Algebra and Discrete MathematicsVolume 25 (2018). Number 1, pp. 147–156(c) Journal "Algebra and Discrete Mathematics"

Characterization of regular convolutions

Sankar Sagi

Communicated by V. V. Kirichenko

ABSTRACT. A convolution is a mapping \mathcal{C} of the set Z^+ of positive integers into the set $\mathscr{P}(Z^+)$ of all subsets of Z^+ such that, for any $n \in Z^+$, each member of $\mathcal{C}(n)$ is a divisor of n. If $\mathcal{D}(n)$ is the set of all divisors of n, for any n, then \mathcal{D} is called the Dirichlet's convolution [2]. If $\mathcal{U}(n)$ is the set of all Unitary(square free) divisors of n, for any n, then \mathcal{U} is called unitary(square free) convolution. Corresponding to any general convolution \mathcal{C} , we can define a binary relation $\leq_{\mathcal{C}}$ on Z^+ by ' $m \leq_{\mathcal{C}} n$ if and only if $m \in \mathcal{C}(n)$ '. In this paper, we present a characterization of regular convolution.

Introduction

A convolution is a mapping \mathcal{C} of the set Z^+ of positive integers into the set $\mathcal{P}(Z^+)$ of subsets of Z^+ such that, for any $n \in Z^+$, $\mathcal{C}(n)$ is a nonempty set of divisors of n. If $\mathcal{C}(n)$ is the set of all divisors of n, for each $n \in Z^+$, then \mathcal{C} is the classical Dirichlet convolution [2]. If

$$C(n) = \{d \mid d \mid n \text{ and } (d, \frac{n}{d}) = 1\},\$$

then \mathcal{C} is the Unitary convolution [1]. As another example if

 $\mathcal{C}(n) = \{d \mid d \mid n \text{ and } m^k \text{ does not divide } d \text{ for any } m \in Z^+\},\$

then \mathcal{C} is the k-free convolution. Corresponding to any convolution \mathcal{C} , we can define a binary relation $\leq_{\mathcal{C}}$ in a natural way by

$$m \leq_{\mathcal{C}} n$$
 if and only if $m \in \mathcal{C}(n)$.

2010 MSC: 06B10, 11A99.

Key words and phrases: semilattice, lattice, convolution, multiplicative, comaximal, prime filter, cover, regular convolution.

 $\leq_{\mathcal{C}}$ is a partial order on Z^+ and is called partial order induced by the convolution \mathcal{C} [11], [12]. W. Narkiewicz [2] first proposed the concept of a regular convolution, and in this paper we present a lattice theoretic characterization of regular convolution and prove that the Dirichlet's convolution is the unique regular convolution that induces a lattice structure on $(Z^+, \leq_{\mathcal{C}})$.

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive $(a \leq a)$, transitive $(a \leq b, b \leq c \Longrightarrow$ $a \leq c)$ and antisymmetric $(a \leq b, b \leq a \Longrightarrow a = b)$ and that a pair (X, \leq) is called a partially ordered set (poset) if X is a non-empty set and \leq is a partial order on X.

For any $A \subseteq X$ and $x \in X$, x is called a lower(upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound (glb) and least upper bound (lub) of A in X. If A is a finite subset $\{a_1, a_2, \dots, a_n\}$, the glb of A (lub of A) is denoted by $a_1 \wedge a_2 \wedge \dots \wedge a_n$ or $\bigwedge_{i=1}^n a_i$ (respectively by $a_1 \vee a_2 \vee \dots \vee a_n$ or $\bigvee_{i=1}^n a_i$).

A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b$ (=glb{a, b}) exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \vee b$ (=lub{a, b}) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee) , where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge (a \vee b) = a = a \vee (a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a, b\}$. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$a = a \wedge b \iff a \leqslant b \iff a \lor b = b.$$

Throughout the paper Z^+ , N, and P denote the set of positive integers, the set of non-negative integers, and set of prime numbers respectively.

