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Abstract. In this paper we consider a problem due to Zel-

manowitz. Specifically, we study under what conditions a uniform

compressible module whose nonzero endomorphisms are monomor-

phisms is critically compressible. We give a positive answer to

this problem for the class of nonsingular modules, quasi-projective

modules and for modules over rings which are in a certain class of

rings which contains at least the commutative rings and the left

duo rings.
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Introduction

The notions of compressible modules (a module is called compress-
ible if it can be embedded in any of its nonzero submodules) and crit-
ically compressible modules (a compressible module is called critically
compressible if it can not be embedded in any proper factor module)
appeared in the theory of primitive rings in an attempt to extend the
Jacobson density theorem, see [6] and [7]. In these papers Zelmanowitz
succeed to extend the entire theory of primitive rings to the larger class
of weakly primitive rings (rings that possess a faithful critically com-
pressible module) and introduced the associated class of rings. Also, in
[4], the author focused his attention on the extended density theorem for
superrings and in the same way it was necessary the above concepts.
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.86 Zelmanowitz’s problem

For example in [6], Zelmanowitz claimed that a “compressible uni-
form module whose nonzero endomorphisms are monomorphisms would
be critically compressible". Later in [7] he said that he was unable ei-
ther to prove or to disprove the statement. In [2] the author called the
above statement “Zelmanowitz’s Conjecture". In this paper we prefer to
enunciate it as a question. So we have the following:

Zelmanowitz’s question: Under what conditions a compressible
uniform module whose nonzero endomorphisms are monomorphisms is
critically compressible?

In [2] it was proved that for modules over commutative rings the above
question has a positive answer and the concepts of the compressible and
critically compressible modules are equivalent in the case of modules over
duo rings. Besides that, self-similar modules (in [3], these modules are
also called isomorphically compressible) with some additional hypothesis
become critically compressible. In [3], the author presents some condi-
tions for compressible modules to be simple, for example, a compressible
module is simple if it has a simple submodule. In this special case we can
see that in the class of modules over semi-Artinian rings, this question is
easily answered.

This paper is organized in three sections. In section 1 we give pre-
liminary definitions and we show some results that allow us to rewrite
the hypotheses of the Zelmanowitz’s question. In section 2 we give an
affirmative answer to the problem in the class of quasi-projective mod-
ules. Using the equivalent hypotheses that were obtained in section 1, we
extend some results given in [2]. Section 3 is strongly related with the
primeness condition of modules. Therein it is defined a class C of rings
such that the Zelmanowitz’s question is answered affirmatively. Also, us-
ing a suitable property given in ([5], 3.13) we give a positive answer to
the problem.

1. Reformulating Zelmanowitz’s question

Throughout this paper, it is assumed that R is an associative ring
with an identity element. Unless otherwise indicated modules are unitary
left modules and homomorphisms are written as right operators. If N is
a submodule of M , we write N ≤ M and if N is an essential submodule
of M then we write N ⊴M . A partial endomorphism of a module M is
a homomorphism from a submodule of M into M .

Firstly we recall some definitions. A nonzero R-submodule N of a
module M is called rational or dense in M if HomR(X/N,M) = 0,
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for any N ≤ X ≤ M . An R-module M is called monoform if every
submodule is dense. This definition is equivalent to the second condition
in the next proposition.

Proposition 1.1. [7, Prop. 1.1] The following conditions are equivalent
for a compressible module M :

(i) M is critically compressible;

(ii) Every nonzero partial endomorphism of M is a monomorphism.

An R-module M is called polyform if every essential submodule of M
is dense in M and M is uniform if every submodule of M is essential. It
follows from [5], that for an R-module M the following statements are
equivalent:

(i) M is polyform;
(ii) For any submodule K ≤ M and for every nonzero homomorphism

f : K → M , Ker(f) is not essential in K.

Now we are able to give results that enable us to reformulate the Zel-
manowitz’s question. An R-module M is retractable if HomR(M,X) ∕= 0
for every X ≤ M . Often we change the hypothesis compressible by re-
tractable and this last class of modules is larger than the first.

It is clear that compressible modules are retractable, but the converse
is not true. Indeed, if D is a division ring and V a finite dimensional
D-vector space, then V is a retractable D-module but it is clearly not
compressible. We start with the following result:

Proposition 1.2. Suppose that M is a retractable R-module. If every
nonzero f ∈ End(M) is a monomorphism, then every nonzero element
of HomR(M,N) is a monomorphism, for any nonzero submodule N of
M . In particular, M is compressible.

Proof. Let N be a nonzero submodule of M and g : M → N a nonzero
homomorphism which there exists because M is retractable. Considering
the canonical inclusion i : N →֒ M , gi is a monomorphism and obviously
g is a monomorphism. The last part is clear.

