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ABSTRACT. Let P be a probability on a finite group G, P(™ =
Px...% P (n times) be an n-fold convolution of P. If n — oo, then
under mild conditions P converges to the uniform probability
Ug) = ﬁ (g € G). We study the case when the sequence P
reaches its limit U after finite number of steps: P®*) = pk+1) —
-+« = U for some k. Let Q(G) be a set of the probabilities satisfying
to that condition. Obviously, U € (G). We prove that Q(G) # U
for “almost all” non-Abelian groups and describe the groups for
which Q(G) = U. If P € Q(G), then P®) = U, where b is the
maximal degree of irreducible complex representations of the group

G.

Let G be a finite group, P be a probability on G, P = Px...xP (n
times) be an n-fold convolution of probability P. If n — oo, then under
well known conditions (see for example [1]), the sequence P(™ converges
to the uniform probability U, where U(g) = ﬁ (g € G).

In this paper we study the case when the sequence P(™ reaches its
limit U after some finite number of steps:

pk) — pltl) _ . _ g (1)

(k € N where N is the set of natural numbers). The set Q(G) of the
probabilities satisfying (1) is not empty as U € Q(G). It turns out that
probabilities from Q(G) are tightly connected with nilpotent elements of
the group algebra RG of the group G over the field R of real numbers
and that such probabilities exist for “almost all" non-Abelian groups.
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The main result of the paper is the following.
Theorem. For a finite group G the following conditions are equivalent:

(a) G) =U;

(b) G iseither an Abelian group or Hamiltonian 2-group, i.e. G = AXQ
where A is an elementary Abelian 2-group, @ is the quaternion
group of order 8;

(¢) The zero is the only nilpotent element of the algebra RG.

1. The set Q(G)

In what follows we write >/ instead of > .
The set F'(G) of all functions G — R is an algebra over R with respect
to operations of addition and convolution

FI*F2<h):ZF1(h971)F2(g)ﬂ FlvFQEF(G)
g

Amapp: F — f= Zg F(g)g is an isomorphism of this algebra on the
group algebra RG. We denote functions from F(G) by capital letters
and their p-images by corresponding small letters: if ' € F(G), then

@(F) = f. For example, p(U) = u = ﬁ 2249
A probability on G is a non-negative function P : G — R such that

> g Plg) =1
Let II(G) be the set of all probabilities on a group G. For an arbitrary
element v =} X(g)g € RG we denote [z| = 3 X(g). If P € II(G),
then [p| = 1.
For any z,y € RG we have
[z +yl = |zl +1yl, [z -yl =l|z] -yl (2)

As
Tu = ur = |zju (3)

and zyu = xyu’® = xu - yu, we have
|yl = || - |y] (4)

Let Nil(A) be the set of all nilpotent elements of an arbitrary algeb-
ra A.

Lemma 1.1. |z| = 0 for each x € Nil(A).
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Proof. As z¥ = 0 for some k € N, then 0 = |2¥| = |2|* by (4), so
|z| = 0.

Lemma 1.2. If P € II(G) and x = p — u, then p" = a" + u for any
n € N.

Proof. As |z| = |p| — |u| = 0, then by (3) zu = uz = 0. Under the
binomial formula, p" = (z+u)" =2" +u" = 2" + u.

Corollary 1.3. P € Q(G) if and only if z € Nil(RG).
Proof. P € Q(G) if and only if p"” = u for the some n € N.

Theorem 1.4. If P € Q(G), then P®) = U, where b is the maximal
degree of irreducible representations of G over the field C of complex
numbers.

Proof. By Lemma 1.2 it is enough to prove that z® = 0, where
x = p—u. For this purpose, in turn, it is enough to prove that F(acb) =0
for any irreducible C-representation I' of group G, extended by linearity
to the group algebra CG.

Let n be the degree of a representation I, F'(t) be the characteristic
polynomial of a matrix I'(z). As degF'(t) = n and matrix I'(z) is nilpotent
by Corollary 1.3, then F'(t) = ¢". By Hamilton-Cayley theorem (I'(z))" =
0, and as n < b, then I'(z®) = (I'(x))? = 0. The theorem is proved.

If P € TI(G), then P« U = U. Therefore condition (1) is equivalent
to P(") = U for some n € N. By Theorem 1.4 condition (1) for k = b
holds for any probability P € Q(G).