Theorem 1 ([12]). Let $\leq_{\mathcal{C}}$ be the binary relation induced by convolution \mathcal{C} . Then

- (1) $\leq_{\mathcal{C}}$ is reflexive if and only if $n \in \mathcal{C}(n)$.
- (2) $\leq_{\mathcal{C}}$ is transitive if and only, for any $n \in Z^+$, $\bigcup_{m \in \mathcal{C}(n)} \mathcal{C}(m) \subseteq \mathcal{C}(n)$.
- (3) $\leq_{\mathcal{C}}$ is always antisymmetric.

Corollary 1 ([12]). The binary relation $\leq_{\mathcal{C}}$ induced by convolution \mathcal{C} on Z^+ is a partial order if and only if $n \in \mathcal{C}(n)$ and $\bigcup_{m \in \mathcal{C}(n)} \mathcal{C}(m) \subseteq \mathcal{C}(n)$ for all $n \in Z^+$.

Definition 1 ([12]). Let X and Y be non-empty sets and R and S be binary relations on X and Y respectively. A bijection $f: X \to Y$ is said to be a relation isomorphism of (X, R) into (Y, S) if, for any elements a and b in X,

aRb in X if and only if f(a)Sf(b) in Y.

Theorem 2 ([12]). Let $\theta: Z^+ \to \sum_P N$ be the bijection defined by

 $\theta(n)(p) = the \ largest \ a \ in \ N \ such \ that \ p^a \ divides \ n,$

Then a convolution C is multiplicative if and only if θ is a relation isomorphism of (Z^+, \leq_C) onto $(\sum_P N, \leq_C)$.

Theorem 3 ([9], [10]). For any multiplicative convolution C, (Z^+, \leq_C) is a lattice if and only if (N, \leq_C^p) is a lattice for each prime p.

Now we state the following theorems on co-maximality and prime filters.

Theorem 4 ([5]). Let (S, \wedge) be any meet semi lattice with smallest element 0 satisfying the descending chain condition. Also, suppose that every proper filter of S is prime. Then the following are equivalent to each other.

(1) For any x and $y \in S$, $x || y \Longrightarrow x \land y = 0$.

- (2) $S \{0\}$ is a disjoint union of maximal chains.
- (3) Any two incomparable filters of S are co-maximal.

Theorem 5 ([5]). Let C be any multiplicative convolution such that (Z^+, \leq_C) is a meet semi lattice. Then any two incomparable prime filters of (Z^+, \leq_C) are co-maximal if and only if any two incomparable prime filters of (N, \leq_C^p) are co-maximal, for each $p \in P$.

Theorem 6 ([3]). Let p be a prime number. Then every proper filter in $(N, \leq_{\mathcal{C}}^{p})$ is prime if and only if $[p^{a})$ is a prime filter in $(Z^{+}, \leq_{\mathcal{C}})$ for all n > 0.

Theorem 7 ([3]). A filter F of $(Z^+, \leq_{\mathcal{C}})$ is prime if and only if there exists unique $p \in P$ such that F^p is a prime filter of $(N, \leq_{\mathcal{C}}^p)$ and $F^q = N$ for all $q \neq p$ in P and, in this case,

$$F = \{ n \in Z^+ \mid \theta(n)(p) \in F^p \}.$$

Theorem 8 ([3]). Let F be a filter of $(Z^+, \leq_{\mathcal{C}})$. Then $F = [p^a)$ for some prime number p and a positive integer a which is join-irreducible in $(Z^+, \leq_{\mathcal{C}})$.

Definition 2. Any complex valued function defined on the set Z^+ of positive integers is called an arithmetical function. The set of all arithmetical functions is denoted by \mathscr{A} .

The following is a routine verification using the properties of addition and multiplication of complex numbers.

Theorem 9. For any arithmetical functions f and g, define

$$(f+g)(n) = f(n) + g(n)$$
 and $(f \cdot g)(n) = f(n)g(n)$

for any $n \in Z^+$.

Then + and \cdot are binary operations on the set \mathcal{A} of arithmetical functions and $(\mathcal{A}, +, \cdot)$ is a commutative ring with unity in which the constant map $\overline{0}$ and $\overline{1}$ are the zero element and unity element respectively.