Since every endomorphism of M is also a partial endomorphism of M ,
it follows from the last result that the Proposition 1.1 can be extended
to the setting of retractable modules.

Proposition 1.3. Let M be a retractable R-module. The following state-
ments are equivalent:

(i) M is critically compressible;
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(ii) Every nonzero partial endomorphism of M is a monomorphism.

It will be necessary the following results to give another formulation
to the Zelmanowitz’s question which is more useful for our purposes.

Theorem 1.4. Let M be an R-module. The following conditions are
equivalent:

(i) M is compressible and every nonzero endomorphism of M is a
monomorphism;

(ii) M is compressible and End(M) is a domain;

(iii) M is retractable and every nonzero endomorphism of M is a
monomorphism;

(iv) M is retractable and End(M) is a domain.

Proof. It is clear that (i)⇒(ii) and (ii)⇒(iv). The implication (iv)⇒(iii)
is an easy observation and (iii)⇒(i) follows from Proposition 1.2.

Proposition 1.5. Let M be a retractable uniform module such that
End(M) is a domain. Then M is critically compressible if and only
if M is polyform.

Proof. Suppose that M is polyform. Since a module is polyform and
uniform if and only if it is a monoform module (see [5, 11.3 and 11.1]),
by using that M is retractable, we have that M is critically compressible
from Proposition 1.3. Conversely, if M is critically compressible, then by
Proposition 1.3 it is monoform, and hence polyform.

Now we are ready to reformulate our problem.

Zelmanowitz’s question 1.6. Under what conditions a retractable uni-
form R-module M such that End(M) is a domain would be a polyform
module?

Here, we answer a question of Christian Lomp who asked us about
a possible extended Zelmanowitz’s question: “Is every compressible uni-
form module whose endomorphism ring is a domain a monoform mod-
ule?" Note that it follows from Theorem 1.4 that the Lomp’s question is
equivalent to the Zelmanowitz’s question.

Although the next proposition is given in [4], we would like to present
a more direct proof of this result.

Proposition 1.7. Let M be a retractable R-module. Suppose that M is
a nonsingular uniform module. Then M is critically compressible.
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Proof. By Proposition 1.3 it is enough to prove that M is monoform. Let
N be a nonzero submodule of M and P a submodule of M such that
N ≤ P ≤ M . We can see that P/N is a singular R-module because M
is uniform and it follows immediately that HomR(P/N,M) = 0 (see [1,
Proposition 1.20 (a)]).

As a final comment in this section we would like to observe that in [7],
the author claimed that if M is a compressible module then M is singular
or M is nonsingular. By Proposition 1.7 the Zelmanowitz’s question has
an affirmative answer in the class of nonsingular modules. So an another
question arises: under the Zelmanowitz’s hypotheses is a singular module
critically compressible? We are not able to answer this question but we
believe that it is false.

2. Zelmanowitz’s question and fully retractability

In this section, we generalize results given in [2] and we show that in
the class of quasi-projective modules the Zelmanowitz’s question has an
affirmative answer. We recall the concept of fully retractable that was
given in [9].

Definition 2.1. A module M is said to be fully retractable if for every
nonzero submodule N of M and every nonzero element g ∈ HomR(N,M)
we have HomR(M,N)g ∕= 0.

Clearly, if M is fully retractable then M is retractable. Under some
additional conditions we can get the reverse of the last implication as we
will see later on.

According to [2], a nonzero R-module M is called self-similar if every
nonzero submodule of M is isomorphic to M . It is clear that self-similar
modules are fully retractable, but the converse is not true. Indeed, for
instance ℤ4 is a fully retractable ℤ-module which is not self-similar.

The next two propositions generalize Theorems 4.1 and 4.2 of [2],
respectively.

Proposition 2.2. If M is fully retractable such that End(M) is a do-
main, then M is polyform.

Proof. Suppose that M is not polyform. Then there exist a nonzero
submodule K of M and a nonzero homomorphism f : K → M such
that Ker(f) ⊴ K. But we have that HomR(M,K)f ∕= 0. So, there
exists 0 ∕= g : M → K such that gf ∕= 0 and it follows that gf is a
monomorphism (see Theorem 1.4). Thus g is a monomorphism.
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Now, 0 = Ker(gf) = g−1(Ker(f)) ∼= Ker(f)∩ Im(g), because g is a
monomorphism. Since Ker(f)⊴K, we have necessarily Im(g) = 0 which
is a contradiction.

In the next proposition we denote by M̂ the injective hull of M in
�[M ] (see [5, p. 37]).

Proposition 2.3. Let M be a retractable module such that every nonzero
f ∈ HomR(M, M̂) is a monomorphism. Then M is critically compress-
ible.

