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Abstract. We consider Baer rings and Baer semisimple

R-modules which are generalizations of semisimple modules. Sev-

eral characterization theorems of Baer semisimple modules are ob-

tained. In particular, we prove that a ring R is a Baer ring if and

only if R itself, regarded as a regular R-module, is Baer semisimple.

Throughout this paper, R is an associative ring with identity 1 and all
R-modules are unital. Denote the set of idempotents of R by E(R).
Let M be a left R-module and a right S-module. Also, let X be a
subset of M , R or S, respectively. Then we denote the left [resp. right]
annihilator of X by annℓ(X) [resp. annr(X)]. We also write annℓ({m})
[resp. annr({m})] by annℓ(m) [resp. annr(m)].

We call a ring R a Baer ring if the left annihilator of any subset of
R is generated by an idempotent. The properties of Baer rings and its
generalizations have been studied by many authors, for example, see ([3],
[4], [11] and [13]). We observe that Baer rings can be generalized into
other forms, for example, rpp rings, etc. The rpp-rings and their gen-
eralizations have been extensively studied in the literature after Hattori
(see, [2]-[15]). Recently, the authors have introduced the concept of right
perpetual ideals and consequently, reduced pp rings are characterized by
using right perpetual submodules (see [8]).
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Recall that a right ideal I of R is a right perpetual ideal of R if for
every x ∈ I and y ∈ R, annℓ(x) ⊆ annℓ(y) implies that y ∈ I (see [8]).
Clearly, for any X ⊆ R, there exists the smallest right perpetual ideal of
R containing X. We usually call this smallest right perpetual ideal of R
containing X the right perpetual ideal generated by X and is denoted by
R∗(X). If X = {a}, then we write R∗(X) = R∗(a).

The following results are known.

Lemma 1. [8] The following statements hold in a ring R:
(1) If e ∈ E(R), then R∗(e) = eR.
(2) For all X ⊆ R, annr(X) is a right perpetual ideal of R.
(3) A ring R is lpp if and only if for any a ∈ R, R∗(a) is generated

by an idempotent.

Let M be a right R-module. Denote the ring of R-endomorphisms of
M by End(MR). If End(MR) is regarded as a set of left operations, in
notation, Endℓ(MR), then M can be regarded as a left Endℓ(MR)- right
R-module. Inspiring by the definition of right perpetual ideals, we now
define the perpetual submodules.

Definition 1. Let M be a right R-module. Then, we call a (right R-
)submodule N of M a perpetual submodule of M if for all x ∈ N and
y ∈M , annℓ(x) ⊆ annℓ(y) implies y ∈ N .

It is clear that M and (0) are both trivial perpetual submodules
of M . Also, the intersection of perpetual submodules of M is still a
perpetual submodule of M and hence, there exists the smallest perpetual
submodule ofM containingX forX ⊆M . Denote the smallest perpetual
submodule of M containing X by SM∗(X). On the other hand, if R is
regarded as a regular right R-module RR, then the left End(RR)-right
R-module R becomes a regular bimodule End(RR)RR. Thus in this case,
every perpetual submodule of R is a right perpetual ideal of R (same as
in rings).

The following lemma can be easily proved.

Lemma 2. Let M be a right R-module and X ⊆ Endℓ(MR). Then
(1) annr(X) is a perpetual submodule of M .
(2) If ϕ2 = ϕ ∈ Endℓ(MR), then ϕM is a perpetual submodule of M .

The proof of the following lemma is straightforward.

Lemma 3. Let M be a right R-module and x ∈ M . Then SM∗(x) =
annr(annℓ(x)).

The following result lemma is crucial in this paper but the proof can
be found in [1].
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Lemma 4. [1] A R-submodule K of the right R-module M is a di-
rect summand of M if and only if K = eM for some idempotent e ∈
Endℓ(MR).

Now, we formulate the following definition.

Definition 2. Let M be a right R-module. Then
(1) M is called a Baer simple R-module if M 6= 0, and M contains

no perpetual submodules of M other than M itself and (0).
(2) M is called a Baer semismiple R-module if every perpetual

submodule of M is a direct summand of M .

Evidently, a Baer simple R-module is itself Baer semisimple and the
usual semisimple R-module is also Baer semisimple. Indeed, if M is
a semisimple R-module, then every R-submodule N of M is a direct
summand of M . By Lemma 4, N = eM, for some e2 = e ∈ Endℓ(MR).
This implies that every R-submodule of M is a perpetual submodule of
M . Thus M is Baer semisimple.

Proposition 1. Let M be a Baer semisimple R-module and N a perpetual
submodule of M . Then the following statements hold:

(i) N = eM for some idempotent e ∈ Endℓ(MR).
(ii) N is Baer semisimple.