Definition 3. Let \mathcal{C} be a convolution and f and g arithmetical functions and \mathscr{C} be the field of complex numbers. Define $f\mathcal{C}g\colon Z^+ \to \mathscr{C}$ by

$$(f\mathcal{C}g)(n) = \sum_{d \in \mathcal{C}(n)} f(d)g(\frac{n}{d}).$$

We can consider C as a binary operation, as defined above, on the set \mathscr{A} of arithmetical functions. W.Narkiewicz proposed the following definition.

Definition 4 ([2]). A convolution C is called *regular* if the following are satisfied.

- (1) $(\mathcal{A}, +, \mathcal{C})$ is a commutative ring with unity, where + is the point-wise addition. This ring will be denoted by $\mathcal{A}_{\mathcal{C}}$.
- (2) If f and g are multiplicative arithmetical functions, then so is the product fCg (f is said to be multiplicative if f(mn) = f(m)f(n).)
- (3) The constant function $\overline{1}$, defined by $\overline{1}(n) = 1$ for all $n \in Z^+$, is a unit in the ring $\mathcal{A}_{\mathcal{C}}$.
 - It can be easily verified that the arithmetical function e, defined by

$$e(n) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1 \end{cases}$$

is the unity (the identity element with respect to the binary operation \mathcal{C}).

W. Narkiewicz proved the following two theorems.

Theorem 10 ([2]). A convolution C is regular if and only if the following conditions are satisfied for any m, n and $d \in Z^+$.

- (1) C is multiplicative convolution; i.e., $(m, n) = 1 \Rightarrow C(mn) = C(m)C(n)$.
- (2) $d \in \mathcal{C}(m)$ and $m \in \mathcal{C}(n) \Leftrightarrow d \in \mathcal{C}(n)$ and $\frac{m}{d} \in \mathcal{C}(\frac{n}{d})$.
- (3) $d \in \mathcal{C}(n) \Rightarrow \frac{n}{d} \in \mathcal{C}(n).$
- (4) $1 \in \mathcal{C}(n)$ and $n \in \mathcal{C}(n)$.
- (5) For any prime number p and any $a \in Z^+$, $\mathcal{C}(p^a) = \{1, p^t, p^{2t}, \cdots, p^{rt}\},$ rt = a for some positive integer t and $p^t \in \mathcal{C}(p^{2t}), p^{2t} \in \mathcal{C}(p^{3t}), \ldots,$ $p^{(r-1)t} \in \mathcal{C}(p^a).$

Theorem 11 ([2]). Let \mathcal{K} be the class of all decompositions of the set of non-negative integers into arithmetic progressions (finite or infinite) each containing 0 and no two progressions belonging to same decomposition have a positive integer in common. Let us associate with each $p \in P$, a member π_p of \mathcal{K} . For any $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$, where p_1, p_2, \cdots, p_r are distinct primes and $a_1, a_2, \cdots, a_r \in N$, define

$$\mathcal{C}(n) = \{ p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r} \mid b_i \leq a_i, \text{ and } b_i \text{ and } a_i \text{ belong to the same} progression in \pi_{n_i}. \}$$

Then C is a regular convolution and, conversely every regular convolution can be obtained in this way.

From the above theorems, it is clear that any regular convolution C is uniquely determined by a sequence $\{\pi_p\}_{p\in P}$ of decompositions of N into arithmetical progressions (finite or infinite) and we denote this by expression $C \sim \{\pi_p\}_{p\in P}$.

Definition 5. For any two elements a and b in a partially ordered set (X, \leq) , a is said to be covered by b (b is a cover of a) if a < b and there is no $c \in X$ such that a < c < b. This is denoted by a - < b.

We note that $\theta: Z^+ \to \sum_P N$ defined by

$$\theta(a)(p) =$$
the largest n in N such that p^n divides a ,
for any $a \in Z^+$ and $p \in P$

is a bijection.

2. Main results

In the following two theorems, we prove that any regular convolution \mathcal{C} gives a meet semi lattice structure on $(Z^+, \leq_{\mathcal{C}})$ and the convolution \mathcal{C} is

completely characterized by certain lattice theoretic properties of $(Z^+, \leq_{\mathcal{C}})$. In particular Dirichlet's convolution is the only regular convolution \mathcal{C} which gives a lattice structure on $(Z^+, \leq_{\mathcal{C}})$.

