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Abstract. Let G be a finite group, H a subgroup of G
and HsG the subgroup of H genarated by all those subgroups of

H which are s-permutable in G. Then we say that H is well p-

embedded in G if G has a quasinormal subgroup T such that HT =
G and T ∩ H ≤ HsG. In the present article we use the well p-

embedded groups to obtain new characterizations for some class of

finite soluble, supersoluble, metanilpotent and dispersive groups.

Introduction

All groups under study in this article are finite. Ore considered [10] two
generalizations of normality that still pique the unwaning interest of re-
searchers. Note first of all that quasinormal subgroups were introduced in
[10] into the practice of mathematicians for the first time. Following [10],
we say that a subgroup H of a groups G is quasinormal in G if H com-
mutes with every subgroup of G (i.e. HT = TH for all subgroups T of
G). It turned out that quasinormal subgroups possess a series of interest-
ing properties [2, 6, 9, 10, 11, 16, 17] and that actually they are not much
different from normal subgroups. Note, in particular, that according to
[9] for each quasinormal subgroups H we have HG/HG ⊆ Z∞(G/HG),
and by [12, Theorem 2.1.3], quasinormal subgroups are precisely those
subnormal subgroups of G that are modular elements in the lattice of all
subgroups of G.
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It is clear that if a subgroup H of G is normal in G, then G must
have some subgroup T that satisfies the condition

G = HT and both subgroups T and T ∩ H are normal in G. (∗)

Therefore, (∗) is another generalization of normality. This idea ap-
peared firstly in [10] too, where it is shown in particular that G is soluble
if and only if all maximal subgroups of G satisfy (∗) (in this regard, also
see the article of Baer [1]). Later the subgroups satisfying (∗) were called
c-normal in [18]. In this article a nice theory of c-normal subgroups was
presented and some of its applications were given to the questions of
classification of groups with some distinguished systems of subgroups.

Recall that a subgroup H of G is said to be s-permutable or s-
quasinormal [10] in G if HP = PH for all Sylow subgroups P of G.

In the present article we exemine the following concept which general-
izes the conditions of quasinormality as well as c-normality for subgroups.

Definiton 1. Let H be a subgroup of G. Then we say that H is well
p-embedded in G if G has a quasinormal subgroup T such that HT = G
and T ∩ H ≤ HsG.

In this definition HsG denotes the s-core of H [14], that is the sub-
group of H genarated by all those subgroups of H which are s-permutable
in G.

It is clear that every s-permutable subgroup and c-normal subgroup
are well p-embedded. The following simple example shows that, in gen-
eral, a well p-embedded subgroup need not be quasinormal or c-normal.

Example 1. Consider P = Mm(2) =< x, y|x2m−1

= y2 = 1, xy =
x1+2m−2

>, where m > 3, and take A =< x > and B =< y >. Then
P = [A]B and |B| = 2. Since Z(P ) is a cyclic group of order 2m−2, it
follows that B is normal in Z(P )B. Given a group Z3 of prime order
3, take G = Z3ıP = [K]P , where K is the base of the regular wreath
product G. Since G = (KB)A, so A∩KB = 1 and P is a modular group.
It follows that KB is quasinormal in G. Hence A is well p-embedded in
G, but not quasinormal and not c-normal in G.

In the present article we use the well p-embedded groups to obtain new
characterizations for some class of finite soluble, supersoluble, metanilpo-
tent and dispersive groups.
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1. Preliminaries

Let G be a group and p1 > p2 > . . . > pt are different prime divisors
of the order of G. Then the group G is said to be dispersive (in sence
Ore [10]) if there are subgroups P1, P2, . . . , Pt such that Pk is a Sylow
pk-subgroup of G and the subgroup P1P2 . . . Pk is normal in G for all
k = 1, 2, . . . , t.

The following known results about subnormal subgroups will be used
in the paper several times.

Lemma 1.1. Let G be a group and A ≤ K ≤ G, B ≤ G. Then
(1) If A and B are subnormal in G, then 〈A, B〉 is subnormal in G [3,

A, Lemma 14.4].
(2) Suppose that A is normal in G. Then K/A is subnormal in G/A

if and only if K is subnormal in G [3, A, Lemma 14.1].
(3) If A is subnormal in G, then A ∩ B is subnormal in B [3, A,

Lemma 14.1].
(4) If A is a subnormal Hall subgroup of G, then A is normal in G

[19].
(5) If A is subnormal in G and B is a Hall π-subgroup of G, then

A ∩ B is a Hall π-subgroup of A [19].
(6) If A is subnormal in G and A is a π-subgroup of G, then A ≤

Oπ(G) [19].
(7) If A is subnormal in G and B is a minimal normal subgroup of G,

then B ≤ NG(A) [3, A, Lemma 14.5].
(8) If A is a subnormal soluble (nilpotent) subgroup of G, then A is

contained in some soluble (respectively in some nilpotent) normal sub-
group of G [19].