Proof. (i) By our hypothesis, M is Baer semisimple and hence, N is a
direct summand of M . Now, by Lemma 4, N = eM, for some idempotent
e ∈ Endℓ(MR).

(ii) It suffices to verify that any perpetual submodule of N is still
a perpetual submodule of M . In other words, we only need to prove
that the smallest perpetual submodule SM∗

M
(x) of M containing x is the

smallest perpetual submodule SM∗

N
(x) of N containing x, for all x ∈ N .

By Lemma 5, we have N = eM, for some idempotent e ∈ Endℓ(MR).
Denote the left annihilator of K related to the R-module M and related
to the R-module N by annM

ℓ
(K) and annN

ℓ
(K), respectively. Now, by

Lemma 3, SM∗

M
(x) ⊆ N . Let f be an idempotent endomorphism in

Endℓ(MR) such that SM∗

M
(x) = fM . Then, fM ⊆ eM . Thus, for any

x ∈M ,we have
fx = ey = eey = efx (y ∈M),

and thereby, f = ef . Hence, fe is an idempotent endomorphism in
Endℓ(MR) and also

fM = ffM ⊆ fefM ⊆ feM ⊆ fM,

that is, fM = feM . On the other hand, since the restriction fe|eM of
fe(= efe) to eM is an idempotent R-endomorphism which maps eM
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into itself, we have fM = feM = fe(eM) and hence, by Lemma 2, fM
is a perpetual submodule of N . Now, by the minimality of SM∗

N
(x), we

have SM∗

N
(x) ⊆ SM∗

M
(x).

Now let ϕ ∈ annN

ℓ
(x). Then, it can be easily observed that M =

eM ⊕ (1 − e)M . Hence, we can define a mapping

ϕ : M →M ; y 7→ ϕ(ey),

which is a R-homomorphism of M into itself with ϕ|N = ϕ. Clearly,
ϕ ∈ annM

ℓ
(x). If y ∈ SM∗

M
(x), then by Lemma 3, ψ(y) = 0 for all

ψ ∈ annM

ℓ
(x), and furthermore, ϕy = 0, for all ϕ ∈ annN

ℓ
(x). Note

that SM∗

M
(x) ⊆ N and ϕ|N = ϕ. Thus ϕy = 0 implies that ϕy = 0.

This shows that annN

ℓ
(x) ⊆ annN

ℓ
(y). Consequently, we can deduce

y ∈ SM∗

N
(x), by Lemma 3. This leads to SM∗

M
(x) ⊆ SM∗

N
(x). Thus,

SM∗

N
(x) = SM∗

M
(x), as required.

The following is a characterization theorem for the Baer simple R-
modules.

Theorem 1. Let M be a Baer semisimple R-module and N a perpetual
R-submodule of M . Then N is Baer simple R-module if and only if
N = eM, for some primitive idempotent e ∈ Endℓ(MR).

Proof. Suppose that N is a Baer simple R-submodule of M . Then, by
Lemma 4, N = eM for some idempotent e ∈ Endℓ(MR). Now let f2 =
f ∈ Endℓ(MR) such that f ≤ e, i.e., f = ef = fe. Then fM ⊆ eM .
Since N is Baer simple, fM = (0) or fM = eM .

• If fM = (0), then f = 0.

• If fM = eM, then for all x ∈M ,

e(x) = f(y) = ff(y) = fe(x) = f(x) (y ∈M),

and whence e = f .

This shows that e is a primitive idempotent of Endℓ(MR). Conversely, we
assume that N = eM , where e is a primitive idempotent of Endℓ(MR).
Then N is a perpetual submodule of M . Let K be a perpetual submodule
of N . Now, by using the proof of Proposition 1, we can show that K is
still a perpetual submodule of M , and by Lemma 4, K = fM for some
idempotent f ∈ Endℓ(MR). Now, fM ⊆ eM implies that for all x ∈M ,
we have

f(x) = e(y) = ee(y) = ef(x) (y ∈M),

and thereby, f = ef . By routine verification, fe is an idempotent of
Endℓ(MR), and fe ≤ e. But since e is primitive, fe = e or fe = 0.
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• If fe = e, then

fM ⊆ eM = feM ⊆ fM,

that is, K = N .

• If fe = 0, then

K = fM = f(fM) ⊆ f(eM) = (0).

This shows that the submodule N is indeed Baer simple.

We next establish a “Schur Lemma " for Baer simple modules.

Theorem 2. (Schur Lemma) If M is a Baer simple R-module, then
Endℓ(MR) is a domain (such a ring satisfies the cancellative law).

