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ABSTRACT. Let ¢ be a prime power and k € {5,7,9,11}. In
this paper it is shown that the girth of a graph D (k, q) is equal to
k+5. As a consequence, explicit examples of graphs which provide
the best known upper bounds of the order of (r,g)-cages, r > 5,
g € {10,14,16}, are given.

1. Introduction

The objective of this paper is to show that the girth of a graph D (k, q),
where ¢ is a prime power and k € {5,7,9,11}, is equal to k£ + 5. Since
the proof is constructive (an explicit cycle is shown), we are ensured that
graphs D (k, q) are the real examples of the best known upper bounds of
the order of (r, g)-cages, r > 5, g € {10, 14, 16}.

In Section 2 the graphs D (k,q) are introduced and the main theo-
rem is proven. Connections to upper bounds of the order of cages are
presented in Section 3.

2. Graphs D (k,q)

Let ¢ be a prime power and let £ > 2 be an integer. Let P and L
be two k-dimensional subspaces of (k + 1)-dimensional vector space over
the Galois field GF (q), the second and third coordinates of elements
(po, P1,---spk) € P and [lo,l1,...,lx] € L are equal: p1 = po, l1 = lo.
Define V= P U L to be a set of vertices of a graph D (k,q). (Note
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that even though p € P and [ € L may have the same coordinates they
are always considered as distinct elements of V. Parenthesis and square
brackets will be used to distinguish between the elements of P and L.)
The relation £ C P x L, given by the following system of linear equations:

l; — pi = poli—2 (modp), i=2or3 (mod4), (1)
l; — pi = lopi—2 (modp), i=0or1l (mod4), (2)

where ¢ = 2,3,4,...,k, (po,p1,-..px) € P and [lp,l1,...,lg] € L, defines
the set of edges of the graph D (k,q). It is easy to see that the graphs
D (k,q) are k-regular and bipartite.

Given nonempty subsets R and S of GF (q). Let D(k,q,R,S) =
(Pr U Lg, E) be a subgraph of D (k, q), where

Pr = {pGP:poeR},
Ls = {leL:lpeS}.

Connected components of D (k, q) and D (k,q, R, S) are extremely impor-
tant because they provide many examples in the extremal graph theory.

The graphs D (k, q) were introduced by Lazebnik and Ustimenko in [6]
and [10], where the authors showed that the girth (length of the smallest
cycle) of D (k,q), where k > 3 odd, is greater than or equal to k + 5.
More information about these graphs, including their properties (number
of vertices and edges, components, transitivity, girth, etc.), connections
with Chevalley groups and examples of their applications in extremal
graph theory can be found in [3, 4, 5, 6,7, 9, 8, 12].

Determining the girth g (D (k,q)) of D (k,q) is not easy and only
lower bounds are known for all pairs of (k, q):

k+4 if k is even
> ’ ’
MD@A»—{k+& if & is odd.

In [3] the following conjecture has been formulated

Conjecture 2.1. If k > 3 is odd and q > 5 is a prime power then the
girth
g(D(k,q)) =k+5.

Also in [3], it was proved there that if & > 3 is odd and ¢ is a prime power
such that ¢ = 1 (mod 1%'5) then g (D (k,q)) = k+ 5. On the other hand,
we already know that ¢ (D (3, ¢)) = 8 for every prime power ¢. The main
result of this section is

Theorem 2.2. If k € {5,7,9,11} and q = p™ is a power of a prime
p > 3 then g (D (k,q)) =k + 5.
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Proof. The proof will be finished if we find cycles of length k£ 4+ 5. Such
cycles are obtained in the following way. Let Py = (pg,p(l), .. ,pg) €
P be a vertex of D (k,q) and let I} = 21 € GF (¢). Using (1) and
(2) one calculates Ly = Ué,lh...,li],so that Py and Lq are connected
with an edge. Given Los 1, 2 < 2s < k + 5, put pgs = pgS_Q + X9,
x9s € GF (q), and calculate Ps = (p%s,p%‘s,...,pzs) by (1) and (2),
so that Ps, and Los_; are connected with an edge. Analogously, for
given Py o, calculate Los 1, 1 < s < % All coordinates of Py and
Los_1 depend on pg,p(l), - ,pg and x1, x3, ..., 2kt+5. By comparing Py and
Pyy5 a system of equations is obtained, then simplified and investigated
for a solution such that xz; # 0, i € {2,3,...,k+5}. All equations
(after simplifications) are linear with respect to any single variable and
do not contain p8, p(l), e pg or x1, which corresponds to the transitivity
properties of the graphs, see [6].

