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Abstract. Let P be a probability on a finite group G, P (n) =
P ∗ . . .∗P (n times) be an n-fold convolution of P . If n → ∞, then
under mild conditions P (n) converges to the uniform probability
U(g) = 1

|G| (g ∈ G). We study the case when the sequence P (n)

reaches its limit U after finite number of steps: P (k) = P (k+1) =
· · · = U for some k. Let Ω(G) be a set of the probabilities satisfying
to that condition. Obviously, U ∈ Ω(G). We prove that Ω(G) 6= U

for “almost all” non-Abelian groups and describe the groups for
which Ω(G) = U . If P ∈ Ω(G), then P (b) = U , where b is the
maximal degree of irreducible complex representations of the group
G.

Let G be a finite group, P be a probability on G, P (n) = P ∗ . . .∗P (n
times) be an n-fold convolution of probability P . If n → ∞, then under
well known conditions (see for example [1]), the sequence P (n) converges
to the uniform probability U , where U(g) = 1

|G| (g ∈ G).

In this paper we study the case when the sequence P (n) reaches its
limit U after some finite number of steps:

P (k) = P (k+1) = · · · = U (1)

(k ∈ N where N is the set of natural numbers). The set Ω(G) of the
probabilities satisfying (1) is not empty as U ∈ Ω(G). It turns out that
probabilities from Ω(G) are tightly connected with nilpotent elements of
the group algebra RG of the group G over the field R of real numbers
and that such probabilities exist for “almost all" non-Abelian groups.
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The main result of the paper is the following.

Theorem. For a finite group G the following conditions are equivalent:

(a) Ω(G) = U ;

(b) G is either an Abelian group or Hamiltonian 2-group, i.e. G = A×Q

where A is an elementary Abelian 2-group, Q is the quaternion
group of order 8;

(c) The zero is the only nilpotent element of the algebra RG.

1. The set Ω(G)

In what follows we write
∑

g instead of
∑

g∈G.

The set F (G) of all functions G → R is an algebra over R with respect
to operations of addition and convolution

F1 ∗ F2(h) =
∑

g

F1(hg−1)F2(g), F1, F2 ∈ F (G)

A map ϕ : F → f =
∑

g F (g)g is an isomorphism of this algebra on the
group algebra RG. We denote functions from F (G) by capital letters
and their ϕ-images by corresponding small letters: if F ∈ F (G), then
ϕ(F ) = f . For example, ϕ(U) = u = 1

|G|

∑
g g.

A probability on G is a non-negative function P : G → R such that∑
g P (g) = 1.

Let Π(G) be the set of all probabilities on a group G. For an arbitrary
element x =

∑
g X(g)g ∈ RG we denote |x| =

∑
g X(g). If P ∈ Π(G),

then |p| = 1.

For any x, y ∈ RG we have

|x + y| = |x| + |y|, |x − y| = |x| − |y| (2)

As

xu = ux = |x|u (3)

and xyu = xyu2 = xu · yu, we have

|xy| = |x| · |y| (4)

Let Nil(A) be the set of all nilpotent elements of an arbitrary algeb-
ra A.

Lemma 1.1. |x| = 0 for each x ∈ Nil(A).
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Proof. As xk = 0 for some k ∈ N, then 0 = |xk| = |x|k by (4), so
|x| = 0.

Lemma 1.2. If P ∈ Π(G) and x = p − u, then pn = xn + u for any
n ∈ N.

Proof. As |x| = |p| − |u| = 0, then by (3) xu = ux = 0. Under the
binomial formula, pn = (x + u)n = xn + un = xn + u.

Corollary 1.3. P ∈ Ω(G) if and only if x ∈ Nil(RG).

Proof. P ∈ Ω(G) if and only if pn = u for the some n ∈ N.

Theorem 1.4. If P ∈ Ω(G), then P (b) = U , where b is the maximal
degree of irreducible representations of G over the field C of complex
numbers.

Proof. By Lemma 1.2 it is enough to prove that xb = 0, where
x = p−u. For this purpose, in turn, it is enough to prove that Γ(xb) = 0
for any irreducible C-representation Γ of group G, extended by linearity
to the group algebra CG.

Let n be the degree of a representation Γ, F (t) be the characteristic
polynomial of a matrix Γ(x). As degF (t) = n and matrix Γ(x) is nilpotent
by Corollary 1.3, then F (t) = tn. By Hamilton-Cayley theorem (Γ(x))n =
0, and as n ≤ b, then Γ(xb) = (Γ(x))b = 0. The theorem is proved.

If P ∈ Π(G), then P ∗ U = U . Therefore condition (1) is equivalent
to P (n) = U for some n ∈ N. By Theorem 1.4 condition (1) for k = b

holds for any probability P ∈ Ω(G).
A function X on a group G is called a class function if X is constant

on each class of conjugate elements of G. For a class function X its
ϕ-image x is in the center Z(RG) of the algebra RG.

