Characterization of regular convolutions

Sankar Sagi

Communicated by V. V. Kirichenko

Abstract. A convolution is a mapping \mathcal{C} of the set Z^{+}of positive integers into the set $\mathscr{P}\left(Z^{+}\right)$of all subsets of Z^{+}such that, for any $n \in Z^{+}$, each member of $\mathcal{C}(n)$ is a divisor of n. If $\mathcal{D}(n)$ is the set of all divisors of n, for any n, then \mathcal{D} is called the Dirichlet's convolution [2]. If $\mathcal{U}(n)$ is the set of all Unitary(square free) divisors of n, for any n, then \mathcal{U} is called unitary(square free) convolution. Corresponding to any general convolution \mathcal{C}, we can define a binary relation $\leqslant_{\mathcal{C}}$ on Z^{+}by ' $m \leqslant_{\mathcal{C}} n$ if and only if $m \in \mathcal{C}(n)$ '. In this paper, we present a characterization of regular convolution.

Introduction

A convolution is a mapping \mathcal{C} of the set Z^{+}of positive integers into the set $\mathscr{P}\left(Z^{+}\right)$of subsets of Z^{+}such that, for any $n \in Z^{+}, \mathcal{C}(n)$ is a nonempty set of divisors of n. If $\mathcal{C}(n)$ is the set of all divisors of n, for each $n \in Z^{+}$, then \mathcal{C} is the classical Dirichlet convolution [2]. If

$$
\mathcal{C}(n)=\left\{d / d \mid n \text { and }\left(d, \frac{n}{d}\right)=1\right\}
$$

then \mathcal{C} is the Unitary convolution [1]. As another example if

$$
\mathcal{C}(n)=\left\{d / d \mid n \text { and } m^{k} \text { does not divide } d \text { for any } m \in Z^{+}\right\}
$$

then \mathcal{C} is the k-free convolution. Corresponding to any convolution \mathcal{C}, we can define a binary relation $\leqslant_{\mathcal{C}}$ in a natural way by

$$
m \leqslant_{\mathcal{C}} n \quad \text { if and only if } \quad m \in \mathcal{C}(n)
$$

[^0]$\leqslant_{\mathcal{C}}$ is a partial order on Z^{+}and is called partial order induced by the convolution \mathcal{C} [11], [12]. W. Narkiewicz [2] first proposed the concept of a regular convolution, and in this paper we present a lattice theoretic characterization of regular convolution and prove that the Dirichlet's convolution is the unique regular convolution that induces a lattice structure on $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$.

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leqslant on X which is reflexive $(a \leqslant a)$, transitive $(a \leqslant b, b \leqslant c \Longrightarrow$ $a \leqslant c)$ and antisymmetric ($a \leqslant b, b \leqslant a \Longrightarrow a=b$) and that a pair (X, \leqslant) is called a partially ordered set (poset) if X is a non-empty set and \leqslant is a partial order on X.

For any $A \subseteq X$ and $x \in X, x$ is called a lower(upper) bound of A if $x \leqslant a$ (respectively $a \leqslant x$) for all $a \in A$. We have the usual notations of the greatest lower bound (glb) and least upper bound (lub) of A in X. If A is a finite subset $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, the glb of A (lub of A) is denoted by $a_{1} \wedge a_{2} \wedge \cdots \wedge a_{n}$ or $\bigwedge_{i=1}^{n} a_{i}\left(\right.$ respectively by $a_{1} \vee a_{2} \vee \cdots \vee a_{n}$ or $\left.\bigvee_{i=1}^{n} a_{i}\right)$.

A partially ordered set (X, \leqslant) is called a meet semi lattice if $a \wedge b$ $(=\operatorname{glb}\{a, b\})$ exists for all a and $b \in X .(X, \leqslant)$ is called a join semi lattice if $a \vee b(=\operatorname{lub}\{a, b\})$ exists for all a and $b \in X$. A poset (X, \leqslant) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee), where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge(a \vee b)=a=a \vee(a \wedge b)$ for all $a, b \in X$; in this case the partial order \leqslant on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a, b\}$. The algebraic operations \wedge and \vee and the partial order \leqslant are related by

$$
a=a \wedge b \Longleftrightarrow a \leqslant b \Longleftrightarrow a \vee b=b
$$

Throughout the paper Z^{+}, N, and P denote the set of positive integers, the set of non-negative integers, and set of prime numbers respectively.

