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ABSTRACT. A convolution is a mapping C of the set Z* of
positive integers into the set % (Z7T) of all subsets of Z* such that,
for any n € Z*, each member of C(n) is a divisor of n. If D(n) is
the set of all divisors of n, for any n, then D is called the Dirichlet’s
convolution [2]. If U(n) is the set of all Unitary(square free) divisors
of n, for any n, then U is called unitary(square free) convolution.
Corresponding to any general convolution C, we can define a binary
relation <¢ on Z* by ‘m <c¢ n if and only if m € C(n)’. In this
paper, we present a characterization of regular convolution.

Introduction

A convolution is a mapping C of the set Z* of positive integers into
the set 2 (Z") of subsets of Z* such that, for any n € Z*, C(n) is a
nonempty set of divisors of n. If C(n) is the set of all divisors of n, for
each n € ZT, then C is the classical Dirichlet convolution [2]. If

C(n) = {d / djn and (d, ) =1},
then C is the Unitary convolution [1]. As another example if

C(n) ={d / d|n and mF does not divide d for any m € Zty,

then C is the k-free convolution. Corresponding to any convolution C, we
can define a binary relation <¢ in a natural way by

m <¢n if and only if m € C(n).

2010 MSC: 06B10, 11A99.
Key words and phrases: semilattice, lattice, convolution, multiplicative, co-
maximal, prime filter, cover, regular convolution.



148 CHARACTERIZATION OF REGULAR CONVOLUTIONS

<c is a partial order on Z* and is called partial order induced by the
convolution C [11], [12]. W. Narkiewicz [2| first proposed the concept of
a regular convolution, and in this paper we present a lattice theoretic
characterization of regular convolution and prove that the Dirichlet’s con-
volution is the unique regular convolution that induces a lattice structure

n (Z1,<e).

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a bi-
nary relation < on X which is reflexive (a < a), transitive (a < b,b < ¢ =
a < ¢) and antisymmetric (o < b,b < a = a = b) and that a pair (X, <)
is called a partially ordered set (poset) if X is a non-empty set and < is a
partial order on X.

For any A C X and z € X, z is called a lower(upper) bound of A if
x < a (respectively a < x) for all @ € A. We have the usual notations of
the greatest lower bound (glb) and least upper bound (lub) of A in X.
If A is a finite subset {al, ag, -+ ,an}, the glb of A (lub of A) is denoted
by a1 Aag A -+ Aay or /\ a; (respectively by a1 Vag V.-V a, or \/ a;).

i=1 i=1

A partially ordered set (X, <) is called a meet semi lattice if a A b
(=glb{a,b}) exists for all @ and b € X. (X, <) is called a join semi lattice
if a Vb (=lub{a,b}) exists for all @ and b € X. A poset (X, <) is called
a lattice if it is both a meet and join semi lattice. Equivalently, lattice
can also be defined as an algebraic system (X, A, V), where A and V are
binary operations which are associative, commutative and idempotent and
satisfying the absorption laws, namely a A (a Vb) =a =aV (a Ab) for
all a,b € X; in this case the partial order < on X is such that a A b and
a V' b are respectively the glb and lub of {a,b}. The algebraic operations
A and V and the partial order < are related by

a=a/lANb < a<b < aVb=0hb.

Throughout the paper Z+, N, and P denote the set of positive integers,
the set of non-negative integers, and set of prime numbers respectively.

Theorem 1 ([12]). Let <¢ be the binary relation induced by convolution C.
Then
(1) <c is reflexive if and only if n € C(n).
(2) <c is transitive if and only, for anyn € Z7, UmGC(n) C(m) CC(n).
(3) <c is always antisymmetric.
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Corollary 1 ([12]). The binary relation <c induced by convolution C
on Z is a partial order if and only if n € C(n) and Unec(n) C(m) € C(n)
forallme Z7.

Definition 1 ([12]). Let X and Y be non-empty sets and R and S be
binary relations on X and Y respectively. A bijection f: X — Y is said
to be a relation isomorphism of (X, R) into (Y, S) if, for any elements a
and b in X,

aRbin X if and only if f(a)Sf(b)in Y.
Theorem 2 ([12]). Let 0: ZT — > p N be the bijection defined by
0(n)(p) = the largest a in N such that p* divides n,

Then a convolution C is multiplicative if and only if 6 is a relation isomor-
phism of (ZT,<¢) onto (3. p N, <c).