We will need to know a few facts about s-permutable subgroups.

Lemma 1.2. [8] Let G be a group and H ≤ K ≤ G. Then
(1) If H is s-permutable in G, then H is s-permutable in K.
(2) Suppose that H is normal in G. Then K/H is s-permutable in G

if and only if K is s-permutable in G.
(3) If H is s-permutable in G, then H is subnormal in G.

From Lemma 1.2 we directly have.

Lemma 1.3. Let G be a group and H ≤ K ≤ G. Then the following
statements hold:

(1) HsG is a s-permutable subgroup of G and HG ≤ HsG.
(2) HsG ≤ HsK .
(3) Suppose that H is normal in G. Then (K/H)s(G/H) = KsG/H.
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(4) If H is either a Sylow subgroup of G or a maximal subgroup of
G, then HsG = HG.

Proof. Statements (1-3) are evident. By Lemmas 2(1) and 3(1), HsG is
subnormal in G and so in the case when H is a Sylow subgroup of G,
HsG = HG, by Lemma 1(6).

Now assume that H is a maximal subgroup of G. If D = HG 6= 1, then
by induction (H/D)π(G/D) = (H/D)(G/D) = D/D. Hence HsG = D. Let
D = 1 and let N be a minimal normal subgroup of G. Then by [3],
we know that either N is the only minimal normal subgroup of G and
C = CG(N) ≤ N or G has precisely two minimal normal subgroups N
and R say, N ≃ R is non-abelian, R = C and N ∩ H = 1 = R ∩ H. Let
L be a minimal subnormal subgroup of G contained in H. If L ≤ N ,
then LG = LNH = LH ≤ D = 1, a contradiction. Hence L * N and
analogously L * R. Hence L ∩ N = 1 = L ∩ R. But by Lemma 1(7),
NL = N × L, so L ≤ C, a contradiction. Thus HsG = 1 = D.

Lemma 1.4. Let G be a group and H ≤ K ≤ G. Then
(1) Suppose that H is normal in G. Then K/H is well p-embedded

in G/H if and only if K is well p-embedded in G.
(2) If H is well p-embedded in G, then H is well p-embedded in K.
(3) Suppose that H is normal in G. Then the subgroup HE/H is

well p-embedded in G/H for every well p-embedded in G subgroup E
satisfying (|H|, |E|) = 1 .

Proof. (1) Necessity. Suppose first that K/H is well p-embedded in G/H
and let T/H be a quasinormal subgroup of G/H such that
(K/H)(T/H) = G/H and (T/H) ∩ (K/H) ≤ (K/H)s(G/H). By Lemma
2(3), T/H is subnormal in G/H. By Lemma 1(2), T is subnormal in G
. Besides, we have KT = G and T ∩ K ≤ KsG, by Lemma 3(3). Hence
K is well p-embedded in G.

Sufficiency. Now assume that for some quasinormal subgroup T of G
we have KT = G and T∩K ≤ KsG. Then by Lemma 1(1), HT is subnor-
mal in G, so by Lemma 1(2), HT/H is subnormal in G/H. Besides, we
have (HT/H)(K/H) = G/H and (HT/H) ∩ (K/H) = (HT ∩ K)/H =
H(T ∩ K)/H ≤ HKsG/H = KsG/H = (K/H)s(G/H), by Lemma 3(3).
Thus K/H is well p-embedded in G/H.

(2) Let T be a quasinormal subgroup of G such that HT = G and
T ∩H ≤ HsG. Then K = K∩HT = H(K∩T ) and K∩T is quasinormal
in K. By Lemma 3(2), we also see that (K ∩ T ) ∩ H ≤ HsG ≤ HsK .
Hence H is well p-embedded in K.

(3) Assume that E is well p-embedded in G and let T be a quasinormal
subgroup of G such that ET = G and T ∩ E ≤ EsG. Clearly, H ≤ T ,
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so T ∩ HE = H(T ∩ E) ≤ H(EsG) ≤ (HE)sG. Hence HE is well
p-embedded in G. By (2), HE/H is well p-embedded in G/H.

The following Lemmas will be necessary for the proof of theorems in
Section 2.