Theorem 1 ([12]). Let $\leqslant_{\mathcal{C}}$ be the binary relation induced by convolution \mathcal{C}. Then
(1) $\leqslant_{\mathcal{C}}$ is reflexive if and only if $n \in \mathcal{C}(n)$.
(2) $\leqslant_{\mathcal{C}}$ is transitive if and only, for any $n \in Z^{+}, \bigcup_{m \in \mathcal{C}(n)} \mathcal{C}(m) \subseteq \mathcal{C}(n)$.
$(3) \leqslant_{C}$ is always antisymmetric.

Corollary 1 ([12]). The binary relation $\leqslant_{\mathcal{C}}$ induced by convolution \mathcal{C} on Z^{+}is a partial order if and only if $n \in \mathcal{C}(n)$ and $\bigcup_{m \in \mathcal{C}(n)} \mathcal{C}(m) \subseteq \mathcal{C}(n)$ for all $n \in Z^{+}$.

Definition 1 ([12]). Let X and Y be non-empty sets and R and S be binary relations on X and Y respectively. A bijection $f: X \rightarrow Y$ is said to be a relation isomorphism of (X, R) into (Y, S) if, for any elements a and b in X,
$a R b$ in $X \quad$ if and only if $\quad f(a) S f(b)$ in Y.
Theorem 2 ([12]). Let $\theta: Z^{+} \rightarrow \sum_{P} N$ be the bijection defined by

$$
\theta(n)(p)=\text { the largest } a \text { in } N \text { such that } p^{a} \text { divides } n
$$

Then a convolution \mathcal{C} is multiplicative if and only if θ is a relation isomorphism of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ onto $\left(\sum_{P} N, \leqslant_{\mathcal{C}}\right)$.

Theorem 3 ([9], [10]). For any multiplicative convolution $\mathcal{C},\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ is a lattice if and only if $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is a lattice for each prime p.

Now we state the following theorems on co-maximality and prime filters.

Theorem $4([5])$. Let (S, \wedge) be any meet semi lattice with smallest element 0 satisfying the descending chain condition. Also, suppose that every proper filter of S is prime. Then the following are equivalent to each other.
(1) For any x and $y \in S, x \| y \Longrightarrow x \wedge y=0$.
(2) $S-\{0\}$ is a disjoint union of maximal chains.
(3) Any two incomparable filters of S are co-maximal.

Theorem 5 ([5]). Let \mathcal{C} be any multiplicative convolution such that $\left(Z^{+}, \leqslant_{C}\right)$ is a meet semi lattice. Then any two incomparable prime filters of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ are co-maximal if and only if any two incomparable prime filters of $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ are co-maximal, for each $p \in P$.

Theorem 6 ([3]). Let p be a prime number. Then every proper filter in $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is prime if and only if $\left[p^{a}\right)$ is a prime filter in $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ for all $n>0$.

Theorem $7([3])$. A filter F of $\left(Z^{+}, \leqslant_{C}\right)$ is prime if and only if there exists unique $p \in P$ such that F^{p} is a prime filter of $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ and $F^{q}=N$ for all $q \neq p$ in P and, in this case,

$$
F=\left\{n \in Z^{+} \mid \theta(n)(p) \in F^{p}\right\}
$$

Theorem $8([3])$. Let F be a filter of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$. Then $F=\left[p^{a}\right)$ for some prime number p and a positive integer a which is join-irreducible in $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$.

Definition 2. Any complex valued function defined on the set Z^{+}of positive integers is called an arithmetical function. The set of all arithmetical functions is denoted by \mathscr{A}.

The following is a routine verification using the properties of addition and multiplication of complex numbers.

Theorem 9. For any arithmetical functions f and g, define

$$
(f+g)(n)=f(n)+g(n) \quad \text { and } \quad(f \cdot g)(n)=f(n) g(n)
$$

for any $n \in Z^{+}$.
Then + and \cdot are binary operations on the set \mathscr{A} of arithmetical functions and $(\mathscr{A},+, \cdot)$ is a commutative ring with unity in which the constant map $\overline{0}$ and $\overline{1}$ are the zero element and unity element respectively.

