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Abstract. There are different ways to associate to a group a

certain graph. In this context, it is interesting to ask for the rela-

tions between the structure of the group, given in group-theoretical

terms, and the structure of the graphs, given in the language of

graph theory.

In this paper we recall some properties of the groups in which

permutability is a transitive relation and present a new character-

isation of the class of soluble groups in which permutability is a

transitive relation in graph-theoretical terms.

1. Permutability

In this paper, we will consider only finite groups. The notation and
definitions is the usual in the scope of group theory, see for instance [17].

Perhaps the story of groups in which normality or permutability is
transitive can be traced back to the results of Dedekind [15]. He studied
the groups in which all subgroups are normal. These groups receive now
the name of Dedekind groups. He proved:
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Theorem 1. A group G has all subgroups normal if and only if either G

is abelian, or G is a direct product of a quaternion group of order 8, an

elementary abelian 2-group, and an abelian group of odd order.

Recall that two subgroups H and K of a group G are said to permute

when HK = KH. This is equivalent to affirming that HK is a subgroup
of G. A subgroup H of a group G is said to be permutable in G when
H permutes with all subgroups of G. Sometimes, we require a subgroup
H of a group G to permute not necessarily with all subgroups of G,
but only with a selected family of subgroups of G. This is the case
of the S-permutable subgroups, which are the subgroups which permute
with all Sylow subgroups of the group. It is well-known that normal
subgroups are permutable, and obviously permutable subgroups are S-
permutable. However, the converses are not true, as we can see with an
extraspecial group of order p3 and exponent p2 for a prime p > 2, which
has permutable subgroups which are not normal, and the dihedral group
of order 8, which has S-permutable subgroups which are not normal.

As Dedekind did with groups in which all subgroups are normal, Iwa-
sawa studied the groups in which all subgroups are permutable in [22].

Theorem 2. A group whose subgroups are permutable is a nilpotent group

in which for every Sylow p-subgroup P , either P is a direct product of a

quaternion group and an elementary abelian 2-group, or P contains an

abelian normal subgroup A and an element b ∈ P such that P = A⟨b⟩ and

there exists a natural number s, with s ≥ 2 if p = 2, such that ab = a1+ps

for every a ∈ A.

It is a well-known fact that normality is not in general a transitive
relation. This motivates the introduction of subnormality, which is the
transitive closure of normality. Groups in which both relations coincide
are the groups in which normality is transitive and receive the name of
T-groups. The relation of permutability is not transitive in general. How-
ever, a result of Ore [25] shows that permutable subgroups are subnormal.
Hence the groups in which permutability and subnormality coincide are
the groups in which permutability is transitive and are called PT-groups.
Finally, according to a result of Kegel [23], S-permutable subgroups are
subnormal. Hence the groups in which S-permutable subgroups are sub-
normal coincide with the groups in which S-permutability is a transitive
relation and are called PST-groups. All T-groups are PT-groups, and all
PT-groups are PST-groups. These containments are proper, because the
extraspecial groups of order p3 and exponent p2 for a prime p are PT-
groups, but not T-groups, and the dihedral group of order 8 is a PST-
group which is not a PT-group. On the other hand, Dedekind groups
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are T-groups, Iwasawa p-groups for a prime p are PT-groups, and all
nilpotent groups are PST-groups.

These classes of groups have been widely studied during the last years,
especially in the soluble universe, with many characterisations available.
We will begin with the classical characterisations. Agrawal [3] charac-
terised soluble PST-groups as follows:

Theorem 3. A group G is a soluble PST-group if and only if the nilpotent

residual L of G is a Hall subgroup of odd order of G such that G acts on

L as a group of power automorphisms.

Here a power automorphism of a group X is an automorphism which
fixes every subgroup of X. This is equivalent to affirming that every
element x is sent by a power automorphism to a power of x.

If we impose in Agrawal’s characterisation the fact that the Sylow
subgroups are Iwasawa, we obtain the characterisation of Zacher [30] of
soluble PT-groups. If we force the Sylow subgroups to be Dedekind, we
obtain the characterisation of Gaschütz [18] of soluble T-groups.