Lemma 1.5. If every maximal subgroup of group G has complement,
which is a quasinormal subgroup in G, then G is nilpotent.

Proof. Suppose that this is false and that G is a counterexample of min-
imal order. Then |G| is not prime, so G is not simple group. Let N
be any proper normal subgroup of G and M/N a maximal subgroup in
G/N . And let T be a permutable subgroup in G such that G = MT and
M ∩T = 1. Then TN/N is permutable in G/N , (TN/N)(M/N) = G/N
and (TN/N) ∩ (M/N) = (TN ∩ M)/N = N(T ∩ M)/N = N/N . As
the class of all nilpotent groups is the saturated formation, we see that
G has only minimal normal subgroup. Let N be only minimal normal
subgroup of G. Then CG(N) = N . Let M be a maximal subgroup of
group G such that N ≤ M . And let T be permutable in G such that
G = TM and T∩M = 1. By Lemma 1(7), N ≤ NG(T ) and NT = N×T .
Then T ≤ CG(N) = N . The received contradiction finishes the proof of
lemma.

Lemma 1.6. Suppose that G = AB and A is a subnormal subgroup of G,
B a nilpotent subgroup. If every Sylow subgroup of A has a quasinormal
complement in G, then G is nilpotent.

Proof. Suppose that this is false and let G be a counterexample of mini-
mal order. Then

(1) A and every proper subgroup of G containing A are nilpotent.
Let A ≤ M ≤ G with M 6= G. Then M = M∩AB = A(M∩B), where

M ∩ B is nilpotent in G, A is a subnormal subgroup in M . Let Ap be a
Sylow subgroup of A and T a subnormal complement for Ap in G. In view
of Lemma 1(3), M∩T is subnormal in M , so M = M∩ApT = Ap(M∩T ).
Thus the hypothesis of the theorem is true for M . But |M | < |G|,
contrary to the choice of G. Thus M is nilpotent. Clearly, A is nilpotent.

(2) G is soluble.
By the condition, A is subnormal in G. Then in view of (1) and

Lemma 1(8), A contains in some soluble normal subgroup N of G. But
G/N ≃ B/B ∩ N is nilpotent, so G is soluble.

(3) G/P is nilpotent for every normal p-subgroup P of G, containing
Sylow p-subgroup of A.

We shall show that the hypothesis of the theorem is true for G/P .
Clearly, that (AP/P )(BP/P ) = G/P , where BP/P is nilpotent and
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AP/P a subnormal in G/P . Let Q/P be a Sylow q-subgroup of AP/P ≃
A/A ∩ P . Then (q, |P |) = 1 and Q = AqP for some Sylow q-subgroups
Aq of A. In view of (1), A is nilpotent, so Aq is subnormal in G and
Q = Aq × P . Let T be a subnormal complement for Aq in G. Let
D = Q ∩ TP = Q1 × P1, where Q1 is a Sylow q-subgroup of D and
P1 ≤ P . Clearly, Q1 ≤ Aq. Since (q, |P |) = 1, Q1 ≤ Tq for any Sylow
q-subgroups Tq of T and therefore Q1 ≤ T ∩ Aq = 1. Thus D = P1

and hence TP/P ∩ Q/P = 1. It follows that TP/P is the subnormal
complement for Q/P in G/P . At the choice of G we conclude that G/P
is nilpotent.

(4) A ≤ F (G) and F (G) is a r-group for some prime r.

Let P be a Sylow r-subgroup of A. Then in view of (1), P is subnormal
in G. By Lemma 1(6), P ≤ Or(G). According to (3), G/Or(G) is
nilpotent. Since G is not nilpotent group, A ≤ F (G) = Or(G).

(5) |G| = paq for some primes p and q and Sylow p-subgroup of G is
normal.

Let M be a normal subgroup of group G such that A ≤ M and G/M
a simple group. In view of (2), |G : M | = q is a prime. According to (1),
M is nilpotent. As every Sylow subgroup P of M is characteristic in M ,
P is normal in G and in view of (4), M = P .

(6) A is a p-group.

It directly follows from (4) and (5).

Final contradiction.

Let T be a subnormal complement to a subgroup A in G. Then by
Lemma 1(5), the Sylow q-subgroup Q of B contains in T . Let D = AQ.
Then by Lemma 1(3), T ∩ D = Q(T ∩ A) = Q is subnormal in D. Thus
D = A×Q, so A ≤ NG(Q). Hence B ≤ NG(Q). Then Q is normal in G.
Hence in view of (5), G is nilpotent. The received contradiction finishes
the proof of the lemma.