Theorem 12. Let C be a convolution and \leq_C the relation on Z^+ induced by C. Then C is a regular convolution if and only if the following properties are satisfied.

- (1) $\theta: (Z^+, \leq_{\mathcal{C}}) \to \sum_{p \in P} (N, \leq_{\mathcal{C}}^p)$ is a relation isomorphism.
- (2) $(Z^+, \leq_{\mathcal{C}})$ is a meet semi lattice.
- (3) Any two incomparable prime filters of $(Z^+, \leq_{\mathcal{C}})$ are co-maximal.
- (4) F is a prime filter of $(Z^+, \leq_{\mathcal{C}})$ if and only if $F = [p^a)$ for some $p \in P$ and $a \in Z^+$.
- (5) For any m and $n \in Z^+$, $m \langle_{\mathcal{C}} n \Longrightarrow 1 \langle_{\mathcal{C}} \frac{n}{m} \leqslant_{\mathcal{C}} n$.

Proof. Suppose that C is a regular convolution. By Theorem 11, $C \sim {\{\pi_p\}_{p \in P}}$, where each π_p is a decomposition of N into arithmetic progressions (finite or infinite) in which each progression contains 0 and no positive integer belongs to two distinct progressions. For any $a, b \in N$ and $p \in P$, let us write for convenience,

 $\langle a < b \rangle \in \pi_p \quad \iff \quad a \text{ and } b \text{ belong to the same progression of } \pi_p.$

Since \mathcal{C} is regular, \mathcal{C} satisfies properties (1)–(5) of Theorem 10. From (2) and (4) of Theorem 10 and Corollary 1, it follows that $\leq_{\mathcal{C}}$ is a partial order on Z^+ . Since \mathcal{C} is multiplicative, it follows from Theorem 2 that $\theta: Z^+ \to \sum_P N$ is an order isomorphism. Therefore the property (1) is satisfied. For simplicity and convenience, we shall write \bar{n} for $\theta(n)$. For each $n \in Z^+$, \bar{n} is the element in the direct sum $\sum_P N$ defined by

 $\bar{n}(p) =$ the largest *a* in *N* such that p^a divides *n*.

 $n \mapsto \bar{n}$ is an order isomorphism of $(Z^+, \leq_{\mathcal{C}})$ onto $\sum_{p \in P} (N, \leq_{\mathcal{C}}^p)$, where for each $p \in P$, $\leq_{\mathcal{C}}^p$ is the partial order on N defined by

 $a \leq^p_{\mathcal{C}} b$ if and only if $p^a \in \mathcal{C}(p^b)$.

For any m and $n \in Z^+$, let $m \wedge n$ be the element in Z^+ defined by

$$\overline{m \wedge n}(p) = \begin{cases} 0 & \text{if } \langle \overline{m}(p), \overline{n}(p) \rangle \notin \pi_p, \\ \min\{\overline{m}(p), \overline{n}(p)\} & \text{otherwise.} \end{cases}$$

for all $p \in P$. If $\langle \overline{m}(p), \overline{n}(p) \rangle \in \pi_p$, then

 $\overline{m}(p) \leqslant^p_{\mathcal{C}} \overline{n}(p) \quad \text{or} \quad \overline{n}(p) \leqslant^p_{\mathcal{C}} \overline{m}(p)$

and hence $\overline{m \wedge n}(p) \leq \overline{m}(p)$ and $\overline{n}(p)$ for all $p \in P$. Therefore $m \wedge n$ is a lower bound of m and n in $(Z^+, \leq_{\mathcal{C}})$. Let k be any other lower bound of m and n. For any $p \in P$, if $\langle \overline{m}(p), \overline{n}(p) \rangle \in \pi_p$, then, since

$$\overline{k(p)} \leqslant^p_{\mathcal{C}} \overline{m}(p) \quad \text{and} \quad \overline{k(p)} \leqslant^p_{\mathcal{C}} \overline{n}(p),$$