A cycle of length 10 of the graph D (5, q), (¢ = p™, p > 3 is prime) has
the following vertices (all numbers should be reduced mod p if necessary):

0: (0, 0, 0, 0, 0, 0)

1: [2, 0, 0, O, O, O]

2: (1, p-2, p-2, 0, 4, 0)

3: [p-1, p-3, p-3, p-3, 6, 0]
4: (p-1, p-4, p-4, p-6, 2, p-6)
5: [0, p-4, p-4, p-2, 2, p-6]
6: (2, p-4, p-4, 6, 2, p-6)
7: [1, p-2, p-2, 2, p-2, 0]
8: (p-1, p-1, p-1, 0, p-1, O
9: [p-1, 0, 0, 0, 0, 0]

10: (0, 0, 0, 0, 0, O)

A cycle of length 12 of the graph D (7, q), (¢ = p™, p > 3 is prime) has
the following vertices (all numbers should be reduced mod p if necessary):

0: (o, 0, 0, 0, O, O, 0, 0)

i: [0, 0, 0, O, O, O, O, O]

2: (1, 0, 0, 0, 0, O, 0, 0)

3: [1, 1, 1, 1, 0, 0, 0, O]

4: (0, 1, 1, 1, p-1, p-1, 0, 0
5: [2, 1, 1, 1, 1, 1, 0, O]

6: (1, p-1, p-1, 0, 3, 1, p-1, p-1)
7: [0, p-1, p-1, p-1, 3, 1, 2, 0]
8: (0, p-1, p-1, p-1, 3, 1, 2, 0)
9: [1, p-1, p-1, p-1, 2, 0, 2, 0]
10: (1, p-2, p-2, 0, 4, 0, 0, 0)
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11: [2, 0, 0, O, O, O, O, O]
12: (o, 0, 0, 0, 0, O, 0, 0)

A cycle of length 14 of the graph D (9, q), (¢ = p™, p > 3 is prime) has
the following vertices (all numbers should be reduced mod p if necessary):

0: (o, 0, 0, 0, 0, 0, 0, 0, 0, 0)

1. [0, O, O, O, O, O, O, O, O, O]

2: (14, 0, 0, 0, 0, 0, 0, 0, 0, 0)

3: [1, 1, 1, 1, 0, O, O, O, O, O]

4. (0, 1, 1, 1, p-1, p-1, 0, 0, 0, 0)

5. [0, 1, 1, 1, p-1, p-1, O, 0, O, O]

6: (p-3, 1, 1, 4, p-1, p-1, p-3, p-3, 0, 0)
7: [p-2, 7, 7, p-17, p-3, p-9, 6, 24, 6, 6]
8: (p-2, 3, 3, p-3, 3, p-15, 0, 6, 6, 18)
9: [p-3, 9, 9, p-21, p-6, p-6, 12, 18, 6, 0]
10: (p-3, 0, 0, 6, p-6, 12, p-6, 0, p-12, 0)
11: [p-2, 6, 6, p-12, p-6, 0, 12, 0, 0, 0]
12: (p-2, 2, 2, 0, p-2, 0, 0, 0, 0, 0)

13: [1, 0, O, O, O, O, O, O, O, O]

14: (0, 0, 0, 0, 0, 0, 0, 0, 0, O)

A cycle of length 16 of the graph D (11, q), (¢ = p™, p > 3 is prime)
has the following vertices (all numbers should be reduced mod p if neces-

sary):
0: (0, 0, 0, 0, O,
0

i: [1, 0, O, O, O, O, O, O, 0, O, O,

2: (1, p-1, p-1, 0, 1, 0, 0, 0, 0, 0, 0, 0)