Lemma 1.7. If G = AB, where every Sylow subgroup of A is well
p-embedded in G and B is a Hall nilpotent subgroup in G, then G is
soluble.

Proof. Suppose that this is not true and that G is a counterexample of
minimal order. Then every minimal normal subgroup of G contained in A
is not abelian. Indeed, if for some abelian the minimal normal subgroup
L we have L ≤ A, then by Lemma 4, the hypothesis of lemma is true for
G/L. Consequently to the choice of group G, G/L is metanilpotent. It
then follows that G is soluble, contrary to the choice of G.

Now assume that A = G and let P be any Sylow subgroup in G. Let
D = PqG. By Lemma 2(3), the subgroup D is subnormal in G. By [13, II,
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Corollary 7.7.2], D ≤ F (G). But G has not the abelian minimal normal
subgroups and therefore D = F (G) = 1. According to the condition, a
subgroup P is well p-embedded in G, so G has such permutable subgroup
T that is the complement to P in G. It is clear that T is subnormal in
G and consequently T is a normal subgroup in G. Thus every Sylow
subgroup of G has normal complement in G. But then G is a nilpotent
group, a contradiction.

Lemma 1.8. Suppose that G = [P ]M and P is a Sylow p-subgroup in G,
M is a soluble group. If all maximal subgroups of P are well p-embedded
in G, then G is p-supersoluble.

Proof. Suppose that this is not true and that G is a counterexample of
minimal order.

(1) If N is a minimal normal subgroup of G, then G/N is a p-
supersoluble group.

Indeed, G/N = [PN/N ](MN/N), where PN/N is a Sylow
p-subgroup in G/N , MN/N is a soluble group. Let K/N be any maximal
subgroup of PN/N .

We shall show that a subgroup K/N is well p-embedded in G/N .
Since P is a Sylow p-subgroup in G, so K = K ∩ PN = N(K ∩ P ).
We shall show first that K ∩ P is a maximal subgroups of P . Note that
K ∩ P 6= P . Indeed, if K ∩ P = P , then P ⊆ K and K/N = PN/N ,
contrary to the choice of K/N . Now assume that exists a subgroup T
such that K ∩ P ⊂ T ⊂ P . Then K = N(K ∩ P ) ⊆ TN ⊆ PN . But
K is a maximal subgroup of P , so either K = TN or TN = NP . If
K = TN , then T ⊆ K ∩ P ⊂ T that is impossible. Hence TN = NP , so
P = P ∩ TN = T (P ∩ N) ⊆ T (P ∩ K) = T . This gives a contradiction.
So K ∩ P is a maximal subgroup of P .

By condition of lemma, K ∩ Pp is well p-embedded in G. Thus by
Lemma 4(2), (K ∩ Pp)N/N is well p-embedded in GN/N , so K/N is a
well p-embedded subgroup. Thus the hypothesis is still true for G/N .
By the choice of G, G/N is a p-supersoluble group.

(2) N is the only minimal normal subgroup of G and N is a p-group.
Since the class of all p-supersoluble groups is the saturated formation

(see [13, p. 35]), so N is the only minimal normal subgroup of G. Since
G is p-supersoluble, so either N is a p′-group or N a p-group. If N is a
p′-group, then G is p-supersoluble. Hence N is a p-group.

(3) N = P .
Since N � Φ(G), there exists a subgroup L of G such that G = [N ]L.

We show that N = Op(G). Indeed, Op(G) = Op(G) ∩ NL = N(Op(G) ∩
L). Since Op(G) ≤ F (G) ≤ CG(N), so Op(G) ∩ L is normal in G. It
follows that Op(G) ∩ L = 1. Hence N = Op(G) = P .
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Final contradiction.

Let K be a maximal subgroup of P . Then by hypothesis, G has a
quasinormal subgroup T such that KT = G and T ∩ K ≤ KsG. Since
K ≤ N , so NT = G. If N ∩ T = 1, then KT 6= G. Hence N ∩ T ≤ N . If
N ∩ T < N , then we have a contradiction to the minimality of N. Thus
N ∩ T = N , so N ≤ T and T = G. But K is well p-embedded in G, so
K ∩ T = K ≤ KsG. Hence K is s-permutable in G, a contradiction.

2. Characterizations of finite soluble, supersoluble,

metanilpotent and dispersive groups

Theorem 2.1. G is soluble if and only if G = AB, where A, B are sub-
groups of G sutisfying every maximal subgroup of A and every maximal
subgroup of B are well p-embedded in G.

Proof. Necessity. Suppose that this is false and let G be a counterexample
of minimal order.