we have

$$\overline{k(p)} \leqslant^p_{\mathcal{C}} \overline{m \wedge n}(p).$$

If $\langle \overline{m}(p), \overline{n}(p) \rangle \notin \pi_p$, then

$$k(p) = 0 = \overline{m \wedge n}(p).$$

Thus $k \leq m \wedge n$. Therefore, $m \wedge n$ is the greatest lower bound of m and n in $(Z^+, \leq_{\mathcal{C}})$. Thus $(Z^+, \leq_{\mathcal{C}})$ is a meet semi lattice and hence the property (2) is satisfied.

To prove (3), by Theorem 5, it is enough if we prove that any two incomparable prime filters if $(N, \leq_{\mathcal{C}}^p)$ are co-maximal for all $p \in P$. For any positive a and b, if a and b are incomparable in $(N, \leq_{\mathcal{C}}^p)$, then $\langle a, b \rangle \notin \pi_p$ and hence a and b have no upper bound and therefore $a \lor b$ does not exist in $(N, \leq_{\mathcal{C}}^p)$. Also, each progression in π_p is a maximal chain in $(N, \leq_{\mathcal{C}}^p)$ and, for any a and $b \in N$, a and b are comparable if and only if $\langle a, b \rangle \in \pi_p$.

Therefore $(Z^+, \leq_{\mathcal{C}}^p)$ is a disjoint union of maximal chains. Thus, by Theorem 4, any two incomparable prime filters of $(N, \leq_{\mathcal{C}}^p)$ are co-maximal. Therefore, by Theorem 5, any two incomparable prime filters of $(Z^+, \leq_{\mathcal{C}})$ are co-maximal. This proves (3).

(4) follows from Theorem 6 and Theorem 7 and from the discussion made above.

To prove (5), let m and $n \in Z^+$ such that $m - \langle_{\mathcal{C}} n$. By Theorem 10 (3), we get that $\frac{m}{n} \leq_{\mathcal{C}} n$. Let us write

$$n = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$$
 and $m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$

where p_1, p_2, \dots, p_r are distinct primes and each $b_i > 0$ such that $0 \leq_{\mathcal{C}}^{p_i} a_i \leq_{\mathcal{C}}^{p_i} b_i$. Since $m \neq n$, there exists *i* such that $a_i \leq_{\mathcal{C}}^{p_i} b_i$. Now, if $a_j \leq_{\mathcal{C}}^{p_i} b_j$ for some $j \neq i$, then the element $k = p_1^{c_1} p_2^{c_2} \cdots p_r^{c_r}$, where

$$c_s = \begin{cases} a_s & \text{if } s \neq i, \\ b_s & \text{if } s = i. \end{cases}$$

will be between m and n (that is, $m <_{\mathcal{C}} k <_{\mathcal{C}} n$) which is a contradiction.

Therefore $a_j = b_j$ for all $j \neq i$ and hence $\frac{n}{m} = p_i^{a_i - b_i}$.

Since $\langle a_i, b_i \rangle \in pi_{p_i}$, there exists t > 0 such that

$$b_i = ut$$
 and $a_i = vt$

for some u and v with v < u. Also, $vt, (v+1)t, \cdots, ut$ are all in the same progression. Since $m - \langle_{\mathcal{C}} n$, it follows that u = v + 1 and hence $\frac{n}{m} = p_i^t$. Since $0 - \langle t \text{ in } (N, \leq_{\mathcal{C}}^{p_i})$, we get that

$$1 - <_{\mathcal{C}} p^t = \frac{n}{m} \leqslant_{\mathcal{C}} n.$$

This proves (5).

Conversely suppose that \mathcal{C} satisfies properties (1)–(5), since $[p^a)$ is prime filter of $(Z^+, \leq_{\mathcal{C}})$ for all $p \in P$ and $a \in Z^+$, by Theorem 6, every proper filter of $(N, \leq_{\mathcal{C}}^p)$ is prime, for any $p \in P$. Since any two incomparable prime filters of $(Z^+, \leq_{\mathcal{C}})$ are co-maximal, by Theorem 8 and Theorem 5, we get that $(Z^+, \leq_{\mathcal{C}}^p)$ is a disjoint union of maximal chains.