Definition 3. Let \mathcal{C} be a convolution and f and g arithmetical functions and \mathscr{C} be the field of complex numbers. Define $f \mathcal{C} g: Z^{+} \rightarrow \mathscr{C}$ by

$$
(f \mathcal{C} g)(n)=\sum_{d \in \mathcal{C}(n)} f(d) g\left(\frac{n}{d}\right)
$$

We can consider \mathcal{C} as a binary operation, as defined above, on the set \mathscr{A} of arithmetical functions. W.Narkiewicz proposed the following definition.

Definition 4 ([2]). A convolution \mathcal{C} is called regular if the following are satisfied.
(1) $(\mathscr{A},+, \mathcal{C})$ is a commutative ring with unity, where + is the point-wise addition. This ring will be denoted by $\mathscr{A}_{\mathcal{C}}$.
(2) If f and g are multiplicative arithmetical functions, then so is the product $f \mathcal{C} g$ (f is said to be multiplicative if $f(m n)=f(m) f(n)$.)
(3) The constant function $\overline{1}$, defined by $\overline{1}(n)=1$ for all $n \in Z^{+}$, is a unit in the ring $\mathscr{A}_{\mathcal{C}}$.
It can be easily verified that the arithmetical function e, defined by

$$
e(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

is the unity (the identity element with respect to the binary operation \mathcal{C}).
W. Narkiewicz proved the following two theorems.

Theorem 10 ([2]). A convolution \mathcal{C} is regular if and only if the following conditions are satisfied for any m, n and $d \in Z^{+}$.
(1) \mathcal{C} is multiplicative convolution; i.e., $(m, n)=1 \Rightarrow \mathcal{C}(m n)=\mathcal{C}(m) \mathcal{C}(n)$.
(2) $d \in \mathcal{C}(m)$ and $m \in \mathcal{C}(n) \Leftrightarrow d \in \mathcal{C}(n)$ and $\frac{m}{d} \in \mathcal{C}\left(\frac{n}{d}\right)$.
(3) $d \in \mathcal{C}(n) \Rightarrow \frac{n}{d} \in \mathcal{C}(n)$.
(4) $1 \in \mathcal{C}(n)$ and $n \in \mathcal{C}(n)$.
(5) For any prime number p and any $a \in Z^{+}, \mathcal{C}\left(p^{a}\right)=\left\{1, p^{t}, p^{2 t}, \cdots, p^{r t}\right\}$, $r t=a$ for some positive integer t and $p^{t} \in \mathcal{C}\left(p^{2 t}\right), p^{2 t} \in \mathcal{C}\left(p^{3 t}\right), \ldots$, $p^{(r-1) t} \in \mathcal{C}\left(p^{a}\right)$.

Theorem 11 ([2]). Let \mathscr{K} be the class of all decompositions of the set of non-negative integers into arithmetic progressions (finite or infinite) each containing 0 and no two progressions belonging to same decomposition have a positive integer in common. Let us associate with each $p \in P$, a member π_{p} of \mathscr{K}. For any $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$, where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes and $a_{1}, a_{2}, \cdots, a_{r} \in N$, define

$$
\begin{gathered}
\mathcal{C}(n)=\left\{p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}} \mid b_{i} \leqslant a_{i}, \text { and } b_{i} \text { and } a_{i}\right. \text { belong to the same } \\
\text { progression in } \left.\pi_{p_{i}} \cdot\right\}
\end{gathered}
$$

Then \mathcal{C} is a regular convolution and, conversely every regular convolution can be obtained in this way.

From the above theorems, it is clear that any regular convolution \mathcal{C} is uniquely determined by a sequence $\left\{\pi_{p}\right\}_{p \in P}$ of decompositions of N into arithmetical progressions (finite or infinite) and we denote this by expression $\mathcal{C} \sim\left\{\pi_{p}\right\}_{p \in P}$.
Definition 5. For any two elements a and b in a partially ordered set $(X, \leqslant), a$ is said to be covered by b (b is a cover of a) if $a<b$ and there is no $c \in X$ such that $a<c<b$. This is denoted by $a-<b$.

We note that $\theta: Z^{+} \rightarrow \sum_{P} N$ defined by

$$
\begin{gathered}
\theta(a)(p)=\text { the largest } n \text { in } N \text { such that } p^{n} \text { divides } a, \\
\text { for any } a \in Z^{+} \text {and } p \in P
\end{gathered}
$$

is a bijection.