(1) If N is a minimal normal subgroup of G contained in A∩B, then
G/N is soluble (it directly follows from Lemma 4(1)).

(2) A 6= G 6= B.

Indeed, let A = G. Let R be a minimal normal subgroup of G. Then
the hypothesis of our theorem is true for G/R = (G/R)(G/R). In view
of (1), G/R is soluble. Thus R is the only minimal normal subgroup of
G, R 6≤ Φ(G) and R = A1 × . . . × At, where A1 ≃ . . . ≃ At is a simple
non-abelian group. Let p be a prime divisor of the order |R| and M a
maximal subgroup of G containing N = NG(P ), where P is a Sylow p-
subgroup of R. Then by Frattini’s Lemma, G = RM , so MG = 1. Let T
be a quasinormal subgroup in G such that G = TM and M ∩ T ≤ MsG.
By Lemma 3(4), M ∩ T ≤ MsG = MG = 1. Hence T is a complement
for M in G. Clearly, p does not divide |G : M |, so (p, |T |) = 1. It follows
that T ∩R = 1. By [3, A, Lemma 14.3], TR = T ×R. Since R is the only
minimal normal subgroup of G and R is not abelian, T ≤ CG(R) = 1.
Hence G = TM = M . This is a contradiction.

(3) A, B are solube (it follows from (2) and a choice of group G).

Final contradiction.

Let R be a largest normal soluble subgroup of G. We shall show,
that AR/R is nilpotent. If A ≤ R it is obvious. Let now A 6⊆ R and
R ∩ A ≤ M , where M is the maximal subgroup of A. Let T be a
quasinormal subgroup of G such that G = MT and M ∩T ≤ MsG. Then
A = A ∩ MT = M(A ∩ T ) and A ∩ T is a quasinormal subgroup in A.
Since T ∩M is a s-permutable subgroup in G, so by lemma 2(3), T ∩M
is a subnormal subgroup in G. In view of (3), T ∩ M is soluble. Hence
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T ∩ M ≤ R. Then we have

(R ∩A)(T ∩A)∩M = (R ∩A)(T ∩A∩M) = (R ∩A)(T ∩M) ≤ R ∩A.

Hence by Lemma 5, A/R ∩ A is nilpotent, so AR/R ≃ A/R ∩ A is
nilpotent. It is similarly possible to show that BR/R is nilpotent. Hence
by [7, Theorem 3], G/R = (AR/R)(BR/R) is soluble. Thus G is soluble,
a contradiction.

Sufficiency. Suppose G is soluble and let M be a maximal subgroup of
group G. Then by [3, A, Theorem 15.6], M/MG has a normal complement
in G/MG and therefore M/MG is well p-embedded in G/MG. Thus by
Lemma 4(1), M is well p-embedded in G.

Corollary 1. G is soluble if and only if all maximal subgroups are well
p-embedded in G.

Theorem 2.2. G is metanilpotent if and only if G = AB, where A is a
subnormal subgroup in G, B is a Hall abelian subgroup in G and every
Sylow subgroup of A is well p-embedded in G.

Proof. Necessity. Suppose that this is false and let G be a counterexample
of minimal order. By Lemma 7, G is soluble. Then following statements
hold.

(1) Let N be a minimal normal subgroup in G, being p-subgroup for
some prime p. If either N ≤ A or (p, |A|) = 1, then a quatient G/N is
metanilpotent.

Clear, A/N is subnormal in G/N , BN/N ≃ B/B ∩ N is a Hall
abelian subgroup in G/N and G/N = (A/N)(BN/N). Let P/N be a
Sylow q-subgroup in AN/N . Let Q be a Sylow subgroup in AN such
that P = QN . By [13, III, Lemma 11.6], Q = AqNq for some Sylow
q-subgroups Aq of A and for Sylow q-subgroups Nq of N . Since group
G is soluble, N is the abelian p-group for some prime p. And if either
N ≤ A or (p, |A|) = 1, AqN/N is a Sylow q-subgroup in AN/N . By
Lemma 4(1), AqN/N is well p-embedded in G/N . Thus the hypothesis
of the theorem is true for G/N . Thus the quotient G/N is metanilpotent
according to the choice of G.

(2) PsG = PG for any Sylow p-subgroup P of A (it directly follows
from Lemma 3(4)).

(3) AG 6= 1.

