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Abstract. This paper investigates the structure of groups in
which all members of a given relevant set of subgroups are self-
normalizing. In particular, soluble groups in which every non-
abelian (or every infinite non-abelian) subgroup is self-normalizing
are described.

Introduction

It is well known that a group has only normal subgroups if and only if it
is either abelian or the direct product of a quaternion group of order 8
and a periodic abelian group with no elements of order 4. The structure
of groups for which the set of non-normal subgroups is small in some
sense has been studied by many authors in several different situations;
in particular, metahamiltonian groups (i.e. groups whose non-abelian
subgroups are normal) were introduced and investigated in a series of
papers by G.M. Romalis and N.F. Sesekin (see [8],[9],[10]); further infor-
mations on the structure of such groups have been later obtained by N.F.
Kuzennyi and N.N. Semko [4].

Dualizing this point of view, we are interested here to (generalized)
soluble groups in which all members of a given relevant set of subgroups
are self-normalizing. Of course, any group whose non-trivial subgroups
are self-normalizing is periodic and simple, and it is elementary to show
that locally finite groups with such property either are trivial or have
prime order. The consideration of Tarski groups (i.e. infinite simple
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groups whose proper non-trivial subgroups have prime order) shows that
there exist infinite groups in which every non-trivial subgroup is self-
normalizing; such infinite simple groups can have even a more complicated
structure, since it follows from a result of V.N. Obraztsov [5] that any
Tarski group can be properly embedded in a simple group in which every
proper subgroup either has prime order or is a Tarski group.

As in the case of metahamiltonian groups, we look at the set of all
non-abelian subgroups of a group. The structure of (soluble) groups in
which every non-abelian subgroup is self-normalizing will be described in
Section 2, while the final Section 3 will be devoted to the study of groups
whose infinite non-abelian subgroups are self-normalizing.

Let ℋ be the class of all groups in which every non-abelian subgroup is
self-normalizing. Clearly, all groups whose proper subgroups are abelian
belong to the class ℋ, and we shall denote by ℋ∗ the class of ℋ-groups
containing proper non-abelian subgroups; it will be proved that the struc-
ture of soluble non-nilpotent ℋ∗-groups is close to that of minimal non-
abelian groups. Moreover, if ℋ∞ denotes the class of groups in which all
infinite non-abelian subgroups are self-normalizing, it will turn out that
any soluble ℋ∞-group either has the property ℋ or is a Černikov group
(i.e. if it is a finite extension of an abelian group satisfying the minimal
condition on subgroups).

Most of our notation is standard and can be found in [7].

1. Self-normalizing non-abelian subgroups

Let G be any ℋ-group. It follows from the definition that G is soluble
if and only if its commutator subgroup G′ is properly contained in G;
thus every soluble ℋ-group is actually metabelian. Observe also that any
group in the class ℋ∞ which properly contains its commutator subgroup
either is metabelian or finite-by-abelian.

It is well known that any soluble group whose proper subgroups are
abelian is either finite or abelian; the structure of finite minimal non-
abelian groups is well-known. We will also need the following result of
S.N. Černikov [2] concerning groups with few non-abelian subgroups (see
also [6]).

Lemma 1.1. Let G be a soluble non-abelian group satisfying the minimal
condition on non-abelian subgroups. Then G is a Černikov group.

Lemma 1.2. Let G be a non-periodic ℋ∞-group. If G′ < G, then G is
abelian.

Proof. Without loss of generality, we may suppose that G is finitely gener-
ated. If G is nilpotent, all its infinite proper subgroups are abelian, so that
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in particular G satisfies the minimal condition on non-abelian subgroups
and hence it is abelian by Lemma 1.1. Assume, to the contrary, that G
is not nilpotent, so that G/G′ is a cyclic p-group for some prime number
p, and in particular G′ is a finitely generated infinite abelian group. Let
x be an element of G such that G = ⟨x,G′⟩, and so G′ = [x,G′]. As
⟨x⟩ ∩G′ ≤ Z(G), the factor group G/⟨x⟩ ∩G′ is infinite by Schur’s the-
orem and thus it is also a counterexample. Replacing G by G/⟨x⟩ ∩ G′,
we may assume that ⟨x⟩ ∩G′ = {1}. Clearly, G/(G′)p is a finite p-group,
so that the proper subgroup ⟨x, (G′)p⟩ is subnormal in G. It follows that
⟨x, (G′)p⟩ is abelian and hence

(G′)p = [x,G′]p = [x, (G′)p] = {1}.

Therefore G′ is finite and this contradiction completes the proof of the
statement.