Lemma 1.5. If P ∈ Ω(G) is a class function, then P = U .

Proof. Let x = p − u. As p, u ∈ Z(RG), then x ∈ Z(RG). By
Corollary 1.3 x ∈ Nil(RG), so xy ∈ Nil(RG) for any y ∈ RG. Therefore
the principal ideal of algebra RG, generated by element x, is nilpotent.
As RG is semisimple, then x = 0, i.e. P = U .

For f ∈ RG and a ∈ R we write f ≥ a if F (g) ≥ a for any g ∈ G (we
recall that F = ϕ−1(f), see the first paragraph of this section).

Let N(G) = {x ∈ Nil(RG) | x ≥ − 1
|G|}. Since Nil(RG) = {Rx | x ∈

N(G)}, then
Nil(RG) = {0} ⇔ N(G) = {0}. (5)

Theorem 1.6. There is a bijection θ : N(G) → Ω(G).
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Proof. For x ∈ N(G) we let θ1 : x → x + u. Then θ1(x) ≥ 0
by definition of N(G); by (2) and Lemma 1.1 |θ1(x)| = |x| + |u| = 1.
Let θ = ϕ−1 · θ1 (composition of mappings); then θ(x) ∈ Π(G). Since
x = θ1(x) − u ∈ Nil(RG), then by Corollary 1.3 θ(x) ∈ Ω(G). So
θ(N(G)) ⊂ Ω(G).

Since ϕ is a bijection and θ1 is an injection, then θ is an injection. Let
P ∈ Ω(G) and x = p − u. By Corollary 1.3 x ∈ Nil(RG). Since p ≥ 0,
then x ≥ − 1

|G| . So x ∈ N(G). Since p = θ1(x), then P = ϕ−1(p) = θ(x).
So θ is a surjection. Thus θ is a bijection.

The proof of Theorem 1.6 gives a way to obtain every probability of
Ω(G): for x ∈ N(G) a function P = ϕ−1(x + u) is in Ω(G) and any
P ∈ Ω(G) can be obtained this way.

Now we name the groups we study.

Definition. A group is called S-group if Ω(G) = {U}.

2. Description of S-groups

Let Mn(K) be the algebra of all n × n matrices over a skew field K.

Lemma 2.1. Nil(Mn(K)) = {0} if and only if n = 1, i.e. Mn(K) = K.

Proof. If n = 1, then Mn(K) = K is a skew field, so Nil(Mn(K)) =
{0}. If n > 1, matrix units Eij are nilpotent if i 6= j (Eij is a matrix
which (i, j)-th element is 1 and others are 0).

The following theorem is a key one.

Theorem 2.2. The following conditions are equivalent:

(a) G is a S-group;

(b) Nil(RG) = {0};

(c) The algebra RG is an orthogonal direct sum of skew fields.

Proof. (a) ⇔ (b). By definition, the statement (a) means that
|Ω(G)| = 1. By Theorem 1.6 it is equivalent to |N(G)| = 1, i.e. N(G) =
{0}. By (5) it means that Nil(RG) = {0}.

(b) ⇔ (c). By Wedderburn’s theorem algebra RG decomposes into
orthogonal direct sum of matrix algebras over skew fields. The equality
Nil(RG) = {0} is equivalent to Nil(Mn(K)) = {0} for each of such
algebras Mn(K), and by Lemma 2.1, to Mn(K) = K.
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Note 2.3. For a S-group G let a skew field K be one of direct summands
of RG (see point (c) of Theorem 2.2). As K is a finite-dimensional
algebra over R, then by well known theorem of Frobenius ([2], p. 465),
K is isomorphic either to field R, or to field C of complex numbers, or
to quaternion skew field Q.

Lemma 2.4. Subgroups of an S-group are S-groups.

Proof. Let H be a subgroup of S-group G. By Theorem 2.2 we have
Nil(RG) = {0}. As Nil(RH) ⊂ Nil(RG), then by Theorem 2.2 H is
S-group.

Let Z(G) be the center of G.

Lemma 2.5. If x ∈ Nil(RG), then X(g) = 0 for any g ∈ Z(G).

Proof. Let T be the regular representation of a group G, ρ be its
character, extended by linearity on algebra RG. As ρ(g) = 0 (g 6= 1) and
ρ(1) = |G|, then

ρ(x) =
∑

g

X(g)ρ(g) = X(1)|G|

On the other hand, the matrix T (x) is nilpotent, so ρ(x) = tr (T (x)) = 0.
Therefore X(1) = 0, and lemma is proved for special case g = 1.

For proof in general case we let y = g−1x. Then y ∈ Nil(RG). By
the above paragraph Y (1) = 0. As Y (1) = X(g), the proof is complete.