Assume that AG = 1. By hypothesis, B is the abelian group, so
(A∩B)G = (A∩B)BA = (A∩B)A ≤ A and A∩B = 1. Since G = AB
and by [13, III, Lemma 11.6], for any prime p will be such Sylow p-
subgroups Ap, Bp and Gp in A, B and G, respectively, that Gp = ApBp.
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Since B is a Hall subgroup, it then follows from equality A∩B = 1 that A
is a Hall subgroup in G. By hypothesis, A is subnormal in G. In view of
[13, II, Corollary 7.7.2 (1)], A is normal in G. The received contradiction
finishes the proof of the statement (3).

(4) In G there is the only minimal normal subgroup L contained in
A and L is a p-group for some prime number p.

Indeed, by (3), one of the minimal normal subgroups L of G contains
in A. Since the class of all metanilpotent groups is the saturated forma-
tion (see [13, II, p. 36]), L is the only minimal normal subgroup of G
contained in A. But G is soluble, so L is a p-group for some prime p.

(5) Every Sylow q-subgroup of A has a quasinormal supplement in G
with q 6= p.

Let Q be a Sylow q-subgroup in A with q 6= p. By hypothesis of
our theorem, G has a quasinormal subgroup T such that G = QT and
Q∩ T ≤ QsG. In view of (2) and (4), QsG = 1. Thus T is a quasinormal
supplement to Q in G.

Final contradiction.

Let Ap be a Sylow p-subgroup in A and P = (Ap)sG = AG. We shall
consider a quotient group G/P = (A/P )(BP/P ). By hypothesis, G has
a quasinormal subgroup T such that TAp = G and T ∩ Ap ≤ P . Then
(Ap/P )(TP/P ) = G/P and Ap/P ∩ TP/P = P (Ap ∩ T )/P = P/P ,
so TP/P is a quasinormal supplement to Ap/P in G/P . On the other
hand, if Q/N is a Sylow q-subgroup in A/N with q 6= p, then in view
of (5), Q/P has a quasinormal supplement in G/P (see the proof of the
statement (3) Lemmas 6). Thus by Lemma 6, G/P is nilpotent. Hence
G is metanilpotent. The received contradiction finishes the proof of the
metanilpotently of G.

Sufficiency. Suppose that G is metanilpotent. We shall show that
every Sylow subgroup of G is well p-embedded in G. Suppose that is false
and let G be a counterexample of minimal order. Then G has a Sylow
subgroup P which is not well p-embedded in G. Let N be any minimal
normal subgroup in G and F is a Fitting subgroup of G. Suppose that
N ≤ P . Then P/N is well p-embedded in G/N . By Lemma 4(1), P is
well p-embedded in G, a contradiction.

Thus PG = 1, so F ∩ P ≤ PsG = PG = 1. Since G is metanipotent
and FP/F is a Sylow subgroup in G, we see that FP/F has a normal
supplement T/F in G/F . But F and T/F are p′-groups, so T is a normal
supplement to P in G. Hence P is well p-embedded in G. The received
contradiction shows that every Sylow subgroup of G is well p-embedded
in G.
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Corollary 2. G is metanilpotent if and only if every Sylow subgroup is
well p-embedded in G.

Theorem 2.3. Suppose that G = AB and A is a quasinormal subgroup
in G, B is a dispersive. If every maximal subgroup of any non-cyclic
Sylow subgroup of A is well p-embedded in G, then G is dispersive.

Proof. Suppose that this theorem is not true and let G be a counterex-
ample of minimal order.

(1) Every proper subgroup M of G containing A is dispersive.

Let A ≤ M ≤ G and M 6= G. Then M = M ∩ AB = A(M ∩ B),
where M ∩B is dispersive and A is s-quasinormal in M . By Lemma 4(2),
any maximal subgroup of every non-cyclic Sylow subgroup of A is well
p-embedded in M and |M | < |G|, then by the choice of group G, we have
(1).

(2) Let H be not uniqueal normal subgroup in G being p-group for
some prime p. Suppose either H contains a Sylow p-subgroup P of A or
P is cyclic or H ≤ A. Then G/H is dispersive.