Recall from [1] (p.52) that a group G is said to be locally graded if every
finitely generated non-trivial subgroup of G contains a proper subgroup
of finite index. The class of locally graded groups is quite large, and
contains in particular all locally (soluble-by-finite) groups.

Lemma 1.3. If G is a periodic locally graded ℋ∞-group, then G is locally
finite.

Proof. Assume for a contradiction that G contains a finitely generated
infinite subgroup E. Since G is locally graded, there exists a proper
normal subgroup H of E such that E/H is finite. Then H is an infinite
proper subgroup of G which is not self-normalizing, so that H is abelian
and E is abelian-by-finite. Therefore E is finite, and this contradiction
proves that G is locally finite.

Our next lemma reduces the study of (soluble) ℋ-groups to the case
of non-nilpotent groups.

Lemma 1.4. If G is a locally nilpotent ℋ-group, then all proper sub-
groups of G are abelian.

Proof. Assume for a contradiction that G contains a proper non-abelian
subgroup X, and let g be an element of G ∖ X. Clearly, there exists
a finitely generated non-abelian subgroup E of X, and E is a proper
subnormal subgroup of ⟨E, g⟩, contradicting the property ℋ.

Lemma 1.5. If G is a ℋ∗-group, then the factor group G/G′ is cyclic
with prime-power order.
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Proof. Let x and y be elements of G such that xy ∕= yx. Then ⟨x, y,G′⟩
is a non-abelian normal subgroup of G, so that ⟨x, y,G′⟩ = G and G/G′

is finitely generated. Assume that the statement is false, so that G/G′

contains two distinct maximal subgroups M1/G
′ and M2/G

′. Then the
normal subgroups M1 and M2 of G must be abelian, and hence G =
M1M2 is nilpotent. It follows from Lemma 1.4 that all proper subgroups
of G are abelian, contradicting the hypothesis.

The following result is elementary and can be found in [3].

Lemma 1.6. Let A be a periodic abelian group, and let � : A −−→ A be
an automorphism of A of prime order p. If A has no elements of order p,
then

A = CA(�)× [A,�].

We are now in a position to describe all soluble groups in the class ℋ.

Theorem 1.7. Let G be a soluble non-nilpotent group. Then G has the
property ℋ if and only if G = ⟨x⟩⋉G′, where x is an element of prime-
power order pn, xp belongs to CG(G

′) and the commutator subgroup G′

is a periodic abelian group with no elements of order p.

Proof. If all proper subgroups of G are abelian, it follows directly from
the structure of minimal non-abelian groups that G has the required
structure. Suppose now that G is a ℋ∗-group, so that in particular it is
periodic by Lemma 1.2. Moreover, Lemma 1.5 yields that there exists
a maximal subgroup M of G containing G′, and M is abelian since it
is normal in G. Put ∣G : M ∣ = p, and let x be an element of G with
order pn (for some n > 0) such that G = ⟨x,M⟩. Write M = A × B,
where A is a p′-group and B is a p-group, and assume that the subgroup
⟨x,A⟩ is properly contained in G. Let g be an element of G ∖ ⟨x,A⟩. As
⟨x, g, A⟩/A is a finite p-group, the subgroup ⟨x,A⟩ is properly contained
in its normalizer and hence it is abelian. It follows that A is contained
in the centre of G. Thus [x,B] ∕= {1} and so the non-abelian p-subgroup
⟨x,B⟩ must be self-normalizing. On the other hand, A is contained in
NG(⟨x,B⟩), so that A = {1} and G is a p-group, which is impossible
by Lemma 1.4. This contradiction shows that

G = ⟨x,A⟩ = ⟨x⟩⋉A.

Again Lemma 1.4 yields that the subgroup [A, x] is not contained in
Z(G), so that [A, x, x] ∕= {1} and hence ⟨[A, x], x⟩ is not abelian. On the
other hand, ⟨[A, x], x⟩ is a normal subgroup of G, so that ⟨[A, x], x⟩ = G
and hence A = [A, x] = G′, with xp ∈ M = CG(G

′).
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Conversely, assume that G = ⟨x⟩⋉G′ has the structure described in
the statement, and let X be any non-abelian subgroup of G. Obviously,
X is not contained in ⟨xp, G′⟩, and so there is a non-trivial element y of
X with order a power of p such that ⟨y,G′⟩ = G. Then [G′, y] = G′.
Consider the normal subgroup N = G′ ∩ X of G, and put Ḡ = G/N .
Then [Ḡ′, ȳ] = Ḡ′ and so also CḠ′(ȳ) = {1} by Lemma 1.6. On the other
hand,

[y,G′ ∩NG(X)] ≤ G′ ∩X = N,

and hence it follows that G′ ∩NG(X) = G′ ∩X. Therefore we have

NG(X) = X(G′ ∩NG(X)) = X,

ando so G has the property ℋ.