A function X on a group G is called a class function if X is constant
on each class of conjugate elements of G. For a class function X its
@-image x is in the center Z(RG) of the algebra RG.

Lemma 1.5. If P € Q(G) is a class function, then P = U.

Proof. Let x = p—u. As p,u € Z(RG), then z € Z(RG). By
Corollary 1.3 z € Nil(RG), so zy € Nil(RG) for any y € RG. Therefore
the principal ideal of algebra RG, generated by element x, is nilpotent.
As RG is semisimple, then x =0, ie. P=U.

For f € RG and a € R we write f > a if F(g) > a for any g € G (we
recall that F' = o~ !(f), see the first paragraph of this section).

Let N(G) = {z € Nil(RG) | x > —ﬁ} Since Nil(RG) = {Rz | x €
N(G)}, then

Nil(RG) = {0} & N(G) = {0}. (5)

Theorem 1.6. There is a bijection 6 : N(G) — Q(G).



126 RANDOM WALKS ON FINITE GROUPS

Proof. For z € N(G) we let 1 : * — = + u. Then 6;(x
by definition of N(G); by (2) and Lemma 1.1 |61(z)| = |z| + |u
Let # = ¢! - 60; (composition of mappings); then 6(z) € II(G). Since
z = 01(x) — u € Nil(RG), then by Corollary 1.3 6(z) € Q(G). So
O(N(G)) C QG).

Since ¢ is a bijection and 6; is an injection, then @ is an injection. Let
P e Q(G) and x = p —u. By Corollary 1.3 x € Nil(RG). Since p > 0,
then z > — ‘G‘ So x € N(G). Since p = 01(z), then P = ¢~ 1(p) = (x).
So 6 is a surjection. Thus @ is a bijection.

)z
|:

The proof of Theorem 1.6 gives a way to obtain every probability of
Q(G): for z € N(G) a function P = o~ !(z + u) is in Q(G) and any
P € Q(G) can be obtained this way.

Now we name the groups we study.

Definition. A group is called S-group if Q(G) = {U}.

2. Description of S-groups
Let M, (K) be the algebra of all n x n matrices over a skew field K.
Lemma 2.1. Nil(M,(K)) ={0} if and only if n = 1, i.e. M, (K) =K.

Proof. If n =1, then M, (K) = K is a skew field, so Nil(M,(K)) =
{0}. If n > 1, matrix units Ej;; are nilpotent if i # j (Ej; is a matrix
which (4, j)-th element is 1 and others are 0).

The following theorem is a key one.
Theorem 2.2. The following conditions are equivalent:
(a) G is a S-group;
(b) Nil(RG) ={0};
(c) The algebra RG is an orthogonal direct sum of skew fields.

Proof. (a) < (b). By definition, the statement (a) means that
|2(G)| = 1. By Theorem 1.6 it is equivalent to |[N(G)| =1, i.e. N(G) =
{0}. By (5) it means that Nil/(RG) = {0}.

(b) < (¢). By Wedderburn’s theorem algebra RG decomposes into
orthogonal direct sum of matrix algebras over skew fields. The equality
Nil(RG) = {0} is equivalent to Nil(M,(K)) = {0} for each of such
algebras M,,(K), and by Lemma 2.1, to M, (K) = K.
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Note 2.3. For a S-group G let a skew field K be one of direct summands
of RG (see point (c) of Theorem 2.2). As K is a finite-dimensional
algebra over R, then by well known theorem of Frobenius (|2], p. 465),
K is isomorphic either to field R, or to field C of complex numbers, or
to quaternion skew field Q.

Lemma 2.4. Subgroups of an S-group are S-groups.

Proof. Let H be a subgroup of S-group G. By Theorem 2.2 we have
Nil(RG) = {0}. As Nil(RH) C Nil(RG), then by Theorem 2.2 H is
S-group.

Let Z(G) be the center of G.

Lemma 2.5. If x € Nil(RG), then X(g) = 0 for any g € Z(G).

Proof. Let T be the regular representation of a group G, p be its
character, extended by linearity on algebra RG. As p(g) =0(g # 1) and
p(1) = |G|, then

plx) = X(g)plg) = X(1)|G]|

On the other hand, the matrix 7'(x) is nilpotent, so p(z) = tr (T'(x)) = 0.
Therefore X (1) = 0, and lemma is proved for special case g = 1.

For proof in general case we let y = ¢g~'z. Then y € Nil(RG). By
the above paragraph Y (1) =0. As Y (1) = X(g), the proof is complete.