2. Main results

In the following two theorems, we prove that any regular convolution \mathcal{C} gives a meet semi lattice structure on $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ and the convolution \mathcal{C} is
completely characterized by certain lattice theoretic properties of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$. In particular Dirichlet's convolution is the only regular convolution \mathcal{C} which gives a lattice structure on $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$.

Theorem 12. Let \mathcal{C} be a convolution and $\leqslant c^{c}$ the relation on Z^{+}induced by \mathcal{C}. Then \mathcal{C} is a regular convolution if and only if the following properties are satisfied.
(1) $\theta:\left(Z^{+}, \leqslant_{\mathcal{C}}\right) \rightarrow \sum_{p \in P}\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is a relation isomorphism.
(2) $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ is a meet semi lattice.
(3) Any two incomparable prime filters of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ are co-maximal.
(4) F is a prime filter of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ if and only if $F=\left[p^{a}\right)$ for some $p \in P$ and $a \in Z^{+}$.
(5) For any m and $n \in Z^{+}, m-<_{\mathcal{C}} n \Longrightarrow 1-<_{\mathcal{C}} \frac{n}{m} \leqslant_{\mathcal{C}} n$.

Proof. Suppose that \mathcal{C} is a regular convolution. By Theorem 11, $\mathcal{C} \sim\left\{\pi_{p}\right\}_{p \in P}$, where each π_{p} is a decomposition of N into arithmetic progressions (finite or infinite) in which each progression contains 0 and no positive integer belongs to two distinct progressions. For any $a, b \in N$ and $p \in P$, let us write for convenience,

$$
\langle a<b\rangle \in \pi_{p} \quad \Longleftrightarrow \quad a \text { and } b \text { belong to the same progression of } \pi_{p}
$$

Since \mathcal{C} is regular, \mathcal{C} satisfies properties (1)-(5) of Theorem 10. From (2) and (4) of Theorem 10 and Corollary 1 , it follows that $\leqslant_{\mathcal{C}}$ is a partial order on Z^{+}. Since \mathcal{C} is multiplicative, it follows from Theorem 2 that $\theta: Z^{+} \rightarrow \sum_{P} N$ is an order isomorphism. Therefore the property (1) is satisfied. For simplicity and convenience, we shall write \bar{n} for $\theta(n)$. For each $n \in Z^{+}, \bar{n}$ is the element in the direct sum $\sum_{P} N$ defined by

$$
\bar{n}(p)=\text { the largest } a \text { in } N \text { such that } p^{a} \text { divides } n .
$$

$n \mapsto \bar{n}$ is an order isomorphism of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ onto $\sum_{p \in P}\left(N, \leqslant_{\mathcal{C}}^{p}\right)$, where for each $p \in P, \leqslant_{\mathcal{C}}^{p}$ is the partial order on N defined by

$$
a \leqslant_{\mathcal{C}}^{p} b \quad \text { if and only if } \quad p^{a} \in \mathcal{C}\left(p^{b}\right)
$$

For any m and $n \in Z^{+}$, let $m \wedge n$ be the element in Z^{+}defined by

$$
\overline{m \wedge n}(p)= \begin{cases}0 & \text { if }\langle\bar{m}(p), \bar{n}(p)\rangle \notin \pi_{p} \\ \min \{\bar{m}(p), \bar{n}(p)\} & \text { otherwise }\end{cases}
$$

for all $p \in P$. If $\langle\bar{m}(p), \bar{n}(p)\rangle \in \pi_{p}$, then

$$
\bar{m}(p) \leqslant_{\mathcal{C}}^{p} \bar{n}(p) \quad \text { or } \quad \bar{n}(p) \leqslant_{\mathcal{C}}^{p} \bar{m}(p)
$$

and hence $\overline{m \wedge n}(p) \leqslant \bar{m}(p)$ and $\bar{n}(p)$ for all $p \in P$. Therefore $m \wedge n$ is a lower bound of m and n in $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$. Let k be any other lower bound of m and n. For any $p \in P$, if $\langle\bar{m}(p), \bar{n}(p)\rangle \in \pi_{p}$, then, since