If A ≤ H, then G/H = BH/H ≃ B/B ∩ H is dispersive. Let now
A 6⊆ H. Since |G/H| < |G|, we need to be shown that hypothesis of
the theorem is true for G/H. Clearly, G/H = (HA/H)(BH/H), where
HA/H is s-quasinormal in G/H and BH/H is dispersive. Let Q/H be
a Sylow q-subgroup of AH/H and M/H any maximal subgroup in Q/H.
Let Q1 be a Sylow q-subgroup of Q such that Q = HQ1. Clearly, Q1 is
a Sylow q-subgroup of AH. Thus Q = AqH for some Sylow q-subgroup
Aq of A. Assume that Q/H is not a cyclic subgroup. Then Aq is not
cyclic. We shall show that M/H is well p-embedded in G/H. If H ≤ A,
it directly follows from Lemma 4. Admit that either Sylow p-subgroup
P of A cyclic or P ≤ H. Then p 6= q. We shall show M ∩Aq is maximal
in Aq. Since M 6= Q and AqH = Q, we see that M ∩ Aq 6= Aq. Assume
that for some subgroup T of G we have M ∩ Aq ≤ T ≤ Aq, where
M ∩ Aq 6= T 6= Aq. Then M = H(M ∩ Aq) ≤ HT ≤ HAq = Q. Since
M is maximal in Q, or M = TH or TH = HAq. If M = TH, then
T ≤ M ∩Aq, contrary to the choice of T . Thus TH = HAq and we have
Aq = Aq ∩ TH = T (Aq ∩ H) ≤ T (M ∩ Aq) = T , a contradiction. Hence
M ∩ Aq is a maximal subgroup in Aq. By hypothesis, M ∩ Aq is well
p-embedded in G. Therefore M/H = (M ∩ Aq)H/H is well p-embedded
in G/H. Hence the conditions of the theorem are true for G/H.

(3) If p is a prime and (p, |A|) = 1, then Op(G) = 1.

Let H = Op(G) 6= 1. Then in view of (2), G/H is dispersive. On
the other hand, if π is a set of all prime divisors |A|, then in view of [10]
and [13, II, Corollary 7.7.2], A ≤ E, where E is a normal π-subgroup
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in G. Thus G/E ≃ B/B ∩ E is dispersive. But then G ≃ G/H ∩ E is
dispersive, the contradiction.

(4) G is soluble.
By hypothesis, A is s-quasinormal in G. In view of [10] and [13, II,

Corollary 7.7.2], A contains in some soluble normal subgroup E of G.
Since G/E ≃ B/B ∩ E is dispersive, G is soluble.

(5) AG 6= 1.
Suppose that AG = 1. Then by [8], A is nilpotent. Let P be a

Sylow p-subgroup of A. Since A is subnormal in G, so P is subnormal
in G. Thus by [13, II, Corollary 7.7.2], P ≤ Op(G). But in view of (2),
G/Op(G) is dispersive. By the choice of G, P = A. Let q be a smallest
prime divisor |G/Op(G)|. Then G has a normal maximal subgroup M
such that P ≤ M and |G : M | = q. Let r be a largest prime divisor |G|
and R be a Sylow r-subgroup of M . Then in view of (1), R is normal in
M , so R⊳G. If r 6= q, R is a Sylow r-subgroup of G and G/R dispersive.
It follows that G is dispersive, a contradiction. Hence r = q. But then
G/Op(G) is a r-group. Let Br be a Sylow r-subgroup in B. Then Br is a
Sylow r-subgroup in G. Since ABq is a subgroup of G and in view of (1),
we have ABq is dispersive and Bq ⊳ ABq. As B is dispersive, Bq ⊳ B and
Bq ⊳ G. Hence G is dispersive. The received contradiction proves (5).

Final contradiction.
Let H be a minimal normal subgroup of G containing in A. Let H

be a p-group and P a Sylow p-subgroup of A. In view of (2), G/H is
dispersive. Let q be a smallest prime divisor |G/H|. Then G has a normal
maximal subgroup M such that P ≤ M and |G : M | = q. Let r be a
largest prime divisor |G|, R be a Sylow r-subgroup of M . Then in view
of (1), R is normal in M and so R ⊳ G. As above we see r = q. Then
G/H is a r-group. Thus H = A. By Theorem 1.4 in [15], G is dispersive,
a contradiction.

Theorem 2.4. If G = AB, where A is a subnormal subgroup in G and
B is a Hall subgroup in G, which all Sylow subgroups are cyclic groups
and any maximal subgroup of every non-cyclic Sylow subgroup of A is
well p-embedded in G, then G is supersoluble.

Proof. Suppose that this is false and that G is a counterexample of min-
imal order.

(1) Each proper subgroup M of G containing A is supersoluble.
Let A ≤ M ≤ G and M 6= G. Then M = M ∩ AB = A(M ∩ B),

where M ∩ B is nilpotent and A is a subnormal in M . By Lemma 4(2),
any maximal subgroup of every non-cyclic Sylow subgroup of A is well
p-embedded in M and |M | < |G|, then by the choice of group G, we
have (1).
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(2) Let H be a non-uniqueal normal subgroup in G. Suppose that
H is a p-group. Admit that H contains Sylow p-subgroup P of A or
P is cyclic or H ≤ A. Then G/H is supersoluble (see the proof of the
statement (2) Theorems 2.3).