Corollary 2.6. Abelian groups are S-groups.

Proof. For an Abelian group G we have G = Z(G), so Nil(RG) =
{0}. By Theorem 2.2, G is S-group.

Another proof we obtain from Lemma 1.5, since any function on
Abelian group is a class function.

A non-Abelian group is called Hamiltonian if all its subgroups are
normal.

Lemma 2.7. ([3], p. 308). A group G is Hamiltonian if and only if
G=NxAxQ, (6)

where N is an Abelian group of odd order, A is an elementary Abelian
2-group, @ is the quaternion group of order 8.

Let G be a Hamiltonian S-group. As its subgroup IV is Abelian, then
algebra RN decomposes into an orthogonal direct sum of fields:

RN=ALD...®A, (7)
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Lemma 2.8. We have
(a) =R (i=1,...,r);
(b) G is a 2-group.

Proof. (a) If statement (a) does not hold, then by note 2.3, A; = C
for some 4. The algebra R(@ is an orthogonal direct sum of skew fields,
and as the group @ is non-Abelian, then one of these skew fields (say,
K) is isomorphic to the quaternion skew field Q. By (6) the algebra RQ
contains an ideal I = A; - K 2 C ® Q. As the ring C ® Q is isomorphic
to the full matrix ring M2(C) and Nil(M2(C)) # 0 (Lemma 2.1), then
Nil(I) # 0 whence Nil(RG) # 0. As it contradicts to Theorem 2.2, the
statement (a) is proved.

(b) By (6) it is enough to prove that N = {1}. By (7), an arbitrary
element g € N has decomposition g = x1 + - - - + x,, where z; € A; (i =

1,...,7). Let n = |N|. Elements z; are mutually orthogonal, so 1 =
g =x1"+---+z". Asl =e + -+ e, where ¢; is the unit of A;,
then z;" = ¢; (i = 1,...,r). Therefore x; is an element of finite order in

the multiplicative group of the field A;. As A; &2 R, then z; = +e; (i =
1,...,r)and ¢> = 22 +--- + 2,2 = 1. But N is a group of odd order, so
g = 1, therefore N = {1}.

Theorem 2.9. The following conditions are equivalent:
(a) G is a Hamiltonian 2-group;
(b) G is a non-Abelian S-group.

Proof. (a)=(b) Let G be a Hamiltonian 2-group. By Lemma 2.7
G = A x Q, therefore Z(G) = A x Z(Q). For any s € G\ Z(G) we have
s =at, where a € A, t € Q\ Z(Q). So s = a*t? = t> = z, where z is the
unique element of order 2 in group Q.

Let y € Nil(RG). If y # 0, then y™ = 0, y" ! # 0 for the some
n € N. Let x = y"~!; then ? = 0, x # 0. Therefore

Y X(s)X(s7lg)=0 (8)

for any g € G. By Lemma 2.5 we can assume that in (8) s € G\ Z(G)
instead of s € G. Then by above s?> = z. Substituting in (8) g = 2 we
obtain Y~ (X (s))? = 0, whence X (s) = 0 for any s € G\ Z(G). Again by
Lemma 2.5 X(s) = 0fors € Z(G),so X = 0i.e. x =0 — a contradiction.
Therefore Nil(RG) = {0} and G is a S-group.
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(b)=(a) Let G be a non-Abelian 2-group. For arbitrary elements
g,s € G we let

v=_(9-1s(g" " +g" 7+ +g+1) eRG

where n is order of the element g € G. Since (g —1)(¢" t+g" 2 +---+
g+1) =g"—1=0, we have v? = 0. By Theorem 2.2 Nil(RG) = {0}, so
v=0. Asv=gsg" ' 4.+ gs—sg" ! —...—s, then gs = sg"* for some
k€ {0,1,...,n — 1}. Therefore s~'gs = ¢g*. So the subgroup generated
by ¢ is normal in G. It yields that each subgroup of G is normal, i.e.
G is Hamiltonian. By the statement (b) of Lemma 2.8, G is a 2-group.
Theorem is proved.

As a consequence of Theorems 2.2 and 2.9 we obtain

Theorem 2.10. For a finite group G the following conditions are equiv-
alent:

(a) QG) =U;
(b) G is an Abelian group or a Hamiltonian 2-group;

(c) The zero is the only nilpotent element of the algebra RG.
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