Algebra and Discrete Mathematics Number 3. **(2009).** pp. 94 – 101 © Journal "Algebra and Discrete Mathematics" RESEARCH ARTICLE

On speciality of Jordan brackets

Ivan Shestakov

Communicated by guest editors

ABSTRACT. We conjecture a criterium of speciality for Jordan superalgebras of brackets that generalizes the corresponding criterium for Jordan Poisson superalgebras from [8]. We prove the necessarity condition of the criterium. The question on its sufficiency remains open.

> Dedicated to Professor Miguel Ferrero on occasion of his 70-th anniversary

1. Introduction

Let $\Gamma = \Gamma_0 + \Gamma_1$ be an associative commutative superalgebra over a ground field F, char $F \neq 2$, with a bracket $\{ , \} : \Gamma \times \Gamma \to \Gamma$. Consider the direct sum of two copies of the vector space Γ

$$J = \Gamma + \Gamma x,$$

with the product

$$\begin{array}{rcl} a \cdot b &=& ab, \\ a \cdot bx &=& (ab)x, \\ (bx) \cdot a &=& (-1)^{|a|} (ba)x, \\ ax \cdot bx &=& (-1)^{|b|} \{a, b\}, \end{array}$$

Partially supported by CNPq, grant 304991/2006-6 and by FAPESP, grant 05/60337-2.

2000 Mathematics Subject Classification: 17C50, 17C70, 17A70.

Key words and phrases: Jordan superalgebra, Jordan bracket, Poisson bracket, special algebra, Kantor double.

where $a, b \in \Gamma_0 \cup \Gamma_1$, juxtaposition stands for the product in Γ and $(-1)^{|a|} = (-1)^k$ if $a \in \Gamma_k$. We will refer to J as a *Kantor double* of $(\Gamma, \{,\})$ and will denote $J = Kan(\Gamma, \{,\})$.

A bracket $(\Gamma, \{,\})$ is called Jordan if the Kantor double $Kan(\Gamma, \{,\})$ is a Jordan superalgebra. I. L. Kantor [2] proved that every Poisson bracket is Jordan.

In [4] it was shown that all Jordan superalgebras that correspond to the so called "superconformal algebras" are Kantor doubles or are embeddable in Kantor doubles (the Cheng-Kac series). Moreover, the same is true for all simple finite-dimensional Jordan superalgebras over a field of prime characteristic with a nonsemisimple even part (see [7]).

A Jordan superalgebra J is called *special* if it can be embedded into a Jordan superalgebra of the type $A^{(+)}$, which is obtained from an associative superalgebra A via the new multiplication $a \cdot b = \frac{1}{2}(ab + (-1)^{|a||b|}ba)$. Furthermore, J is called *i-special* if it is a homomorphic image of a special one.

In [8] it was proved that for every Poisson bracket the corresponding Kantor double $Kan(\Gamma, \{ , \})$ is *i*-special. Moreover, in this case $Kan(\Gamma, \{ , \})$ is special if and only if $\{\{\Gamma, \Gamma\}, \Gamma\} = 0$.

In [6] it was proved that all Jordan brackets are embeddable into Poisson brackets. In view of [8] this implies that all Jordan Kantor doubles are *i*-special. The problem of speciality of certain Jordan brackets was also considered in [6], and it was proved, in particular, that the Jordan superalgebras of the Cheng-Kac series are special.

Here we return to the question of speciality of Jordan superalgebras of brackets in general case. We formulate a conjectural criterium of speciality for these superalgebras that generalizes the corresponding criterium from [8] for Jordan Poisson superalgebras. We prove that this condition is verified in special superalgebras and we conjecture that it implies the speciality as well. However, the conjecture remains open.

2. A necessary condition for speciality of Jordan brackets

We start with some definitions and notations.

By a superalgebra we mean a Z_2 -graded algebra $A = A_0 + A_1$. Let $G = \langle 1, e_i, i \geq 1 | e_i e_j + e_j e_i = 0 \rangle$ denote the Grassmann (or exterior) algebra. Then $G = G_0 + G_1$ is a Z_2 -graded algebra, where G_0, G_1 are linear spans of all tensors of even and odd length, respectively.