Corollary 2.6. Abelian groups are S-groups.

Proof. For an Abelian group G we have G = Z(G), so Nil(RG) =
{0}. By Theorem 2.2, G is S-group.

Another proof we obtain from Lemma 1.5, since any function on
Abelian group is a class function.

A non-Abelian group is called Hamiltonian if all its subgroups are
normal.

Lemma 2.7. ([3], p. 308). A group G is Hamiltonian if and only if

G = N × A × Q, (6)

where N is an Abelian group of odd order, A is an elementary Abelian
2-group, Q is the quaternion group of order 8.

Let G be a Hamiltonian S-group. As its subgroup N is Abelian, then
algebra RN decomposes into an orthogonal direct sum of fields:

RN = Λ1 ⊕ . . . ⊕ Λr (7)
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Lemma 2.8. We have

(a) Λi
∼= R (i = 1, . . . , r);

(b) G is a 2-group.

Proof. (a) If statement (a) does not hold, then by note 2.3, Λi
∼= C

for some i. The algebra RQ is an orthogonal direct sum of skew fields,
and as the group Q is non-Abelian, then one of these skew fields (say,
K) is isomorphic to the quaternion skew field Q. By (6) the algebra RQ

contains an ideal I = Λi · K ∼= C ⊗ Q. As the ring C ⊗ Q is isomorphic
to the full matrix ring M2(C) and Nil(M2(C)) 6= 0 (Lemma 2.1), then
Nil(I) 6= 0 whence Nil(RG) 6= 0. As it contradicts to Theorem 2.2, the
statement (a) is proved.

(b) By (6) it is enough to prove that N = {1}. By (7), an arbitrary
element g ∈ N has decomposition g = x1 + · · · + xr, where xi ∈ Λi (i =
1, . . . , r). Let n = |N |. Elements xi are mutually orthogonal, so 1 =
gn = x1

n + · · · + xr
n. As 1 = e1 + · · · + er, where ei is the unit of Λi,

then xi
n = ei (i = 1, . . . , r). Therefore xi is an element of finite order in

the multiplicative group of the field Λi. As Λi
∼= R, then xi = ±ei (i =

1, . . . , r) and g2 = x1
2 + · · ·+ xr

2 = 1. But N is a group of odd order, so
g = 1, therefore N = {1}.

Theorem 2.9. The following conditions are equivalent:

(a) G is a Hamiltonian 2-group;

(b) G is a non-Abelian S-group.

Proof. (a)⇒(b) Let G be a Hamiltonian 2-group. By Lemma 2.7
G = A × Q, therefore Z(G) = A × Z(Q). For any s ∈ G \ Z(G) we have
s = at, where a ∈ A, t ∈ Q \Z(Q). So s2 = a2t2 = t2 = z, where z is the
unique element of order 2 in group Q.

Let y ∈ Nil(RG). If y 6= 0, then yn = 0, yn−1 6= 0 for the some
n ∈ N. Let x = yn−1; then x2 = 0, x 6= 0. Therefore

∑

s

X(s)X(s−1g) = 0 (8)

for any g ∈ G. By Lemma 2.5 we can assume that in (8) s ∈ G \ Z(G)
instead of s ∈ G. Then by above s2 = z. Substituting in (8) g = z we
obtain

∑
s(X(s))2 = 0, whence X(s) = 0 for any s ∈ G\Z(G). Again by

Lemma 2.5 X(s) = 0 for s ∈ Z(G), so X = 0 i.e. x = 0 — a contradiction.
Therefore Nil(RG) = {0} and G is a S-group.
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(b)⇒(a) Let G be a non-Abelian 2-group. For arbitrary elements
g, s ∈ G we let

ν = (g − 1)s(gn−1 + gn−2 + · · · + g + 1) ∈ RG

where n is order of the element g ∈ G. Since (g − 1)(gn−1 + gn−2 + · · ·+
g+1) = gn−1 = 0, we have ν2 = 0. By Theorem 2.2 Nil(RG) = {0}, so
ν = 0. As ν = gsgn−1 + · · ·+gs−sgn−1−· · ·−s, then gs = sgk for some
k ∈ {0, 1, . . . , n − 1}. Therefore s−1gs = gk. So the subgroup generated
by g is normal in G. It yields that each subgroup of G is normal, i.e.
G is Hamiltonian. By the statement (b) of Lemma 2.8, G is a 2-group.
Theorem is proved.

As a consequence of Theorems 2.2 and 2.9 we obtain

Theorem 2.10. For a finite group G the following conditions are equiv-
alent:

(a) Ω(G) = U ;

(b) G is an Abelian group or a Hamiltonian 2-group;

(c) The zero is the only nilpotent element of the algebra RG.
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