2. Self-normalizing infinite non-abelian subgroups

The first lemma of this section extends Lemma 1.4 to the class ℋ∞.

Lemma 2.1. Let G be a soluble locally nilpotent ℋ∞-group. Then all
infinite proper subgroups of G are abelian.

Proof. As the statement is obvious if the group G is nilpotent, we may
suppose that G is not nilpotent, so that in particular G′ is infinite and
G is not finitely generated. Consider any infinite non-abelian subgroup
X of G, and let x and y be elements of X such that xy ∕= yx. Then
⟨x, y,G′⟩ = G and G/G′ is finitely generated. For each element z of G,
the non-abelian subgroup ⟨x, y, z⟩ is not self-normalizing and hence it is
finite. Therefore G is periodic and G/G′ is finite. Since G′ is abelian, the
group G is hypercentral, so that every proper subgroup of G is properly
contained in its normalizer; thus all infinite proper subgroups of G are
abelian.

Lemma 2.2. Let G be an infinite soluble non-abelian group whose infi-
nite proper subgroups are abelian. Then G is a Černikov group and its
finite residual has no infinite proper G-invariant subgroups.

Proof. Clearly G satisfies the minimal condition on non-abelian sub-
groups, and hence it is a Černikov group by Lemma 1.1. Let J be the
finite residual of G, and let N be any infinite G-invariant subgroup of J .
Consider two elements x, y of G such that xy ∕= yx. Then ⟨x, y,N⟩ is
an infinite non-abelian subgroup of G, so that ⟨x, y,N⟩ = G and the
index ∣G : N ∣ is finite. Therefore N = J and J has no infinite proper
G-invariant subgroups.
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Lemma 2.3. Let G be an infinite non-abelian ℋ∞-group with finite
commutator subgroup. Then G is a finite extension of a group of type
p∞ for some prime number p.

Proof. The group G is periodic by Lemma 1.2, and so it contains a finite
non-abelian subgroup E. Then every proper subgroup of the abelian
group G/EG′ must be finite, and hence G/EG′ is a group of type p∞

for some prime number p. As EG′ is finite, it follows that G is a finite
extension of a group of type p∞.

Lemma 2.4. Let G be a periodic soluble ℋ∞-group with infinite commu-
tator subgroup. If N is an infinite G-invariant subgroup of G′ such that
G′/N is infinite, then G/G′ is a cyclic p-group for some prime number p
and N contains the p-component of G′.

Proof. As G′/N is infinite, the factor group Ḡ = G/N neither is abelian
nor minimal non-abelian. Moreover, Ḡ has the property ℋ, so that it
follows from Theorem 1.7 that Ḡ/Ḡ′ is a cyclic p-group while Ḡ′ is a
p′-group for some prime number p. Therefore G/G′ is a cyclic p-group
and the p-component of G′ is contained in N .

Lemma 2.5. Let G be a soluble p-group with the property ℋ∞. If G′ is
infinite, then G is a Černikov group.

Proof. Assume first that G is nilpotent. Then all infinite proper sub-
groups of G are abelian and hence G is a Černikov group by Lemma 1.1.
Suppose now that G is not nilpotent, so that in particular we may con-
sider an element x ∈ G ∖ CG(G

′) and G = ⟨x,G′⟩. Thus G′ has finite
index in G and so it contains the finite residual J of G. Assume for a
contradiction that Ḡ = G/J is infinite. Since Ḡ/Ḡ′ is finite, there exist in
Ḡ normal subgroups of finite index H̄ and K̄ such that H̄ < K̄ ≤ Ḡ′ and
K̄ ∩ ⟨x̄⟩ = {1}. As Ḡ′ is infinite, the group Ḡ/Z(Ḡ) is likewise infinite
and hence the subgroup ⟨x̄, H̄⟩ cannot be abelian; on the other hand,
⟨x̄, H̄⟩ is subnormal in Ḡ since Ḡ/H̄ is a finite p-group. It follows that
Ḡ = ⟨x̄, H̄⟩ and so

K̄ = ⟨⟨x̄ ∩ K̄⟩, H̄⟩ = H̄.

This contradiction shows that G/J is finite, and in particular the abelian
subgroup J is divisible. Moreover, Lemma 2.4 yields that the socle of J
is finite, so that J satisfies the minimal condition on subgroups and G is
a Černikov group.