Theorem 3 (|9], [10]). For any multiplicative convolution C, (Z+,<¢) is
a lattice if and only if (N, <p) is a lattice for each prime p.

Now we state the following theorems on co-maximality and prime
filters.

Theorem 4 ([5]). Let (S, A\) be any meet semi lattice with smallest element
0 satisfying the descending chain condition. Also, suppose that every proper
filter of S is prime. Then the following are equivalent to each other.

(1) For anyx andy € S, z|ly = x Ay =0.

(2) S —{0} is a disjoint union of maximal chains.

(3) Any two incomparable filters of S are co-mazimal.

Theorem 5 ([5]). Let C be any multiplicative convolution such that
(Z+,<c) is a meet semi lattice. Then any two incomparable prime filters
of (ZT,<¢) are co-maximal if and only if any two incomparable prime
filters of (N, <Z) are co-mazimal, for each p € P.

Theorem 6 ([3]). Let p be a prime number. Then every proper filter in
(N, <B) is prime if and only if [p*) is a prime filter in (Z1,<¢) for all
n > 0.

Theorem 7 ([3]). A filter F of (Z7,<c) is prime if and only if there
exists unique p € P such that F? is a prime filter of (N, <) and F1 =N
for all ¢ # p in P and, in this case,

F={necZ"|0(n)p) c FF}.
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Theorem 8 ([3]). Let F be a filter of (Z1,<c). Then F = [p) for

some prime number p and a positive integer a which is join-irreducible in

(Z ) \C)

Definition 2. Any complex valued function defined on the set Z* of pos-
itive integers is called an arithmetical function. The set of all arithmetical
functions is denoted by «.

The following is a routine verification using the properties of addition
and multiplication of complex numbers.

Theorem 9. For any arithmetical functions f and g, define

(f +9)(n) = f(n)+g(n) and (f-g)(n)=f(n)g(n)

for anyn € ZT.

Then + and - are binary operations on the set o of arithmetical
functions and (A,+,-) is a commutative ring with unity in which the
constant map 0 and 1 are the zero element and unity element respectively.

Definition 3. Let C be a convolution and f and g arithmetical functions
and 6 be the field of complex numbers. Define fCg: ZT — 6 by

(fCg)(n Z fd

deC(n

We can consider C as a binary operation, as defined above, on the
set o of arithmetical functions. W.Narkiewicz proposed the following
definition.

Definition 4 ([2]). A convolution C is called regular if the following are
satisfied.
(1) (4,+,C) is a commutative ring with unity, where + is the point-wise
addition. This ring will be denoted by #¢.
(2) If f and g are multiplicative arithmetical functions, then so is the
product fCg (f is said to be multiplicative if f(mn) = f(m)f(n).)
(3) The constant function 1, defined by 1(n) =1 foralln € Z*, is a
unit in the ring ¢.
It can be easily verified that the arithmetical function e, defined by

o) = {1 ifn=1,

0 ifn>1

is the unity (the identity element with respect to the binary operation C).
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W. Narkiewicz proved the following two theorems.

Theorem 10 ([|2]). A convolution C is reqular if and only if the following

conditions are satisfied for any m,n and d € ZT.

(1) C is multiplicative convolution; i.e., (m,n)=1 = C(mn)=C(m)C(n).

) deC(m) andm e C(n) & deC(n) and % € C(5).

) deC(n) =5 e€C(n).
) 1€C(n) and n € C(n).

5) For any prime number p and anya€ Z+,C(p*) = {1,p', p?t,--- , p"t},
rt = a for some positive integer t and p' € C(p*), p** € C(p*),. ..,
p(r—l)t c C(pa).

Theorem 11 ([2]). Let K be the class of all decompositions of the set of

non-negative integers into arithmetic progressions (finite or infinite) each

containing 0 and no two progressions belonging to same decomposition
have a positive integer in common. Let us associate with each p € P,

(2
(3
(4
(

a member m, of K. For any n = pi'ps?---pir, where pi,pa,--- ,pr are
distinct primes and ay,as2, - ,a, € N, define
C(n) = {pop% - pP |b; < ai, and b; and a; belong to the same

progression in mp, .}
Then C is a reqular convolution and, conversely every reqular convolution
can be obtained in this way.