3: [p-2, p-3, p-3, p-3, 3, 0, 3, 0, 0, 0, O, O]
4: (0, p-3, p-3, p-3, p-3, p-6, 3, 0, 6, 0, 0, 0)
5: [p-1, p-3, p-3, p-3, 0, p-3, 3, 0, 3, 0, 0, O]
6: (1, p-2, p-2, 0, p-2, p-3, 3, 3, 6, 3, p-3, 0)
7: [0, p-2, p-2, p-2, p-2, p-3, 1, 0, 6, 3, 3, 3]
8: (0, p-2, p-2, p-2, p-2, p-3, 1, 0, 6, 3, 3, 3)
9: [p-2, p-2, p-2, p-2, 2, 1, 1, 0, 4, 3, 3, 3]
10: (1, 0, 0, 0, 2, 1, p-1, p-1, 2, 1, p-1, O)
11: (1,1, 1,1, 2,1, 1,0, 1, 0, 0, 0]

12: (0, 1, 1,1, 1, 0, 1, 0, O, O, 0, O)

13: [0, 1,1, 1,1, 0,1, 0, O, O, O, O]

14: (1, 1, 1, 0, 1, 0, 0, O, O, O, O, O)

15: [p-1, 0, 0, 0, O, O, O, O, O, O, O, O]

i6: (o, 0, 0, 0, O, O, O, O, O, O, O, O)

The cycles given here are easily verified using (1) and (2). O
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Remark 2.3. Notice that if k =7 the cycle given in the proof shows that
we can take p > 3 and therefore g (D (7,3™)) = 12, where m is a positive
integer. Analogous conclusions cannot be drawn for k € {5,9,11}.

3. Cages

Let r > 2 and g > 3 be integers. A (7, g)-graph is a r-regular graph with
girth equal to g. A (7, g)-graph of minimum order (i.e. having the fewest
possible number of vertices) is called a (r,g)-cage. Let v (r,g) be the
order of a (r, g)-cage. The problem of determining the values of v (r,g)
is still open for most pairs of (r,g).

By counting the number of vertices spreading from a given edge (for
even values of g) or a given vertex (if g is odd) in a k-regular graph of
girth g, the following lower bounds are easy to obtain

g
: C2(r=1)9% =2
v(k,g) >2 (r—1)= (z )2 , if g is even,
=0 ~
and
= (9-1)/2
- : — bz _g
vlhg) > 143 (1) =2 :_2 . ifgis odd.
j=1

Upper bounds have been established by Lazebnik, Ustimenko and Woldar [9]

v(r,g) < 2rq1", 3)
where » > 5 and g > 5 are integers, ¢ is the smallest odd prime power
satisfying » < ¢ and a = %,%, %,%, for ¢ = 0,1,2,3 mod4, respec-

tively, and recently, by Araujo-Pardo, Gonzdlez, Montellano-Ballesteros
and Serra [1] for g € {11,12}, v (r,11) < v (r,12) < 2rg*, where ¢ is the
smallest prime power greater than or equal to » > 3. More information
on cages and bounds of v (k, g) can be found in the article of Wong [13]
and on the website of Royle [11], see also |7] and [9].

Upper bounds (3) in [9] were obtained in a nonconstructive way. How-
ever, the constructive proof of Theorem 2.2 enables us to give examples of
r-regular graphs with girth g € {10, 14,16} and order equal to the right-
hand side of (3). Let ¢ be a power of a prime p > 3. Define R, C GF (q),
k € {5,9,11}, in such a way that it has exactly r > 5 elements and

Rs D {0,1,2,p— 1},
R7D{0,1,2},

Ry 5 {0,1,p—3,p— 2},
Ry D{0,1,p—2,p—1}.
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Every connected component of D (k,q, Ry, Ry) is a r-regular graph of
order 2rq%9_“ (see [4] or |9]) with girth ¢ = k + 5 (see Theorem 2.2),
where a = 4 or %, for g =0 or 2 (mod4), respectively.
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