Lemma 2.6. Let G be an infinite non-abelian ℋ∞-group with G′ < G.
Then one of the following conditions holds:
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(a) G is a Černikov group and its finite residual has no infinite proper
G-invariant subgroups;

(b) G = ⟨x⟩⋉G′, where x is an element of prime-power order pn, xp

belongs to CG(G
′) and the commutator subgroup G′ is a periodic

abelian group with no elements of order p.

Proof. It follows from Lemma 1.2 that G is periodic. Moreover, by Lem-
ma 2.3 we may assume that G′ is infinite and so abelian, and Lemma 2.2
allows to suppose that G contains some infinite proper non-abelian sub-
group, so that in particular G is not nilpotent and hence CG(G

′) is prop-
erly contained in G. Let x be an element of prime-power order pn in the
set G ∖ CG(G

′). As ⟨x,G′⟩ is an infinite non-abelian normal subgroup of
G, we have G = ⟨x,G′⟩, so that G/G′ is a cyclic p-group and G′ = [G′, x].
Write G′ = P ×Q, where P is a p-group and Q is a p′-group. It follows
from Lemma 2.4 that one of the subgroups P and Q must be finite.

Suppose first that Q is finite, so that the p-subgroup ⟨x, P ⟩ has finite
index in G. On the other hand, ⟨x, P ⟩ ≃ G/Q has infinite commutator
subgroup and hence it is a Černikov group by Lemma 2.5. Thus G itself
is a Černikov group. The finite residual J of G is contained in P and has
no proper subgroups of finite index, so that J does not contain infinite
proper G-invariant subgroups by Lemma 2.4.

Assume now that P is finite. Thus G/Q is a finite p-group and so
the infinite subgroup ⟨x,Q⟩ is subnormal in G. Moreover, ⟨x,Q⟩ is not
abelian as the commutator subgroup of G is infinite, and then G = ⟨x,Q⟩.
It follows that G′ = Q has no elements of order p. Finally, the normal
subgroup ⟨xp, G′⟩ is properly contained in G, so that it is abelian and
hence C⟨x⟩(G

′) = ⟨xp⟩. The lemma is proved.
It follows from Lemma 2.6 that any soluble non-abelian ℋ∞-group

either has the property ℋ or is a Černikov group, and hence it allows to
restrict our attention to the case of Černikov groups. In fact:

Corollary 2.7. Let G be a group such that G′ < G. If G belongs to
ℋ∞ ∖ ℋ, then it is a Černikov group.

Lemma 2.8. Let G be a Černikov group whose finite residual J has no
infinite proper G-invariant subgroups. If the centralizer CG(J) is abelian
and G/CG(J) has prime order, then every infinite non-abelian subgroup
of G contains J .

Proof. Let X be any infinite non-abelian subgroup of G. Then X is not
contained in CG(J) and hence G = XCG(J). It follows that the finite
residual Y of X is a normal subgroup of G, so that Y = J and J is
contained in X.
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We also need the following information on finite non-nilpotent groups
in the class ℋ.

Lemma 2.9. Let G = ⟨x⟩⋉G′ be a finite non-nilpotent ℋ-group, and let
A be an abelian subgroup of G. Then either A ≤ CG(G

′) or A = ⟨xg⟩ for
some g ∈ G.

Proof. Let pn be the order of the element x (where p is a prime); then
by Theorem 1.7 the order of G′ is prime to p and CG(G

′) = ⟨xp, G′⟩.
Suppose that A is not contained in CG(G

′), so that there exists an element
g of G such that xg ∈ A. As CG′(x) = {1}, it follows that A = ⟨xg⟩.

Our last two results complete the classification of soluble ℋ∞-groups.
Observe that of course a Černikov group is central-by-finite if and only if
it has finite commutator subgroup.

Theorem 2.10. Let G be a Černikov group such that G′ < G and
G/Z(G) is infinite. Then G is a ℋ∞-group if and only if it satisfies one
of the following conditions:

(a) G has the property ℋ;

(b) all infinite proper subgroups of G are abelian;

(c) G = ⟨x,G′⟩ for some element x of prime-power order pn, the finite
residual J of G is a p-group having no infinite proper G-invariant
subgroups, and G′ = J ×K where K is a finite abelian p′-subgroup
and C⟨x⟩(G

′) = ⟨xp⟩.

