is proved.
(b) By (6) it is enough to prove that $N=\{1\}$. By (7), an arbitrary element $g \in N$ has decomposition $g=x_{1}+\cdots+x_{r}$, where $x_{i} \in \Lambda_{i}(i=$ $1, \ldots, r)$. Let $n=|N|$. Elements x_{i} are mutually orthogonal, so $1=$ $g^{n}=x_{1}{ }^{n}+\cdots+x_{r}{ }^{n}$. As $1=e_{1}+\cdots+e_{r}$, where e_{i} is the unit of Λ_{i}, then $x_{i}{ }^{n}=e_{i}(i=1, \ldots, r)$. Therefore x_{i} is an element of finite order in the multiplicative group of the field Λ_{i}. As $\Lambda_{i} \cong \mathbf{R}$, then $x_{i}= \pm e_{i}(i=$ $1, \ldots, r)$ and $g^{2}=x_{1}{ }^{2}+\cdots+x_{r}{ }^{2}=1$. But N is a group of odd order, so $g=1$, therefore $N=\{1\}$.

Theorem 2.9. The following conditions are equivalent:
(a) G is a Hamiltonian 2-group;
(b) G is a non-Abelian S-group.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Let G be a Hamiltonian 2-group. By Lemma 2.7 $G=A \times Q$, therefore $Z(G)=A \times Z(Q)$. For any $s \in G \backslash Z(G)$ we have $s=a t$, where $a \in A, t \in Q \backslash Z(Q)$. So $s^{2}=a^{2} t^{2}=t^{2}=z$, where z is the unique element of order 2 in group Q.

Let $y \in \operatorname{Nil}(\mathbf{R} G)$. If $y \neq 0$, then $y^{n}=0, y^{n-1} \neq 0$ for the some $n \in \mathbf{N}$. Let $x=y^{n-1}$; then $x^{2}=0, x \neq 0$. Therefore

$$
\begin{equation*}
\sum_{s} X(s) X\left(s^{-1} g\right)=0 \tag{8}
\end{equation*}
$$

for any $g \in G$. By Lemma 2.5 we can assume that in (8) $s \in G \backslash Z(G)$ instead of $s \in G$. Then by above $s^{2}=z$. Substituting in (8) $g=z$ we obtain $\sum_{s}(X(s))^{2}=0$, whence $X(s)=0$ for any $s \in G \backslash Z(G)$. Again by Lemma 2.5 $X(s)=0$ for $s \in Z(G)$, so $X=0$ i.e. $x=0-$ a contradiction. Therefore $\operatorname{Nil}(\mathbf{R} G)=\{0\}$ and G is a S-group.
$(\mathrm{b}) \Rightarrow$ (a) Let G be a non-Abelian 2-group. For arbitrary elements $g, s \in G$ we let

$$
\nu=(g-1) s\left(g^{n-1}+g^{n-2}+\cdots+g+1\right) \in \mathbf{R} G
$$

where n is order of the element $g \in G$. Since $(g-1)\left(g^{n-1}+g^{n-2}+\cdots+\right.$ $g+1)=g^{n}-1=0$, we have $\nu^{2}=0$. By Theorem $2.2 \operatorname{Nil}(\mathbf{R} G)=\{0\}$, so $\nu=0$. As $\nu=g s g^{n-1}+\cdots+g s-s g^{n-1}-\cdots-s$, then $g s=s g^{k}$ for some $k \in\{0,1, \ldots, n-1\}$. Therefore $s^{-1} g s=g^{k}$. So the subgroup generated by g is normal in G. It yields that each subgroup of G is normal, i.e. G is Hamiltonian. By the statement (b) of Lemma 2.8, G is a 2-group. Theorem is proved.

As a consequence of Theorems 2.2 and 2.9 we obtain
Theorem 2.10. For a finite group G the following conditions are equivalent:
(a) $\Omega(G)=U$;
(b) G is an Abelian group or a Hamiltonian 2-group;
(c) The zero is the only nilpotent element of the algebra $\mathbf{R} G$.

References

[1] Saloff-Coste L. Random walks on finite groups. In: Probability on Discrete structures, H Kesten (editor), Springer, 2004.
[2] Huppert B. Endliche Gruppen I. Springer-Verlag, Berlin, 1967.
[3] Vinberg E.B. A course in algebra. AMS, Providence, 2003.

Contact information

A. L. Vyshnevetskiy Karazina st. 7/9, apt. 34, 61078, Kharkov, Ukraine E-Mail: alexwish@mail.ru