Let \mathcal{V} be a variety of algebras defined by homogeneous identities (see [1, 10]). A superalgebra $A = A_0 + A_1$ is said to be a \mathcal{V} -superalgebra if its Grassmann envelope $G(A) = G_0 \otimes A_0 + G_1 \otimes A_1$ lies in \mathcal{V} .

In this way one can define Lie superalgebras (for characteristic different from 3^1), Jordan superalgebras, etc. Clearly, associative superalgebras are just Z_2 -graded associative algebras.

If A is an associative superalgebra then the vector space A with a new operation $a \cdot b = \frac{1}{2}(ab + (-1)^{|a||b|}ba)$ is a Jordan superalgebra which is denoted $A^{(+)}$. A Jordan superalgebra is said to be *special* if it is embeddable into a superalgebra of type $A^{(+)}$. Otherwise J is said to be *exceptional*. A Jordan superalgebra is *i-special* if it is a homomorphic image of a special Jordan superalgebra.

Let $\Gamma = \Gamma_0 + \Gamma_1$ be a unital associative commutative superalgebra with a skewsymmetric bilinear superform $\{,\}: \Gamma \times \Gamma \to \Gamma, \{\Gamma_i, \Gamma_j\} \subseteq \Gamma_{i+j}$ which we call a bracket.

Consider the Kantor double $Kan(\Gamma, \{,\}) = \Gamma + \Gamma x$ (see the Introduction), with the Z₂-grading given by $Kan(\Gamma, \{,\})_0 = \Gamma_0 + \Gamma_1 x$, $Kan(\Gamma, \{,\})_1 = \Gamma_1 + \Gamma_0 x$.

A bracket $\{,\}$ is said to be *Jordan* if the Kantor double $Kan(\Gamma, \{,\})$ is a Jordan superalgebra. For a Jordan bracket $\{,\}$, the mapping D: $a \mapsto \{a,1\}$ is a derivation of Γ (see [5]). Moreover, in [5, 3] it was proved that a bracket $\{,\}$ is Jordan if and only if for arbitrary elements $a, b, c \in \Gamma_0 \cup \Gamma_1, x \in \Gamma_1$ hold the identities

$$\{a, bc\} = \{a, b\}c + (-1)^{|a||b|}b\{a, c\} - D(a)bc,$$
(1)

$$J(a, b, c) := \{\{a, b\}, c\} + (-1)^{|a||b|+|a||c|}\{\{b, c\}, a\}$$

$$+ (-1)^{|a||c|+|b||c|}\{\{c, a\}, b\}$$

$$= -\{a, b\}D(c) - (-1)^{|a||b|+|a||c|}\{b, c\}D(a)$$

$$- (-1)^{|a||c|+|b||c|}\{c, a\}D(b),$$
(2)

$$\{\{x, x\}, x\} = -\{x, x\}D(x).$$
(3)

Identity (3) is needed only in characteristic 3 case, otherwise it follows from (2) (see [3]).

A Jordan bracket $\{ , \}$ is called a *Poisson bracket* if D(a) = 0 for any $a \in \Gamma$. Observe that in this case Γ is a Lie superalgebra with respect to the bracket, and the identities (1) and (2) transform to the graded *Leibniz* and *Jacobi* identities.

A Jordan bracket $\{,\}$ is called a *vector bracket* if $\{a,b\} = D(a)b - aD(b)$ for any $a, b \in \Gamma$.

Let us call a Jordan bracket special (*i*-special) if the corresponding Kantor double is special (respectively, *i*-special). We first formulate some previous results on speciality of Jordan brackets:

¹In characteristic 3 case the definition of a Lie superalgebra needs an aditional condition: [[x, x], x] = 0 for any odd element x.

Theorem 2.1. [5, 9] Every vector bracket is special.

Theorem 2.2. [8] Every Poisson bracket $\{,\}$ is i-special. It is special if and only if $\{\{\Gamma, \Gamma\}, \Gamma\} = 0$.

Theorem 2.3. [6] For every Jordan bracket $(\Gamma, \{,\})$, the corresponding Kantor double $Kan(\Gamma, \{,\})$ is embedded into a superalgebra of Poisson bracket and therefore is i-special.

Let $(\Gamma, \{,\})$ be a Jordan bracket, $D : a \mapsto \{a, 1\}$ be the associated derivation of Γ . Following [5], define a new bracket on Γ :

$$\langle a, b \rangle = \{a, b\} - D(a)b + aD(b).$$

If the bracket $\{ , \}$ is Poisson then $\langle , \rangle = \{ , \}$, and if $\{ , \}$ is a vector bracket, then the corresponding bracket \langle , \rangle is trivial.