Proof. It suffices to show that any ϕ ∈ Endℓ(MR)\{0} is injective. For
this purpose, we only need to prove that annr(ϕ) = (0). By Lemma
2, annr(ϕ) is a perpetual submodule of M and, since M is Baer sim-
ple, annr(ϕ) = M or annr(ϕ) = (0). But since ϕ 6= 0, it is clear that
annr(ϕ) 6= M . Thus annr(ϕ) = (0) and hence ϕ is injective.

Lemma 5. Any nonzero Baer semisimple R-module M contains a Baer
simple R-module.

Proof. Without loss of generality, we may assume that M is not a Baer
simple R-module. Then we can pick a nonzero element x of M such
that SM∗(x) ⊂ M . By Lemma 4, SM∗(x) = eM for some idempotent
endomorphism e ∈ Endℓ(MR). By Lemma 1, K = (1−e)M is a perpetual
submodule of M not containing x. Now, by Zorn’s lemma, there exists
a perpetual submodule N of M which is maximal with respect to the
property that x /∈ N . Choose a perpetual submodule N ′ of M such that
M = N ⊕N ′ (by Lemma 4). Then, we can finish our proof by showing
that N ′ is Baer simple. Indeed, if N ′′ is a nonzero perpetual submodule
of N ′, then by Proposition 1, N ′ is Baer semisimple and N ′ = N ′′ ⊕N ′′′,
where N ′′′ is a submodule of N ′. Thus N⊕N ′′ is a direct summand of M .
Again by Lemma 4, N ⊕N ′′ = fM for some idempotent f ∈ Endℓ(MR)
and by Lemma 2, N ⊕N ′′ is a perpetual submodule of M containing x
(by the maximality of N) and N⊕N ′′ = M , which implies that N ′′ = N ′,
as desired.

Proposition 2. A Baer semisimple module is the direct sum of a family
of Baer simple submodules.
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Proof. Assume that M is a Baer semisimple module. Denote by A the set
of Baer simple submodules of M . Then, we consider the subset B ⊂ A
with the following conditions:

•
∑

J∈B
J is a direct sum.

•
∑

J∈B
J is a perpetual submodule of M .

By Lemma 5, A 6= ∅. Now, by Zorn’s lemma, we can consider the family
of all the above B’s with respect to the set inclusion. Thus we can pick a
B to be the maximal element. For such a B, we can construct a perpetual
submodule M1 := ⊕J∈BJ . Now, by our hypothesis, M = M1⊕M2, where
M2 is a submodule of M . By Lemma 4, M2 is a perpetual submodule of
M and by Proposition 1, M2 is a Baer semisimple, and hence by Lemma
5 again, M2 = K ⊕ Q, where K is a Baer simple submodule of M2 and
Q a submodule of M2. Thus M1 ⊕K is a direct summand of M and of
course, M1 ⊕ K is a perpetual submodule of M, by Lemma 4. On the
other hand, by using the proof of Proposition 1(ii), we can show that K
is Baer simple in M . This contradicts the maximality of B. Therefore
M = M1 = ⊕J∈BJ .

Theorem 3. Let M be a R-module and P the set of submodules of the
form eM , with e ∈ E(Endℓ(M)). Order the set P by set inclusion. Then
the following statements are equivalent:

(i) M is Baer semisimple.

(ii) The following two conditions hold:

(a) For any x ∈M , SM∗(x) is a direct summand of M .

(b) P forms a complete lattice.

Proof. (i) ⇒ (ii) Since condition (a) holds trivially, we need only to
show that condition (b) holds. Let T ⊆ P . Since every element of P is
a perpetual submodule of M,

⋂
J∈T

J is a perpetual submodule of M .
By our hypothesis,

⋂
J∈T

J is a direct summand of M . By Lemma 4,
we have

⋂
J∈T

J ∈ P . Consider the smallest perpetual submodule K of
M containing J with J ∈ T . It is clear that K is a direct summand of
M , and whence K ∈ P . Thus K can be viewed as supJ∈T (J). Thus, P
indeed forms a complete lattice.

(ii) ⇒ (i) Assume that (ii) holds. Let I be a perpetual submodule of
M . Consider I =

⋃
x∈I

SM∗(x). Then by condition (a), I =
⋃

x∈I
exM,

where ex is the idempotent of Endℓ(M) such that SM∗(x) = exM , for
any x ∈ I. By condition (b), I = eM for some e ∈ E(Endℓ(M)), that
is, I is a direct summand of M . Consequently, M is a Baer semisimple
module.
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Recall that [14, Lemma 2.3] a ring R is Baer if and only if R is lpp
and under set inclusion, the set of all idempotent-generated principal
right ideals forms a complete lattice. By using Lemma 1 and Theorem 3,
we deduce the following characterization theorem of Baer rings.

Theorem 4. A ring R is a Baer ring if and only if R itself, regarded as
a regular R-module, is a Baer semisimple module.
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