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ABSTRACT. We consider Baer rings and Baer semisimple
R-modules which are generalizations of semisimple modules. Sev-
eral characterization theorems of Baer semisimple modules are ob-
tained. In particular, we prove that a ring R is a Baer ring if and
only if R itself, regarded as a regular R-module, is Baer semisimple.

Throughout this paper, R is an associative ring with identity 1 and all
R-modules are unital. Denote the set of idempotents of R by E(R).
Let M be a left R-module and a right S-module. Also, let X be a
subset of M, R or S, respectively. Then we denote the left [resp. right]
annihilator of X by anny(X) [resp. ann,(X)]. We also write anng({m})
[resp. ann,({m})| by anng(m) |[resp. ann,(m)].

We call a ring R a Baer ring if the left annihilator of any subset of
R is generated by an idempotent. The properties of Baer rings and its
generalizations have been studied by many authors, for example, see (|3],
[4], [11] and [13]). We observe that Baer rings can be generalized into
other forms, for example, rpp rings, etc. The rpp-rings and their gen-
eralizations have been extensively studied in the literature after Hattori
(see, [2]-[15]). Recently, the authors have introduced the concept of right
perpetual ideals and consequently, reduced pp rings are characterized by
using right perpetual submodules (see [8]).
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Recall that a right ideal I of R is a right perpetual ideal of R if for
every x € I and y € R, anng(x) C anny(y) implies that y € I (see [8]).
Clearly, for any X C R, there exists the smallest right perpetual ideal of
R containing X. We usually call this smallest right perpetual ideal of R
containing X the right perpetual ideal generated by X and is denoted by
R*(X). If X = {a}, then we write R*(X) = R*(a).

The following results are known.

Lemma 1. [8] The following statements hold in a ring R:

(1) If e € E(R), then R*(e) = eR.

(2) For all X C R, ann,.(X) is a right perpetual ideal of R.

(3) A ring R is lpp if and only if for any a € R, R*(a) is generated
by an idempotent.

Let M be a right R-module. Denote the ring of R-endomorphisms of
M by End(Mg). If End(Mp) is regarded as a set of left operations, in
notation, Endy(Mg), then M can be regarded as a left Endy,(Mg)- right
R-module. Inspiring by the definition of right perpetual ideals, we now
define the perpetual submodules.

Definition 1. Let M be a right R-module. Then, we call a (right R-
)submodule N of M a perpetual submodule of M if for all x € N and
y € M, anng(xz) C anng(y) implies y € N.

It is clear that M and (0) are both trivial perpetual submodules
of M. Also, the intersection of perpetual submodules of M is still a
perpetual submodule of M and hence, there exists the smallest perpetual
submodule of M containing X for X C M. Denote the smallest perpetual
submodule of M containing X by SM*(X). On the other hand, if R is
regarded as a regular right R-module Rp, then the left End(Rpg)-right
R-module R becomes a regular bimodule g,qg,)Rr. Thus in this case,
every perpetual submodule of R is a right perpetual ideal of R (same as
in rings).

The following lemma can be easily proved.

Lemma 2. Let M be a right R-module and X C Endy(Mpg). Then
(1) ann,(X) is a perpetual submodule of M.
(2) If % = p € Endy(MR), then oM is a perpetual submodule of M.

The proof of the following lemma is straightforward.

Lemma 3. Let M be a right R-module and x € M. Then SM*(z) =
ann, (anng(z)).

The following result lemma is crucial in this paper but the proof can
be found in [1].
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Lemma 4. [1|] A R-submodule K of the right R-module M is a di-
rect summand of M if and only if K = eM for some idempotent e €
Endy(Mg).

Now, we formulate the following definition.

Definition 2. Let M be a right R-module. Then

(1) M is called a Baer simple R-module if M # 0, and M contains
no perpetual submodules of M other than M itself and (0).

(2) M is called a Baer semismiple R-module if every perpetual
submodule of M s a direct summand of M.