The main result of this paper is the following

Theorem 2.4. If a Jordan bracket $(\Gamma, \{,\})$ is special then the bracket $\langle a, b \rangle$ satisfies the identity

$$\langle \langle a, b \rangle, c \rangle = -D(a) \langle b, c \rangle + (-1)^{|a||b|} D(b) \langle a, c \rangle.$$
(4)

Observe that identity (4) holds trivially for vector brackets, and for Poisson brackets it coincides with the condition $\{\{\Gamma, \Gamma\}, \Gamma\} = 0$ from [8].

We will need an auxiliary lemma. For superalgebras A, B we denote by $A \otimes B$ their graded tensor product, which coincides as a vector space with the usual tensor product $A \otimes B$ and has the following gradation and multiplication:

$$(A\tilde{\otimes}B)_0 = A_0 \otimes B_0 + A_1 \otimes B_1, \ (A\tilde{\otimes}B)_1 = A_0 \otimes B_1 + A_1 \otimes B_0, (a\tilde{\otimes}b)(c\tilde{\otimes}d) = (-1)^{|b||c|}ac\tilde{\otimes}bd.$$

It is easy to see that a graded tensor product of two commutative (associative) superalgebras is commutative (associative) as well.

Lemma 2.5. Let Λ be an associative commutative superalgebra.

- i) If a Jordan superalgebra J is special, then the graded tensor product Λ̃⊗J is a special Jordan superalgebra as well.
- ii) For a Jordan bracket $(\Gamma, \{,\})$, the following isomorphism holds:

 $\Lambda \tilde{\otimes} Kan(\Gamma, \{,\}) \cong Kan(\Lambda \tilde{\otimes} \Gamma, \{,\}),$

where the bracket on the commutative superalgebra $\Lambda\tilde{\otimes}\Gamma$ is defined via

$$\{\lambda \tilde{\otimes} a, \mu \tilde{\otimes} b\} = (-1)^{|a||\mu|} \lambda \mu \tilde{\otimes} \{a, b\}.$$

Proof. i). Let A be an associative superalgebra and $i : J \to A^{(+)}$ be a monomorfism of Jordan superalgebras. Then one can easily check that the mapping $\lambda \tilde{\otimes} a \mapsto \lambda \tilde{\otimes} i(a)$ is a monomorfism of a superalgebra $\Lambda \tilde{\otimes} J$ into the superalgebra $(\Lambda \tilde{\otimes} A)^{(+)}$. It is clear that $\Lambda \tilde{\otimes} A$ is associative, hence $\Lambda \tilde{\otimes} J$ is a special Jordan superalgebra.

ii). The direct calculation shows that the mapping $\lambda \tilde{\otimes} (a + bx) \mapsto \lambda \tilde{\otimes} a + (\lambda \tilde{\otimes} b)x$ is an isomorphism of the superalgebras $\Lambda \tilde{\otimes} Kan(\Gamma, \{,\}) = \Lambda \tilde{\otimes} (\Gamma + \Gamma x)$ and $Kan(\Lambda \tilde{\otimes} \Gamma, \{,\}) = \Lambda \tilde{\otimes} \Gamma + (\Lambda \tilde{\otimes} \Gamma)x$.

Corollary 2.6. If a Jordan bracket $(\Gamma, \{ , \})$ is special then so is the bracket $(G(\Gamma), \{ , \})$, where $G(\Gamma)$ is the Grassmann envelope of Γ , with the bracket $\{\eta \otimes a, \theta \otimes b\} = \eta \theta \otimes \{a, b\}.$

Proof. In fact, if $\sqrt{-1} \in F$ then it is easy to see that $G(\Gamma) \cong (G\tilde{\otimes}\Gamma)_0$, and since $Kan((G\tilde{\otimes}\Gamma)_0, \{,\}) \subseteq Kan(G\tilde{\otimes}\Gamma, \{,\}) \cong G\tilde{\otimes}Kan(\Gamma, \{,\})$, the speciality of $(\Gamma, \{,\})$ implies that of $(G(\Gamma), \{,\})$. If $\sqrt{-1} \notin F$, we can extend F and consider the corresponding scalar extension of Γ which is evidently special.