Proof. Suppose first that G is a group in the class ℋ∞∖ℋ. It follows from
Lemma 2.6 that the finite residual J of G has no infinite proper G-in-
variant subgroups; in particular, J is a p-group for some prime number p.
Moreover, the centralizer CG(J) is properly contained in G, as G/Z(G)
is infinite. Assume that the finite group G/J is nilpotent, and let g be
an element of prime-power order qk in the set G ∖ CG(J). Then ⟨g, J⟩ is
a non-abelian subnormal subgroup of G, so that ⟨g, J⟩ = G and G/J is
cyclic. Clearly, ⟨gq, J⟩ is an infinite proper normal subgroup of G, so that
it is abelian and hence ⟨gq, J⟩ = CG(J). Thus G/CG(J) has order q. Let
X be any infinite non-abelian subgroup of G. It follows from Lemma 2.8
that X contains J ; on the other hand, X is not contained in CG(J) and
hence X = G. Therefore in this case all infinite proper subgroups of G
are abelian.

Assume now that the finite group G/J is not nilpotent. As G′ is
infinite, every proper subgroup of G containing G′ is abelian; thus G/G′

neither is the set-theoretic union of its proper subgroups nor can be gen-
erated by two proper subgroups, and hence it is a cyclic q-group for some
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prime number q. In particular, J is contained in G′. As the finite non-
nilpotent group G/J has the property ℋ, it follows from Theorem 1.7
that

G/J = ⟨xJ⟩ ×G′/J,

where x is an element whose order is a power of q and G′/J is a q′-group.
The subgroup ⟨xq, G′⟩ must be abelian, and so C⟨x⟩(G

′) = ⟨xq⟩. More-
over, [G′, x] = G′ and hence it follows from Lemma 1.6 and Theorem 1.7
that G′ contains elements of order q. Therefore q = p and G′ = J ×K
for some finite abelian p′-subgroup K.

Conversely, suppose that G satisfies condition (c) of the statement.
Then

G′ = [G′, x] = [J, x]× [K,x],

so that [J, x] = J and [K,x] = K; as C⟨x⟩(K) = ⟨xp⟩, it follows from
Lemma 1.6 that CK(x) = {1}. Write C/J = CG′/J(xJ). We have

[K ∩ C, x] ≤ J ∩K = {1},

so that K ∩ C = {1} and hence

C = JK ∩ C = J × (K ∩ C) = J.

Therefore G/J is a finite non-nilpotent ℋ-group. Moreover, as G/Z(G) is
infinite, the centralizer CG(J) is properly contained in G, so that CG(J) =
⟨xp, G′⟩; in particular, CG(J) is abelian and G/CG(J) has order p. Let
X be any infinite non-abelian subgroup of G. Then X contains J by
Lemma 2.8, and so NG(X) if X/J is not abelian. Assume now that
X/J is abelian; as X is not contained in ⟨xp, G′⟩, Lemma 2.9 yields that
X = ⟨xg, J⟩ for some element g ∈ G. Finally,

[K ∩NG(X), X] ≤ K ∩X = {1},

so that K ∩ NG(X) ≤ CK(xg) = {1} and NG(X) = X. Therefore the
group G has the property ℋ∞.

In the case of central-by-finite groups, the description of the property
ℋ∞ must be different. To see this, it is enough to consider a direct
product

Alt(5)× P,

where Alt(5) is the alternating group of degree 5 and P is a group of type
p∞ for some prime number p > 5.

Theorem 2.11. Let G be an infinite soluble Černikov group such that
G/Z(G) is finite. Then G is a ℋ∞-group if and only if it satisfies one of
the following conditions:
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(a) all infinite proper subgroups of G are abelian;

(b) the finite residual J of G is a group of type q∞ for some prime
number q, G/J = ⟨xJ⟩⋉G′J/J is a (finite) non-nilpotent ℋ-group
and ⟨xp, G′, J⟩ is abelian (where p is the prime number such that
the coset xJ has p-power order).

Proof. Suppose first that G has the property ℋ∞. If G is nilpotent, all
infinite proper subgroups of G are abelian, so that we may assume that G
is not nilpotent, and hence the finite group G/J is likewise non-nilpotent
since J ≤ Z(G). Of course, G/J is a ℋ-group and so it follows from
Theorem 1.7 that

G/J = ⟨xJ⟩⋉G′J/J,

where the order of the coset xJ is a power of a prime number p. Finally,
J is a group of type q∞ for some prime q by Lemma 2.3.

Conversely, suppose that G satisfies condition (b) of the statement,
and let X be any infinite non-abelian subgroup of G. Then X contains
J and X/J cannot be cyclic as J ≤ Z(G). Assume that X/J is abelian,
so that it follows from Lemma 2.9 that X/J is contained in

CG/J(G
′J/J) = ⟨xp, G′, J⟩/J,

contradicting the assumption that ⟨xp, G′, J⟩ is abelian. Thus X/J is not
abelian and hence NG(X) = X. Therefore the group G belongs to the
class ℋ∞.
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