Evidently, a Baer simple R-module is itself Baer semisimple and the
usual semisimple R-module is also Baer semisimple. Indeed, if M is
a semisimple R-module, then every R-submodule N of M is a direct
summand of M. By Lemma 4, N = eM, for some e = e € Endy(Mg).
This implies that every R-submodule of M is a perpetual submodule of
M. Thus M is Baer semisimple.

Proposition 1. Let M be a Baer semisimple R-module and N a perpetual
submodule of M. Then the following statements hold:

(1) N =eM for some idempotent e € Endy(Mp).

(ii) N is Baer semisimple.

Proof. (i) By our hypothesis, M is Baer semisimple and hence, N is a
direct summand of M. Now, by Lemma 4, N = eM, for some idempotent
€ c E’I’Ldg(M R).

(73) It suffices to verify that any perpetual submodule of N is still
a perpetual submodule of M. In other words, we only need to prove
that the smallest perpetual submodule SM},(x) of M containing x is the
smallest perpetual submodule SM3 (z) of N containing x, for all x € N.
By Lemma 5, we have N = eM, for some idempotent e € End;(Mg).
Denote the left annihilator of K related to the R-module M and related
to the R-module N by ann}! (K) and annl¥ (K), respectively. Now, by
Lemma 3, SM;,(x) € N. Let f be an idempotent endomorphism in
Endy(MRp) such that SMy,(z) = fM. Then, fM C eM. Thus, for any
x € M ,we have

fo=ey=cey=cfr (ye M),

and thereby, f = ef. Hence, fe is an idempotent endomorphism in
Endy(Mpg) and also

M = ffM C fefM C feM C fM,

that is, fM = feM. On the other hand, since the restriction fe|.ps of
fe(= efe) to eM is an idempotent R-endomorphism which maps eM
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into itself, we have fM = feM = fe(eM) and hence, by Lemma 2, fM
is a perpetual submodule of N. Now, by the minimality of SM (), we
have SMy (x) C SM;,(z).

Now let ¢ € anné\] (z). Then, it can be easily observed that M =
eM @ (1 — e)M. Hence, we can define a mapping

p:M— M; y— oey),

which is a R-homomorphism of M into itself with §|y = ¢. Clearly,
? € ann(z). If y € SMj,(z), then by Lemma 3, ¢(y) = 0 for all
Y € annd!(x), and furthermore, py = 0, for all ¢ € ann)¥(z). Note
that SM3;(xz) € N and @|y = ¢. Thus Py = 0 implies that ¢y = 0.
This shows that ann)’ (z) C annl(y). Consequently, we can deduce
y € SMy (x), by Lemma 3. This leads to SMj,(x) € SMy (x). Thus,

SMF(x) = SMy,(x), as required. O

The following is a characterization theorem for the Baer simple R-
modules.

Theorem 1. Let M be a Baer semisimple R-module and N o perpetual
R-submodule of M. Then N is Baer simple R-module if and only if
N = eM, for some primitive idempotent e € Endy(MRg).

Proof. Suppose that N is a Baer simple R-submodule of M. Then, by
Lemma 4, N = eM for some idempotent e € Endy(Mg). Now let f? =
f € Endy(Mpg) such that f < e, ie., f =ef = fe. Then fM C eM.
Since N is Baer simple, fM = (0) or fM =eM.

o If fM = (0), then f = 0.
o If fM =eM, then for all z € M,
e(x) = fly) = ff(y) = fe(z) = f(z) (ye M),

and whence e = f.

This shows that e is a primitive idempotent of End,(Mpg). Conversely, we
assume that N = eM, where e is a primitive idempotent of Endy(Mpg).
Then N is a perpetual submodule of M. Let K be a perpetual submodule
of N. Now, by using the proof of Proposition 1, we can show that K is
still a perpetual submodule of M, and by Lemma 4, K = fM for some
idempotent f € Endy(Mpg). Now, fM C eM implies that for all z € M,
we have

f(z) =ely) =ee(y) =ef(x) (y €M),
and thereby, f = ef. By routine verification, fe is an idempotent of
Endy(Mpg), and fe < e. But since e is primitive, fe = e or fe = 0.
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o If fe = e, then
fMCeM = feM C fM,

that is, K = N.

e If fe =0, then

K =fM = f(fM) C f(eM) = (0).