$$
\overline{k(p)} \leqslant_{\mathcal{C}}^{p} \bar{m}(p) \quad \text { and } \quad \overline{k(p)} \leqslant_{\mathcal{C}}^{p} \bar{n}(p)
$$

we have

$$
\overline{k(p)} \leqslant_{\mathcal{C}}^{p} \overline{m \wedge n}(p) .
$$

If $\langle\bar{m}(p), \bar{n}(p)\rangle \notin \pi_{p}$, then

$$
\overline{k(p)}=0=\overline{m \wedge n}(p)
$$

Thus $k \leqslant m \wedge n$. Therefore, $m \wedge n$ is the greatest lower bound of m and n in $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$. Thus $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ is a meet semi lattice and hence the property (2) is satisfied.

To prove (3), by Theorem 5, it is enough if we prove that any two incomparable prime filters if $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ are co-maximal for all $p \in P$. For any positive a and b, if a and b are incomparable in $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$, then $\langle a, b\rangle \notin \pi_{p}$ and hence a and b have no upper bound and therefore $a \vee b$ does not exist in $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$. Also, each progression in π_{p} is a maximal chain in $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ and, for any a and $b \in N, a$ and b are comparable if and only if $\langle a, b\rangle \in \pi_{p}$.

Therefore $\left(Z^{+}, \leqslant_{\mathcal{C}}^{p}\right)$ is a disjoint union of maximal chains. Thus, by Theorem 4, any two incomparable prime filters of ($N, \leqslant_{\mathcal{C}}^{p}$) are co-maximal. Therefore, by Theorem 5, any two incomparable prime filters of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ are co-maximal. This proves (3).
(4) follows from Theorem 6 and Theorem 7 and from the discussion made above.

To prove (5), let m and $n \in Z^{+}$such that $m-<_{\mathcal{C}} n$. By Theorem 10 (3), we get that $\frac{m}{n} \leqslant_{c} n$. Let us write

$$
n=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}} \quad \text { and } \quad m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes and each $b_{i}>0$ such that $0 \leqslant_{\mathcal{C}}^{p_{i}}$ $a_{i} \leqslant_{\mathcal{C}}^{p_{i}} b_{i}$. Since $m \neq n$, there exists i such that $a_{i} \leqslant_{\mathcal{C}}^{p_{i}} b_{i}$. Now, if $a_{j} \leqslant_{\mathcal{C}}^{p_{i}} b_{j}$ for some $j \neq i$, then the element $k=p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{r}^{c_{r}}$, where

$$
c_{s}= \begin{cases}a_{s} & \text { if } s \neq i \\ b_{s} & \text { if } s=i\end{cases}
$$

will be between m and n (that is, $m<_{\mathcal{C}} k<_{\mathcal{C}} n$) which is a contradiction.
Therefore $a_{j}=b_{j}$ for all $j \neq i$ and hence $\frac{n}{m}=p_{i}^{a_{i}-b_{i}}$.

Since $\left\langle a_{i}, b_{i}\right\rangle \in p i_{p_{i}}$, there exists $t>0$ such that

$$
b_{i}=u t \quad \text { and } \quad a_{i}=v t
$$

for some u and v with $v<u$. Also, $v t,(v+1) t, \cdots$, ut are all in the same progression. Since $m-<_{\mathcal{C}} n$, it follows that $u=v+1$ and hence $\frac{n}{m}=p_{i}^{t}$. Since $0-<t$ in $\left(N, \leqslant_{\mathcal{C}}^{p_{i}}\right)$, we get that

$$
1-<_{\mathcal{C}} p^{t}=\frac{n}{m} \leqslant_{\mathcal{C}} n
$$

This proves (5).
Conversely suppose that \mathcal{C} satisfies properties (1)-(5), since $\left[p^{a}\right)$ is prime filter of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ for all $p \in P$ and $a \in Z^{+}$, by Theorem 6 , every proper filter of $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is prime, for any $p \in P$. Since any two incomparable prime filters of $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ are co-maximal, by Theorem 8 and Theorem 5, we get that $\left(Z^{+}, \leqslant_{\mathcal{C}}^{p}\right)$ is a disjoint union of maximal chains.