Fix $p \in P$. Then

$$Z^+ = \coprod_{i \in I} Y_i$$

where each Y_i is a maximal chain in $(Z^+, \leq_{\mathcal{C}}^p)$ such that, for any $i \neq j \in I$, $Y_i \cap Y_j = \phi$ and each element of Y_i is incomparable with each element of Y_j . Now, we shall prove that each Y_i is an arithmetical progression (finite or infinite).

Let $i \in I$. Since N is countable, Y_i is at most countable. Also, since $(N, \leq_{\mathcal{C}}^p)$ satisfies the descending chain condition, we can express

$$Y_i = \{a_1 - <_{\mathcal{C}} a_2 - <_{\mathcal{C}} a_3 - < \dots \}$$

By using induction on r, we shall prove that $a_r = ra_1$ for all r.

Clearly, this is true for r = 1. Assume that r > 1 and $a_s = sa_1$ for all $1 \leq s < r$. Since $(r-1)a_1 = a_{r-1} - \langle a_r \text{ in } (N, \leq_{\mathcal{C}}^p)$, we have

$$p^{a_{r-1}} - \langle \mathcal{C} p^{a_r} \text{ in } (Z^+, \leq_{\mathcal{C}})$$

and hence, by condition (5),

$$1 - <_{\mathcal{C}} p^{a_r - a_{r-1}} \leqslant_{\mathcal{C}} p^{a_r}.$$

Therefore, $0 \neq a_r - a_{r-1} \leq_{\mathcal{C}}^p a_r$ and hence $a_r - a_{r-1} \in Y_i$ (since $a_r \in Y_i$).

Also, since $0 - \langle a_r - a_{r-1}$ in $(N, \leq_{\mathcal{C}}^p)$, we have $a_r - a_{r-1} = a_1$ and therefore $a_r = a_{r-1} + a_1 = (r-1)a_1 + a_1 = ra_1$. Hence, for any prime p

and $a \in Z^+$,

 $C(p^{a}) = \{1, p^{t}, p^{2t}, \cdots, p^{st}\}$ and st = a

for some positive integers t and s and

$$p^t \in \mathcal{C}(p^{2t}), p^{2t} \in \mathcal{C}(p^{3t}), \cdots, p^{(s-1)t} \in \mathcal{C}(p^a).$$

The other conditions given in Theorem 10 are clearly satisfied. Thus, by Theorem 10, \mathcal{C} is a regular convolution.

Theorem 13. Let \mathcal{C} be a convolution, then the following conditions are equivalent to each other.

- (1) $(Z^+, \leq_{\mathcal{C}})$ is a lattice.
- (2) $(N, \leq_{\mathcal{C}}^{p})$ is a lattice for each $p \in P$. (3) $(N, \leq_{\mathcal{C}}^{p})$ is a totally ordered set for each $p \in P$.
- (4) For any $p \in P$ and a and $b \in N$, $a \leq_{\mathcal{C}}^{p} b \iff a \leq b$.
- (5) For any n and $m \in Z^+$, $n \leq_{\mathcal{C}} m \iff n$ divides m.
- (6) $\mathcal{C}(n) =$ The set of positive divisors of n.

Proof. Since C is regular, $C \sim {\{\pi_p\}_{p \in P}}$.

 $(1) \Longrightarrow (2)$ follows from Theorem 3.

(2) \Longrightarrow (3) Let $p \in P$. Suppose that $(N, \leq_{\mathcal{C}}^p)$ is a lattice. If π_p contains two progressions, then choose an element a in one progression S and b in another progression T in π_p . Since $a \leq_{\mathcal{C}}^p a \lor b$ and $b \leq_{\mathcal{C}}^p a \lor b, a \lor b \in S \cap T$. A contradiction.

Therefore π_p contains only one progression, which must be

$$N = \{ 0 <_{\mathcal{C}}^{p} 1 <_{\mathcal{C}}^{p} 2 <_{\mathcal{C}}^{p} 3 <_{\mathcal{C}}^{p} \dots \}.$$

Thus $(N, \leq_{\mathcal{C}}^p)$ is a totally ordered set.