These classical characterisations have the virtue of showing that these
classes consist of supersoluble groups in the soluble universe and that the
unique difference between all these three classes is the Sylow structure.
This will be made clear with the help of local characterisations. In this
context, we say that a class of groups X is local when for every prime
p there is a generalisation Xp of X such that X =

∩
p∈ℙXp. The notion

of p-soluble group, p-supersoluble group, and p-nilpotent group show,
respectively, that the classes of all soluble groups, all supersoluble groups,
and all nilpotent groups are local. From now on, p will denote a fixed,
but arbitrarily chosen, prime number.

Robinson [26] introduced the property Cp as follows: A group G sat-
isfies Cp when if a subgroup H is contained in a Sylow p-subgroup P of
G, then H is normal in the normaliser NG(P ). He characterised the sol-
uble T-groups as the groups satisfying the property Cp for every prime p.
Bryce and Cossey [14] defined a property Dp as follows: A group satisfies
Dp when all Sylow p-subgroups of G are Dedekind and the chief factors
of G of order divisible by p are cyclic and, as modules for G by conju-
gation, form a unique isomorphism class. They showed that Dp-groups
are Cp-groups and that a group G is a soluble T-group if and only if it
satisfies Dp for all primes p. It is worth noting that the classes Dp and
Cp coincide in the p-soluble universe.

For the class of soluble PT-groups, Beidleman, Brewster, and Robin-
son [10] introduced a property Xp: A group G satisfies Xp when if a
subgroup H is contained in a Sylow p-subgroup P of G, then H is per-
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mutable in the normaliser NG(P ). They proved that a group G is a
soluble PT-group if, and only if, it satisfies Xp for all primes p.

Alejandre, the first author, and Pedraza-Aguilera [4] introduced the
property U∗

p as follows: A group G satisfies U∗

p when G is all chief factors
of G of order divisible by p are cyclic and isomorphic when regarded as G-
modules by conjugation. They proved that a group is a soluble PST-group
when it satisfies U∗

p for all primes p. Note that this property U∗

p generalises
the property Dp given by Bryce and Cossey. The unique difference is that
here we do not impose conditions to the Sylow p-subgroups. The first
and the third authors introduced in [7] and [6] a new property Yp: A
group G satisfies Yp when for every pair of p-subgroups H and K of G
such that H ≤ K, H is S-permutable in NG(K). They showed that a
group is a soluble PST-group if and only G satisfies Yp for all primes p.
We note that U∗

p -groups satisfy Yp and that both properties coincide in
the p-soluble universe.

We must note that the easy way to generalise the properties Cp and Xp

(a group satisfies Y∗

p when if H is contained in a Sylow p-subgroup P of
G, then H is S-permutable in NG(P )) does not yield a sufficiently strong
property to characterise soluble PST-groups. The symmetric group of
degree 4 is an example of a group satisfying Y∗

p for all primes p which
is not a PST-group. The main difference is that the conditions Cp and
Dp imply that the group has Dedekind and Iwasawa Sylow p-subgroups,
respectively. These are very strong conditions and impose major restric-
tions on the structure of the group, in particular, the properties Cp and
Xp are inherited by subgroups. For the property Yp, we do not have such
restrictions and we must impose in the definition that the property is
closed under taking subgroups. Furthermore, as shown in [7], Cp-groups
coincide with the Yp-groups with Dedekind Sylow p-subgroups and Xp-
groups are exactly the Yp-groups with Iwasawa Sylow p-subgroups.

There are also characterisations of T-, PT-, and PST-groups for finite,
not necessarily soluble, groups. A long list of references is available in the
paper of Beidleman and Ragland [11]. There also exist some descriptions
of PT-groups in some universes of infinite groups, like the ones given by
the first author, Kurdachenko, and Pedraza in [9] or the first author,
Kurdachenko, Pedraza, and Otal in [8].

2. Graphs and groups

We will consider only graphs which are undirected, simple (that is, with
no parallel edges), and without loops. These graphs will be characterised
by the set of vertices and the adjacency relation between the vertices.
Only basic concepts about graphs will be needed for this paper. They
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can be found in any book about graph theory or discrete mathematics,
for example, [16].