Fix $p \in P$. Then

$$
Z^{+}=\coprod_{i \in I} Y_{i}
$$

where each Y_{i} is a maximal chain in $\left(Z^{+}, \leqslant_{\mathcal{C}}^{p}\right)$ such that, for any $i \neq j \in I$, $Y_{i} \cap Y_{j}=\phi$ and each element of Y_{i} is incomparable with each element of Y_{j}. Now, we shall prove that each Y_{i} is an arithmetical progression (finite or infinite).

Let $i \in I$. Since N is countable, Y_{i} is at most countable. Also, since $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ satisfies the descending chain condition, we can express

$$
Y_{i}=\left\{a_{1}-<_{\mathcal{C}} a_{2}-<_{\mathcal{C}} a_{3}-<_{\ldots}\right\}
$$

By using induction on r, we shall prove that $a_{r}=r a_{1}$ for all r.
Clearly, this is true for $r=1$. Assume that $r>1$ and $a_{s}=s a_{1}$ for all $1 \leqslant s<r$. Since $(r-1) a_{1}=a_{r-1}-<a_{r}$ in $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$, we have

$$
p^{a_{r-1}}-<_{\mathcal{C}} p^{a_{r}} \text { in }\left(Z^{+}, \leqslant_{\mathcal{C}}\right)
$$

and hence, by condition (5),

$$
1-<_{\mathcal{C}} p^{a_{r}-a_{r-1}} \leqslant_{\mathcal{C}} p^{a_{r}}
$$

Therefore, $0 \neq a_{r}-a_{r-1} \leqslant_{\mathcal{C}}^{p} a_{r}$ and hence $a_{r}-a_{r-1} \in Y_{i}\left(\right.$ since $\left.a_{r} \in Y_{i}\right)$.
Also, since $0-<a_{r}-a_{r-1}$ in $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$, we have $a_{r}-a_{r-1}=a_{1}$ and therefore $a_{r}=a_{r-1}+a_{1}=(r-1) a_{1}+a_{1}=r a_{1}$. Hence, for any prime p
and $a \in Z^{+}$,

$$
\mathcal{C}\left(p^{a}\right)=\left\{1, p^{t}, p^{2 t}, \cdots, p^{s t}\right\} \quad \text { and } \quad \text { st }=a
$$

for some positive integers t and s and

$$
p^{t} \in \mathcal{C}\left(p^{2 t}\right), p^{2 t} \in \mathcal{C}\left(p^{3 t}\right), \cdots, p^{(s-1) t} \in \mathcal{C}\left(p^{a}\right)
$$

The other conditions given in Theorem 10 are clearly satisfied. Thus, by Theorem $10, \mathcal{C}$ is a regular convolution.

Theorem 13. Let \mathcal{C} be a convolution, then the following conditions are equivalent to each other.
(1) $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ is a lattice.
(2) $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is a lattice for each $p \in P$.
(3) $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is a totally ordered set for each $p \in P$.
(4) For any $p \in P$ and a and $b \in N, a \leqslant_{\mathcal{C}}^{p} b \Longleftrightarrow a \leqslant b$.
(5) For any n and $m \in Z^{+}, n \leqslant_{c} m \Longleftrightarrow n$ divides m.
(6) $\mathcal{C}(n)=$ The set of positive divisors of n.

Proof. Since \mathcal{C} is regular, $\mathcal{C} \sim\left\{\pi_{p}\right\}_{p \in P}$.
$(1) \Longrightarrow(2)$ follows from Theorem 3.
$(2) \Longrightarrow(3)$ Let $p \in P$. Suppose that $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is a lattice. If π_{p} contains two progressions, then choose an element a in one progression S and b in another progression T in π_{p}. Since $a \leqslant_{\mathcal{C}}^{p} a \vee b$ and $b \leqslant_{\mathcal{C}}^{p} a \vee b, a \vee b \in S \cap T$. A contradiction.