This shows that the submodule NN is indeed Baer simple. ]

We next establish a “Schur Lemma " for Baer simple modules.

Theorem 2. (Schur Lemma) If M is a Baer simple R-module, then
Endy(Mg) is a domain (such a ring satisfies the cancellative law).

Proof. 1t suffices to show that any ¢ € Endy(Mpg)\{0} is injective. For
this purpose, we only need to prove that ann,(¢) = (0). By Lemma
2, ann,(p) is a perpetual submodule of M and, since M is Baer sim-
ple, ann,(¢) = M or ann,(¢) = (0). But since ¢ # 0, it is clear that
ann, (@) # M. Thus ann,(¢) = (0) and hence ¢ is injective. O

Lemma 5. Any nonzero Baer semisimple R-module M contains a Baer
simple R-module.

Proof. Without loss of generality, we may assume that M is not a Baer
simple R-module. Then we can pick a nonzero element x of M such
that SM*(z) C M. By Lemma 4, SM*(z) = eM for some idempotent
endomorphism e € Endy(Mpg). By Lemma 1, K = (1—e)M is a perpetual
submodule of M not containing x. Now, by Zorn’s lemma, there exists
a perpetual submodule N of M which is maximal with respect to the
property that = ¢ N. Choose a perpetual submodule N of M such that
M = N @& N’ (by Lemma 4). Then, we can finish our proof by showing
that N’ is Baer simple. Indeed, if N” is a nonzero perpetual submodule
of N’, then by Proposition 1, N’ is Baer semisimple and N’ = N" @& N,
where N is a submodule of N’. Thus N@® N" is a direct summand of M.
Again by Lemma 4, N @ N” = fM for some idempotent f € Endy(Mg)
and by Lemma 2, N @ N” is a perpetual submodule of M containing x
(by the maximality of N) and N@N” = M, which implies that N = N,
as desired. O

Proposition 2. A Baer semisimple module is the direct sum of a family
of Baer simple submodules.



X. J. Guo, K. P. SHUM 47

Proof. Assume that M is a Baer semisimple module. Denote by A the set
of Baer simple submodules of M. Then, we consider the subset B C A
with the following conditions:

® > ;cpJ is adirect sum.
® > ;cpJ is a perpetual submodule of M.

By Lemma 5, A # (). Now, by Zorn’s lemma, we can consider the family
of all the above B’s with respect to the set inclusion. Thus we can pick a
B to be the maximal element. For such a B, we can construct a perpetual
submodule M; := @ jcpJ. Now, by our hypothesis, M = M;® M,, where
Ms is a submodule of M. By Lemma 4, Mj is a perpetual submodule of
M and by Proposition 1, M> is a Baer semisimple, and hence by Lemma
5 again, My = K ® @, where K is a Baer simple submodule of My and
Q@ a submodule of Ms. Thus M; @ K is a direct summand of M and of
course, M1 @ K is a perpetual submodule of M, by Lemma 4. On the
other hand, by using the proof of Proposition 1(ii), we can show that K
is Baer simple in M. This contradicts the maximality of B. Therefore
M = M; = ®jepd. ]

Theorem 3. Let M be a R-module and P the set of submodules of the
form eM, with e € E(End¢(M)). Order the set P by set inclusion. Then
the following statements are equivalent:

(i) M is Baer semisimple.
(ii) The following two conditions hold:
(a) For any x € M, SM*(z) is a direct summand of M.
(

b) P forms a complete lattice.

Proof. (i) = (ii) Since condition (a) holds trivially, we need only to
show that condition (b) holds. Let 7" C P. Since every element of P is
a perpetual submodule of M, ;. J is a perpetual submodule of M.
By our hypothesis, ();cpJ is a direct summand of M. By Lemma 4,
we have (;opJ € P. Consider the smallest perpetual submodule K of
M containing J with J € T. It is clear that K is a direct summand of
M, and whence K € P. Thus K can be viewed as supjer(J). Thus, P
indeed forms a complete lattice.