Proof of the theorem. Observe first that a commutative associative superalgebra Γ with a superanticommutative bracket \langle , \rangle satisfies identity (4) if and only if the Grassmann envelope $G(\Gamma)$, with the bracket $\langle \eta \otimes a, \theta \otimes b \rangle =$ $\eta \theta \otimes (\{a, b\} - D(a)b + aD(b))$ and the derivation $D(\eta \otimes a) = \eta \otimes D(a)$, satisfies the identity

$$\langle \langle a, b \rangle, c \rangle = -D(a) \langle b, c \rangle + D(b) \langle a, c \rangle.$$
(5)

So, passing to $G(\Gamma)$, we see that in view of the Corollary it is sufficient to prove identity (5) for the case $\Gamma = \Gamma_0$.

Assume that $J = Kan(\Gamma, \{ , \})$ is special, that is, there exists an associative superalgebra $A = A_0 + A_1$ such that $J \subseteq A^{(+)}$. Below, all the elements are assumed to be homogeneous. We will identify elements of J with their images in A, and will denote, during the proof, by $a \cdot b$ and ab the products in J and in A respectively. Moreover, for $r, s \in A$ denote $[r, s] = rs - sr, r \circ s = rs + sr$. Without loss of generality we may assume that the superalgebra A is generated by the set $\Gamma \cup x$. We will need the following identities which are true in any associative algebra (see [8]):

$$[[a,b],c] = (b \circ c) \circ a - b \circ (c \circ a) = 4((b \cdot c) \cdot a - b \cdot (c \cdot a)), \quad (6)$$

$$[a \circ c, b \circ c] = [a, c^2] \circ b - [b, c^2] \circ a + ([a, b] \circ c) \circ c + [[a, c], [b, c]].$$
(7)

Let $a, b, c \in \Gamma$, then we have

$$[a \cdot x, b \cdot x] = 2(a \cdot x) \cdot (b \cdot x) = 2\{a, b\},$$
(8)

$$[a, x^{2}] = [a \circ x, x] = 2[a \cdot x, x] = 2[a \cdot x, 1 \cdot x]$$

= 4{a, 1} = 4D(a), (9)

and by (6)

$$[[a,b],x] = [[a,x],b] = [[a,b],c] = 0.$$
(10)

Now by (8), (7) and (9)

 $8\{a,b\} = [a \circ x, b \circ x] = 8D(a)b - 8D(b)a + 4[a,b]x^2 + [[a,x],[b,x]], (11)$ which yields

$$\begin{array}{ll} \langle a,b\rangle &=& \displaystyle\frac{1}{2}[a,b]x^2+\frac{1}{8}[[a,x],[b,x]],\\ \langle \langle a,c\rangle,b\rangle &=& \displaystyle\frac{1}{2}[\langle a,c\rangle,b]x^2+\frac{1}{8}[[\langle a,c\rangle,x],[b,x]]. \end{array}$$

Consider

$$\begin{split} [\langle a, c \rangle, b] &= \frac{1}{2}[[a, c]x^2, b] + \frac{1}{8}[[[a, x], [c, x]], b] \\ &\stackrel{(10)}{=} \frac{1}{2}[a, c][x^2, b] + \frac{1}{8}([[[a, x], b], [c, x]] + [[a, x], [[c, x], b]]) \\ &\stackrel{(9),(10)}{=} -2[a, c]D(b); \end{split}$$

$$\begin{split} [\langle a, c \rangle, x] &= \frac{1}{2} [[a, c] x^2, x] + \frac{1}{8} [[[a, x], [c, x]], x] \stackrel{(10)}{=} \frac{1}{8} [[[a, x], [c, x]], x] \\ \stackrel{(6)}{=} \frac{1}{8} (([c, x] \circ x) \circ [a, x] - [c, x] \circ (x \circ [a, x])) \\ &= \frac{1}{8} ([c, x^2] \circ [a, x] - [c, x] \circ [a, x^2]) \\ \stackrel{(9)}{=} \frac{1}{2} (D(c) \circ [a, x] - D(a) \circ [c, x]) = D(c)[a, x] - D(a)[c, x]. \end{split}$$