From the above theorems, it is clear that any regular convolution C
is uniquely determined by a sequence {m,},cp of decompositions of N
into arithmetical progressions (finite or infinite) and we denote this by
expression C ~ {mp}pep.

Definition 5. For any two elements a and b in a partially ordered set
(X, <), a is said to be covered by b (b is a cover of a) if @ < b and there is
no ¢ € X such that a < ¢ < b. This is denoted by a— < b.

We note that 6: Z+ — 3", N defined by

O(a)(p) = the largest n in N such that p" divides a,
for any a € Z* and p € P

is a bijection.
2. Main results

In the following two theorems, we prove that any regular convolution C
gives a meet semi lattice structure on (Z7, <¢) and the convolution C is
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completely characterized by certain lattice theoretic properties of (Z1, <¢).
In particular Dirichlet’s convolution is the only regular convolution C which
gives a lattice structure on (21, <¢).

Theorem 12. Let C be a convolution and <¢ the relation on ZT induced
by C. Then C is a reqular convolution if and only if the following properties
are atzsﬁed

1 (Z s <c) = Dpep(V ,<B) is a relation isomorphism.

(ZT,<c) is a meet semi lattice.

Any two incomparable prime filters of (ZT,<¢) are co-mazimal.

F is a prime filter of (ZT,<¢) if and only if F = [p®) for some
pEPandac ZT.

(5) For anym andn € Z*, m— <¢n = 1— <¢ & <¢ n.

(1) 0
(2)
(3)
(4)

Proof. Suppose that C is a regular convolution. By Theorem 11,
C ~ {mp}pep, where each 7, is a decomposition of N into arithmetic
progressions (finite or infinite) in which each progression contains 0 and
no positive integer belongs to two distinct progressions. For any a,b € N
and p € P, let us write for convenience,

(a<b)em <= aand b belong to the same progression of m,.

Since C is regular, C satisfies properties (1)—(5) of Theorem 10. From
(2) and (4) of Theorem 10 and Corollary 1, it follows that <¢ is a partial
order on ZT. Since C is multiplicative, it follows from Theorem 2 that
0: ZT — > p N is an order isomorphism. Therefore the property (1) is
satisfied. For simplicity and convenience, we shall write n for 6(n). For
each n € ZT, i is the element in the direct sum Y, N defined by

n(p) = the largest a in N such that p® divides n.

n + 7 is an order isomorphism of (27, <c¢) onto »°  p(N, <¢), where for
each p € P, ég is the partial order on N defined by

a<bb if and only if p® € C(p).

For any m and n € Z 1, let m A n be the element in Z* defined by

0 if (m(p),n(p)) & mp,
min{m(p),7(p)} otherwise.
for all p € P. If (m(p),n(p)) € mp, then

m(p) <¢ n(p) or a(p) <¢ m(p)
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and hence m An(p) < m(p) and n(p) for all p € P. Therefore m An is a
lower bound of m and n in (Z7, <¢). Let k be any other lower bound of
m and n. For any p € P, if (m(p),n(p)) € mp, then, since

k(p) <¢ m(p) and k(p) <¢ 7(p),

we have

If (m(p),n(p)) ¢ mp, then

k(p) = 0 =m An(p).

Thus £ < mAn. Therefore, m An is the greatest lower bound of m and n in
(Z+,<c). Thus (Z1,<c) is a meet semi lattice and hence the property (2)
is satisfied.

To prove (3), by Theorem 5, it is enough if we prove that any two
incomparable prime filters if (IV, <) are co-maximal for all p € P. For any
positive @ and b, if @ and b are incomparable in (N, <%), then (a,b) ¢ m,
and hence a and b have no upper bound and therefore a V b does not exist
in (N,<%). Also, each progression in 7, is a maximal chain in (N, <%)
and, for any a and b € N, a and b are comparable if and only if (a, b) € .

Therefore (Z7,<%) is a disjoint union of maximal chains. Thus, by
Theorem 4, any two incomparable prime filters of (IV, <) are co-maximal.
Therefore, by Theorem 5, any two incomparable prime filters of (Z1, <¢)
are co-maximal. This proves (3).

(4) follows from Theorem 6 and Theorem 7 and from the discussion
made above.