 $(3) \Longrightarrow (4)$ It is trivial.

(4) \implies (5) Let *m* and $n \in Z^+$ and we write $n = \prod_{i=1}^r P_i^{a_i}$ and $m = \prod_{i=1}^{r} P_i^{b_i}$, where p_1, p_2, \cdots, p_r are distinct primes and $a_i, b_i \in N$. Now.

> $n \text{ divides } m \iff a_i \leqslant b_i \text{ for all } 1 \leqslant i \leqslant r$ $\iff a_i \leqslant^p_{\mathcal{C}} b_i \text{ for all } 1 \leqslant i \leqslant r$ $\iff n \leqslant_{\mathcal{C}} m.$

(5)
$$\Longrightarrow$$
 (6) For any $n \in Z^+$,
 $\mathcal{C}(n) = \{m \in Z^+ \mid m \leq_{\mathcal{C}} n\} = \{m \in Z^+ \mid m \text{ divides } n\} = \mathcal{D}(n).$

(6) \Longrightarrow (1) If $\mathcal{C} = \mathcal{D}$, then $\leq_{\mathcal{C}} = \leq_{\mathcal{D}}$ and, for any $n, m \in Z^+$,

$$n \wedge m = \gcd\{n, m\}$$

and $n \lor m = \operatorname{lcm}\{n, m\}$ in $(Z^+, \leq_{\mathcal{C}})$.

The above Theorem implies that the Dirichlet's convolution \mathcal{D} is the only regular convolution for which $(Z^+, \leq_{\mathcal{C}})$ is a lattice.

References

- Cohen, E. Arithmetical functions associated with the unitary divisors of an integer. Math.Z.,74,66-80. 1960.
- [2] Narkiewicz, W. On a class of arithmetical convolutions. Collow.Math., 10, 81-94.1963.
- [3] Sankar Sagi. Characterization of Prime Filters in (\mathcal{Z}^+, \leq_C) . International Journal of Pure and Engineering Mathematics, Vol.3, No III, 2015.
- [4] Sankar Sagi. Characterization of Prime Ideals in (Z⁺, ≤_D). European Journal of Pure and Applied Mathematics, Vol. 8, No.1(15-25)2015.
- [5] Sankar Sagi. Co-maximal Filters in (\mathbb{Z}^+, \leq_C) . International Journal of Mathematics and it's Applications, Vol.3, Issue 4-C, 2015.
- [6] Sankar Sagi. Filters in $(\mathbb{Z}^+, \leq_{\mathcal{C}})$ and $(\mathcal{N}, \leq_{\mathcal{C}}^{e})$. Journal of Algebra, Number Theory: Advances and Applications, Vol 11, No.2 (93-101)2014.
- [7] Sankar Sagi. Ideals in (Z⁺, ≤_D). Algeba and Discrete Mathematics, Vol 16(2013), Number 1, pp 107-115.
- [8] Sankar Sagi. Irreducible elements in (\mathbb{Z}^+, \leq_C) . International Journal of Mathematics and it's Applications, Vol.3, Issue 4-C, 2015.
- [9] Sankar Sagi. Lattice Structures on Z⁺ Induced by Convolutions. European Journal of Pure and Applied Mathematics, Vol. 4, No.4(424-434) 2011.
- [10] Sankar Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India. 2010.
- [11] Swamy, U.M., Rao, G.C., Sita Ramaiah, V. On a conjecture in a ring of arithmetic functions. Indian J.pure appl.Math., 14(12)1983.
- [12] Swamy, U.M., Sankar Sagi. Partial orders induced by convolutions. International journal of Mathematics and Soft Computing, Vol. 2, No.1(25-33) 2012.

CONTACT INFORMATION

Sankar SagiAssistant Professor of Mathematics, College of
Applied Sciences, Sohar, Sultanate of Oman
E-Mail(s): sagi_sankar@yahoo.co.in

Received by the editors: 09.10.2015 and in final form 03.02.2018.