Furthermore,

$$\begin{split} [[\langle a, c \rangle, x], [b, x]] &= [D(c)[a, x] - D(a)[c, x], [b, x]] \\ \stackrel{(10)}{=} D(c)[[a, x], [b, x]] - D(a)[[c, x], [b, x]] \\ \stackrel{(11)}{=} D(c)(8\{a, b\} - 8D(a)b + 8D(b)a - 4[a, b]x^2) \\ -D(a)(8\{c, b\} - 8D(c)b + 8D(b)c - 4[c, b]x^2) \\ &= 8(D(c)\langle a, b \rangle - D(a)\langle c, b \rangle \\ -\frac{1}{2}(D(c)[a, b] - D(a)[c, b])x^2). \end{split}$$

Therefore,

$$\begin{aligned} \langle \langle a, c \rangle, b \rangle &= -[a, c] D(b) x^2 + D(c) \langle a, b \rangle - D(a) \langle c, b \rangle \\ &- \frac{1}{2} (D(c)[a, b] - D(a)[c, b]) x^2 \\ &= D(c) \langle a, b \rangle - D(a) \langle c, b \rangle \\ &- \frac{1}{2} (2D(b)[a, c] + D(c)[a, b] - D(a)[c, b]) x^2. \end{aligned}$$

Consider now

$$4D(a) \circ [a,b] \stackrel{(9)}{=} [a,x^2] \circ [a,b] = [a \circ [a,b],x^2] - a \circ [[a,b],x^2] = [[a^2,b],x^2] - a \circ ([[a,b],x] \circ x) \stackrel{(10)}{=} [[a^2,b],x] \circ x.$$

But $a^2 = a \cdot a \in \Gamma$, hence $[[a^2, b], x] = 0$ by (10) and $D(a) \circ [a, b] = 2D(a)[a, b] = 0$. Linearizing the last identity, we get

$$D(a)[c,b] + D(c)[a,b] = 0,$$

which implies

$$\begin{split} & 2D(b)[a,c] + D(c)[a,b] - D(a)[c,b] \\ &= (D(b)[a,c] + D(c)[a,b]) + (D(a)[b,c] + D(b)[a,c]) = 0. \end{split}$$

Therefore,

$$\langle \langle a, c \rangle, b \rangle = D(c) \langle a, b \rangle - D(a) \langle c, b \rangle$$

which proves the theorem.

It remains an open question, whether the identity (4) is sufficient for a Jordan bracket to be special.

References

- Jacobson, N., Structure and representations of Jordan algebras. AMS, Providence, RI, 1968.
- Kantor, I. L., Jordan and Lie superalgebras determined by a Poisson algebra, Algebra and Analysis (Tomsk, 1989), 55–79, Amer. Math. Soc. Transl. Ser. (2) 151 (1992) 55–80.
- [3] King, D., McCrimmon, K., The Kantor construction of Jordan superalgebras, Comm. Algebra 20 (1) (1992) 109–126.
- [4] Kac, V. G., Martinez, C. and Zelmanov, E. Graded simple Jordan superalgebras of growth one, Memoirs of the AMS, v.150, no. 711 (2001).

 \square

- [5] McCrimmon, K., Speciality and non-speciality of two Jordan superalgebras, J. of Algebra 149, no. 2, 326-351, 1992.
- [6] Consuelo Martínez, Ivan Shestakov, and Efim Zelmanov, Jordan superalgebras defined by brackets. J. London Math. Soc. (2) 64 (2001), no. 2, 357–368.
- [7] Consuelo Martínez, Efim Zelmanov, Simple finite dimensional Jordan superalgebras of prime characteristic, J.of ALgebra, 236, no.2, 575-629 (2001).
- [8] Shestakov, I. P., Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras. Algebra i Logika 32:5 (1993), 572–585. English translation: Algebra and Logic 32:5 (1993), 309–317.
- [9] Shestakov, I. P., Superalgebras and counterexamples, Siberian Math. J., 32 (1991), 1052–1060.
- [10] Zhevlakov, K. A., Slinko, A. M., Shestakov, I. P., Shirshov, A. I., *Rings that are nearly associative*. Moscow, Nauka, 1978. English transl.: Academic Press, N.Y., 1982.

CONTACT INFORMATION

Ivan Shestakov

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil and Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia *E-Mail:* shestak@ime.usp.br

Received by the editors: 31.08.2009 and in final form 21.09.2009.