Therefore π_{p} contains only one progression, which must be

$$
N=\left\{0<_{\mathcal{C}}^{p} 1<_{\mathcal{C}}^{p} 2<_{\mathcal{C}}^{p} 3<_{\mathcal{C}}^{p} \ldots\right\} .
$$

Thus $\left(N, \leqslant_{\mathcal{C}}^{p}\right)$ is a totally ordered set.
$(3) \Longrightarrow(4)$ It is trivial.
(4) \Longrightarrow (5) Let m and $n \in Z^{+}$and we write $n=\prod_{i=1}^{r} P_{i}^{a_{i}}$ and $m=\prod_{i=1}^{r} P_{i}^{b_{i}}$, where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes and $a_{i}, b_{i} \in N$. Now,

$$
\begin{aligned}
n \text { divides } m & \Longleftrightarrow a_{i} \leqslant b_{i} \text { for all } 1 \leqslant i \leqslant r \\
& \Longleftrightarrow a_{i} \leqslant{ }_{\mathcal{C}}^{p} b_{i} \text { for all } 1 \leqslant i \leqslant r \\
& \Longleftrightarrow n \leqslant \mathcal{C} m .
\end{aligned}
$$

(5) $\Longrightarrow(6)$ For any $n \in Z^{+}$,

$$
\mathcal{C}(n)=\left\{m \in Z^{+} \mid m \leqslant_{\mathcal{C}} n\right\}=\left\{m \in Z^{+} \mid m \text { divides } n\right\}=\mathcal{D}(n)
$$

$(6) \Longrightarrow(1)$ If $\mathcal{C}=\mathcal{D}$, then $\leqslant_{\mathcal{C}}=\leqslant_{\mathcal{D}}$ and, for any $n, m \in Z^{+}$,

$$
n \wedge m=\operatorname{gcd}\{n, m\}
$$

and $n \vee m=\operatorname{lcm}\{n, m\}$ in $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$.
The above Theorem implies that the Dirichlet's convolution \mathcal{D} is the only regular convolution for which $\left(Z^{+}, \leqslant_{\mathcal{C}}\right)$ is a lattice.

References

[1] Cohen, E. Arithmetical functions associated with the unitary divisors of an integer. Math.Z.,74,66-80. 1960.
[2] Narkiewicz, W. On a class of arithmetical convolutions. Collow.Math.,10,8194.1963.
[3] Sankar Sagi. Characterization of Prime Filters in $\left(\mathcal{Z}^{+}, \leqslant_{C}\right)$. International Journal of Pure and Engineering Mathematics, Vol.3, No III, 2015.
[4] Sankar Sagi. Characterization of Prime Ideals in $\left(\mathcal{Z}^{+}, \leqslant \mathcal{D}\right)$. European Journal of Pure and Applied Mathematics,Vol. 8, No.1(15-25)2015.
[5] Sankar Sagi. Co-maximal Filters in $\left(\mathcal{Z}^{+}, \leqslant_{C}\right)$. International Journal of Mathematics and it's Applications,Vol.3, Issue 4-C, 2015.
[6] Sankar Sagi. Filters in $\left(\mathcal{Z}^{+}, \leqslant \mathcal{C}\right)$ and $\left(\mathcal{N}, \leqslant_{\mathcal{C}}^{p}\right)$. Journal of Algebra, Number Theory: Advances and Applications, Vol 11, No. 2 (93-101)2014.
[7] Sankar Sagi. Ideals in $\left(\mathcal{Z}^{+}, \leqslant \mathcal{D}\right)$. Algeba and Discrete Mathematics, Vol 16(2013), Number 1, pp 107-115.
[8] Sankar Sagi. Irreducible elements in $\left(\mathcal{Z}^{+}, \leqslant_{C}\right)$. International Journal of Mathematics and it's Applications, Vol.3, Issue 4-C, 2015.
[9] Sankar Sagi. Lattice Structures on \mathcal{Z}^{+}Induced by Convolutions. European Journal of Pure and Applied Mathematics, Vol. 4, No.4(424-434) 2011.
[10] Sankar Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India. 2010.
[11] Swamy, U.M., Rao, G.C., Sita Ramaiah, V. On a conjecture in a ring of arithmetic functions. Indian J.pure appl.Math.,14(12)1983.
[12] Swamy, U.M., Sankar Sagi. Partial orders induced by convolutions. International journal of Mathematics and Soft Computing,Vol. 2, No.1(25-33) 2012.

Contact information

Sankar Sagi
Assistant Professor of Mathematics, College of Applied Sciences, Sohar, Sultanate of Oman E-Mail(s): sagi_sankar@yahoo.co.in

Received by the editors: 09.10.2015
and in final form 03.02.2018.

[^0]: 2010 MSC: 06B10, 11A99.
 Key words and phrases: semilattice, lattice, convolution, multiplicative, comaximal, prime filter, cover, regular convolution.