To prove (5), let m and n € Z* such that m— <¢ n. By Theorem
10(3), we get that 7 <c n. Let us write
by b \ _ r
n:p11p22p? and m_pcll‘lpgap?
where p1,p2, - ,pr are distinct primes and each b; > 0 such that 0 g?
a; gf;’ b;. Since m # n, there exists i such that a; é? b;. Now, if a; ézgf b;
for some j # 4, then the element k = pi'ps* - - - p&r, where

s ifs#i4,
Csz{a if s=£1

by if s =1.

will be between m and n (that is, m <¢ k <¢ n) which is a contradiction.
Therefore aj = b; for all j # ¢ and hence = = p?"_bi.

m
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Since (ai, b;j) € pip,, there exists ¢t > 0 such that
bi=ut and a; =uvt

for some u and v with v < u. Also, vt, (v + 1)t,--- ,ut are all in the same
progression. Since m— <¢ n, it follows that v = v + 1 and hence - = pl.
Since 0— < ¢ in (N, <l'), we get that

1- <¢cpt=—<cn

This proves (5).

Conversely suppose that C satisfies properties (1)-(5), since [p%)
is prime filter of (ZT,<¢) for all p € P and a € Z*, by Theorem 6,
every proper filter of (N,<%) is prime, for any p € P. Since any two
incomparable prime filters of (Z+, <¢) are co-maximal, by Theorem 8 and
Theorem 5, we get that (Z7,<0) is a disjoint union of maximal chains.

Fix p € P. Then
zt =]l

i€l
where each Y; is a maximal chain in (ZF, <%) such that, for any i # j € I,
Y;NY; = ¢ and each element of Y; is incomparable with each element
of Y;. Now, we shall prove that each Y; is an arithmetical progression
(finite or infinite).

Let i € I. Since N is countable, Y; is at most countable. Also, since
(N, <p) satisfies the descending chain condition, we can express

Yiz{al— <c az— <ca3—<...}

By using induction on r, we shall prove that a, = ra; for all r.

Clearly, this is true for » = 1. Assume that r > 1 and as; = sa; for all
1 <s<r. Since (r—1)a; = ar—1— < a, in (N, <f), we have

pit— <c p™ in (Z7,<e)
and hence, by condition (5),
1_ <C parfarfl <C par.

Therefore, 0 # a, — a,—1 <{ ar and hence a, — a,—1 € Y] (since a, € V).

Also, since 0— < a, — a,—1 in (N, <§), we have a, — a,—1 = a1 and
therefore a, = a,—1 + a1 = (r — 1)aj + a1 = ray. Hence, for any prime p
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anda € Z7,
Cp®) ={1,p",p*,--- ,p*} and st=a
for some positive integers ¢t and s and
p' € Cp™),p* €Cp™),-- ,p "V e Cr”).

The other conditions given in Theorem 10 are clearly satisfied. Thus, by
Theorem 10, C is a regular convolution. O

Theorem 13. Let C be a convolution, then the following conditions are
equivalent to each other.

(1) (Z1,<c) is a lattice.

(2) (N, <c) is a lattice for each p € P.

(3) (N,<p) is a totally ordered set for each peEP.

(4) For anype P anda andbe N, a <l b <= a <b.

(5) For anyn andme Z*, n<cm <:> n divides m.

(6) C(n) = The set of posztwe divisors of n.

Proof. Since C is regular, C ~ {7 }pep.

(1) = (2) follows from Theorem 3.

(2) = (3) Let p € P. Suppose that (N, <%) is a lattice. If 7, contains
two progressions, then choose an element a in one progression S and b in
another progression T in 7. Since a <% aVband b <l aVb,aVbe SNT.
A contradiction.

Therefore m, contains only one progression, which must be

N={0<Z1<f2<03<¢...}.

Thus (N, <l) is a totally ordered set.
(3) = (4) Tt is trivial.
4) = ( ) Let m and n € Z* and we write n = [[,_; P{"" and

m = T[_, PZ , where p1,po, -+ ,p, are distinct primes and a;,b; € N.
Now,

n divides m <= a; <b; forall 1 <i<r
= a; <gbforalll<i<r
== n e m.

(5) = (6) For any n € Z T,

Cln)={meZ" |m<cn}={meZ"|mdivides n} = D(n).
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(6) = (1) If C = D, then <¢=<p and, for any n,m € Z 7,

n Am = ged{n,m}

and nVm =lem{n,m} in (ZT, <¢). O

The above Theorem implies that the Dirichlet’s convolution D is the

only regular convolution for which (Z1,<¢) is a lattice.
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