(3) One of the Sylow subgroup of A is not cyclic.
Indeed, easily to see, that any Sylow subgroup of G contains or in some

subgroup interfaced with A or in some subgroup interfaced with B. If all
Sylow subgroups of A are the cyclic groups, then every Sylow subgroup
of G is cyclic. But then by [5, VI, Theorem 10.3], G is supersoluble,
contrary to the choice of G.

(4) G is soluble.
Assume that A 6= G. Then by view of (1), A is supersoluble. By [13,

II, Corollary 7.7.2 (4)], A contains in some normal soluble subgroup R of
G. But G/R = RB/R ≃ B/B ∩R is supersoluble group, so G is soluble.

Now assume that A = G. If there is such prime p and such maxi-
mal subgroup M in some Sylow subgroup Gp of G that MsG 6= 1, then
Op(G) 6= 1, this attracts resolvability of group G in view of (2). Thus
we can assume that for any Sylow subgroup Gp of G and for its any
maximal subgroup M we have MsG = 1. Then M has a quasinormal
supplement T in G and the order Sylow p-subgroup of T is equal p. By
Lemma 4(2), condition of the theorem is true for T . Then by view of the
choice of group G, T is supersoluble. But it again attracts resolvability
of group G.

(5) A is supersoluble.
Let A = G be a soluble group in which for any non-cyclic Sylow

subgroup Gp all its maximal subgroups are well p-embedded in G. Since
the class of all supersoluble groups is the saturated formation (see [13, p.
35]), there is the only minimal normal subgroup N . Thus N = CG(N) 6⊆
Φ(G). By [5, III, Lemma 3.3(a)], N 6⊆ Φ(Gp). Since N 6⊆ Φ(G), so G =
[N ]E for some maximal subgroup E of G. Thus MsGE = EMsG. But
N 6⊆ M , so MsG 6= N . If MsG 6= 1, in view of maximality of a subgroup
E, then MsG = G, that attracts N = N ∩MsGE = MsG(N ∩E) = MsG,
a contradiction. Hence MsG = 1 and M has a quasinormal supplement
T in G.

It is clear that the order Sylow p-subgroup of T is equal p. Hence in
view of Lemma 4(2), the condition of the theorem is true for T . By the
choice of group G, T is a supersoluble group. Let q be a largest prime
divisor of the order of T . And let Tq be a Sylow q-subgroup in T . We
shall admit that q 6= p. Then Tq is a Sylow q-subgroup in G. Since T
is subnormal in G, so Tq ⊳ G. Then Tq ≤ CG(N) = N , a contradiction.
Hence q = p is the largest prime divisor of the order of G. In view of [13,
I, Lemma 3.9], Op(G/CG(N)) = Op(G/N) = 1. Hence by view of (2),
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N = Gp, a contradiction.
(6) AG 6= 1.
Let p be a largest prime divisor of the order of A and Ap be a Sylow

p-subgroup in A. By (5), a group A is supersoluble and Ap ⊳ A. By
[13, II, Corollary 7.7.2 (1)], Ap ≤ Op(G). In view of (2), G/Op(G) is a
supersoluble group and Op(G) non-cyclic group by the choice of group G.
It follows that Ap 6⊆ Bx for all x ∈ G. Therefore Ap is a Sylow subgroup
in G, so Ap = Op(G).

(7) Let N be a minimal normal subgroup of group G contained in A.
Then N = Ap = Gp is a Sylow subgroup in G, where p is the largest
prime divisor of the order of A.

Let N be a minimal normal subgroup of G contained in A. And let
p be the largest prime divisor of A. If p divides |B|, Gp ≤ B, where Gp

is a Sylow p-subgroup of G. By the condition, Gp is a cyclic group. But
N ≤ Gp, so N is a cyclic group. In view of (2), G is supersoluble. The
received contradiction with a choice of group G shows, that p does not
divide |B|. Thus in view of (5), Op(G) = Op(A) = Ap, where Ap is a
Sylow p-subgroup of A. Since Op(A) ⊆ CG(N) = N , we have N = Ap is
a Sylow subgroup in G.

(8) G is p-supersoluble (it directly follows from Lemma 8).
Final contradiction.
By (2), G/N is supersoluble. By (8), |N | = p. Hence G is supersolu-

ble. The received contradiction finishes the proof of the theorem.
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