(7i) = (i) Assume that (i7) holds. Let I be a perpetual submodule of
M. Consider I = J,.; SM*(x). Then by condition (a), I = J,c; €M,
where e, is the idempotent of Endy(M) such that SM*(z) = e, M, for
any € I. By condition (b), I = eM for some e € E(Endy(M)), that
is, I is a direct summand of M. Consequently, M is a Baer semisimple
module. O
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Recall that [14, Lemma 2.3] a ring R is Baer if and only if R is lpp

and under set inclusion, the set of all idempotent-generated principal
right ideals forms a complete lattice. By using Lemma 1 and Theorem 3,
we deduce the following characterization theorem of Baer rings.

Theorem 4. A ring R is a Baer ring if and only if R itself, regarded as
a reqular R-module, is a Baer semisimple module.

(1]

2]
3l
(4]
]
(6]
7l

(8]

19
[10]
[11]
12]
113
|14

[15]

References

F.W. Anderson and K.R. Fuller, Rings and categories of modules (2nd edition),
Graduate Texts in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York,
2004.

E.P. Armendariz, A note on extensions of Baer and PP rings, J. Austral. Math.
Soc., Vol.18, 1974, pp.470-473.

G.F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hungary,
Vol.59, N.3-4, 1992, pp.319-326.

G.F. Birkenmeier, Baer rings and quasicontinuous rings having a MDSN, Pacific
J. Math., Vol.97, N.2, 1981, pp.283-292.

S. Endo, Note on P.P. rings (a supplement to Hattori’s paper), Nagoga Math. J.,
Vol.17, 1960, pp.167-170.

J.A. Fraser and W.K. Nicholson, Reduced pp rings, Math. Japonica, Vol.34, 1989,
pp.715-725.

X.J. Guo and K.P. Shum, l.p.p.-rings which are left *-semisimple, International
Mathematical Forum, Vol.2, N.56, 2007, pp.2787-2798.

X.J. Guo and K.P. Shum, Reduced p.p.-rings without identity, International Jour-
nal of Mathematics and Mathematical Science, Vol.2006, 2006, Art. ID 93890, 7
pp.

X.J. Guo and K.P. Shum, On p.p. rings which are reduced, International Journal
of Mathematics and Mathematical Science, Vol.2006, 2006, Art. ID 34694, 5 pp.

Y. Hirano, M. Hongan and M. Ohori, On right PP rings, Math. J. Okayama
Univ., Vol.24, 1982, pp.99-109.

C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and P.P.-rings, J.
Pure and Appl. Algebra, Vol.151, 2000, pp.215-226.

S. JOndrup, P.P. rings and finitely generated flat ideals, Proc. Amer. Math. Soc.,
Vol.28, 1971, pp.431-435.

Z.K. Liu and J. Ahsan, P.P.-rings of generalized power series, Acta Math. Sinica
(new ser.), Vol.16, 2000, pp.573-578.

S. Maeda, On a ring whose principal right ideals generated by idempotents, J. Sci.
Hiroshima Univ. (Ser. A), Vol.24, 1960, pp.509-525.

L.W. Small, Semiherditary rings, Bull. Amer. Math. Soc., Vol.73, 1967, pp.656-
658.



X. J. Guo, K. P. SHUM 49

CONTACT INFORMATION

Xiaojiang Guo Department of Mathematics, Jiangxi Nor-
mal University, Nanchang, Jiangxi 330022,
P.R. China
E-Mail: xjguo@jxnu.edu.cn

K. P. Shum Department of Mathematics, The Univer-
sity of Hong Kong, Pokfulam Road, Hong
Kong, P.R. China (SAR)
E-Masl: kpshum@maths.hku.hk

Received by the editors: 01.05.2008
and in final form 01.05.2008.