Given a group G, there are many ways to associate a graph to G

in such a way the vertices are associated with families of elements or
subgroups and in which two vertices are adjacent if and only if they
satisfy a certain relation. Since the graph can be studied in terms of
graph theory, we can ask about the structure of the group (in terms of
group theory) and the structure of the graph (in terms of graph theory).
In other terms, we are interested in characterising certain properties of
the group in terms of some properties of the graph, or, more in general,
to study the influence of a property the group on the structure of the
graph or the influence of a property of the graph on the structure of the
group. This has been a fruitful topic in the last years. We will present
some results which illustrate these ideas.

We can begin with the commutativity graph or commuting graph. This
graph has as vertices the elements of the group, and two vertices are
adjacent when they commute (as elements of the group). It is obvious
that the groups in which the commutativity graph is complete (in the
sense that every two vertices are adjacent) are exactly the abelian groups.
This graph has been used to study simple groups since the paper of
Stellmacher [27].

The following variation of the previous example gives a characterisa-
tion for the groups in which all subgroups are permutable. We will call
it the graph of permutability of cyclic subgroups. Given a group G, con-
sider the graph in which the vertices are the cyclic subgroups of G and in
which every two vertices are adjacent when they permute. A group has all
subgroups permutable if and only if the graph of permutability of cyclic
subgroups is complete. A similar graph with vertices the non-normal
subgroups was studied by Bianchi, Gillio, and Verardi (see [13, 12, 19]).

Another graph which has deserved a lot of attention is the prime

graph. In this graph, the vertices are the prime numbers dividing the
order of the group G and two different vertices p and q are connected
when G possesses an element of order pq. As a matter of example, in the
cyclic group of order 6, this graph is complete, but in the symmetric group
of degree 3, this graph has two isolated vertices. The first references of the
prime graph known to the authors correspond to Gruenberg and Kegel
in an unpublished manuscript, and Williams, who studied the number of
connected components of the prime graph of finite groups (see [20, 28,
29]).

For our purposes, a generalisation of the prime graph introduced by
Abe and Iiyori in [2] becomes interesting. Given a group G, we construct
the graph ΓG in the following way: The vertices of ΓG are, like in the
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prime graph, the prime numbers dividing the order of G, but two different
vertices p and q are adjacent when G has a soluble subgroup of order
divisible by pq. Abe and Iiyori [2] proved:

Theorem 4. If G is a non-abelian simple group, then ΓG is connected,

but not complete.

This theorem is used in the proof of our characterisation of soluble
PT-groups to prove that the groups in which our graph is complete must
be soluble.

Herzog, Longobardi, and Maj [21] have considered the graph whose
vertices are the non-trivial conjugacy classes of a group G and in which
two non-trivial conjugacy classes C and D of G are connected if there
exist c ∈ C and d ∈ D such that cd = dc. They show that if G is a
soluble group, then this graph has at most two connected components,
each of diameter at most 15. They also study the structure of the groups
in which there are no edges between non-central conjugacy classes and
the relation between this graph and the prime graph.

Of course, not all graph properties can be reduced to graph complete-
ness. For instance, the non-commuting graph of a non-abelian group G is
defined as follows: its vertices are the non-central elements of G, and two
vertices are adjacent when they do not commute. This graph has been
studied by Neumann [24]. Abdollahi, Akbari, and Maimani [1] proved
the following result about this graph:

Theorem 5. If G is a non-abelian group, then its non-commuting graph

G is connected, Hamiltonian, its diameter is 2 and its girth is 3. More-

over, this graph is planar if and only if G is isomorphic to the symmetric

group of degree 3 or to a non-abelian group of order 8.

3. A characterisation of soluble PT-groups with graphs

Now we are in a position to present a characterisation of soluble PT-
groups in terms of graphs.

Motivated by the results of Herzog, Longobardi, and Maj [21], given a
group G, we consider a graph Γ whose vertices are the conjugacy classes
of cyclic subgroups of G and in which two vertices are adjacent when
there are representatives of both conjugacy classes which permute. In
other words, ClG(⟨x⟩) is adjacent to ClG(⟨y⟩) if we can find an element
g ∈ G such that ⟨x⟩ permutes with ⟨yg⟩.

The main result of [5] is:

Theorem 6. G is a soluble PT-group if and only if the graph Γ is com-

plete.
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