Proof. It follows from Proposition 1.3 and from the fact that M̂ is M -
injective.

We can see easily from the above proposition that if M is quasi-
injective then the Zelmanowitz’s question has a positive answer.

Proposition 2.4. Let M be a retractable uniform module such that
End(M) is a domain. Then the following conditions are equivalent:

(i) M is critically compressible;

(ii) M is polyform;

(iii) M is fully retractable.

Proof. The equivalence (i) ⇔ (ii) follows directly from Proposition 1.5.
(iii) ⇒ (ii) follows from Proposition 2.2. Now we prove (ii) ⇒ (iii).
Since M is polyform and uniform, it is monoform as it was seen before.
Therefore if X is a nonzero submodule of M and g is a nonzero homomor-
phism from X to M , then it is a monomorphism. Since M is retractable,
HomR(M,X) is nonzero and we have that HomR(M,X)g ∕= 0.

Now, we give one more class of modules where the Zelmanowitz’s
question has an affirmative answer. We refer to [5] for a definition of
quasi-projective module.

Theorem 2.5. Suppose that M is a quasi-projective module satisfying
the Zelmanowitz′s hypotheses. Then M is polyform.

Proof. We have that M is retractable. According to ([8], Proposition
2.2), it follows that M is a retractable module if and only if M is fully
retractable. From Proposition 2.4 we have that M is polyform.
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3. Primeness condition

In this section we consider the class C of rings such that for every
prime left R-module M and for any nonzero elements x, y ∈ M one has
AnnR(x) = AnnR(y).

We recall that a ring R is called left (right) duo ring if every left
(right) ideal of R is an ideal of R. Obviously commutative rings are left
(right) duo rings. The next result shows that left (right) duo rings are
also in C.

Proposition 3.1. Let R be a left duo ring. Then R ∈ C.

Proof. Let RM be a prime module. Since R is a left duo ring, for any
0 ∕= x ∈ M , AnnR(x) = {r ∈ R : rx = 0} is an ideal of R. Then for
every r ∈ AnnR(x) and a ∈ R, ra ∈ AnnR(x) and this implies that
r ∈ AnnR(Rx). Thus AnnR(x) ⊆ AnnR(Rx) and obviously AnnR(x) =
AnnR(Rx). Since M is a prime module, we have AnnR(Rx) = AnnR(Ry)
for every nonzero x, y ∈ M , and it follows that AnnR(x) = AnnR(Rx) =
AnnR(Ry) = AnnR(y).

Now we are able to give our result.

Theorem 3.2. Let R be in C, M a retractable R-module such that
End(M) is a domain. Then M is a polyform module.

Proof. Firstly we note that by Proposition 1.2, M is a compressible mod-
ule. Then it is easy to see that M is a prime module.

Let K,L be submodules of M such that K ≤ L ≤ M and K ⊴ M ,
and suppose that � ∈ Hom(L/K,M). We need to prove that � = 0. By
contradiction, we suppose that there exists l ∈ L such that (l+K)� ∕= 0.
Since Rl ∕= 0 we can consider the canonical projection � : L → L/K.
Thus we have (l)� ∕∈ K so that �� ∕= 0. Since M is a retractable module
such that every nonzero endomorphism of M is a monomorphism, we
have by Proposition 1.2 that there exists a monomorphism g : M → Rl.
So we can consider the following composition:

' : M
g
→ L

�
→ L/K

�
→ M.

Since g ∕= 0, there exists m ∈ M such that (m)g ∕= 0 and so, there exists
r ∈ R such that (m)g = rl ∕= 0. Thus, r ∕∈ AnnR(l) = AnnR(x) for every
x ∈ M ∖ {0}, by hypothesis. Therefore r((l +K)�) ∕= 0 and so rl ∕∈ K.
In this way we had proved that (m)' ∕= 0 and it follows that ' needs to
be a monomorphism by our hypothesis. On the other hand, since K⊴M
we have (M)g ∩K ∕= 0 and so 0 ∕= (K)g−1 ⊆ Ker ('), a contradiction.
Therefore we need to have � = 0 and the result follows.
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Corollary 3.3. The Zelmanowitz’s question has an affirmative answer
for modules over rings which are in C.

In ([5], 3.13), it was given a property of an R-module M which is
important for primeness conditions. In our case this property has an
important role because it allows us to give an answer to this question in
an another case. It is the following:

(∗) For any nonzero submodule K of M , AnnR(M/K) ∕⊂ AnnR(M),
i.e., there is r ∈ R∖AnnR(M) such that rM ⊂ K.

Theorem 3.4. Let M be a retractable module satisfying (∗) and such
that every nonzero endomorphism of M is a monomorphism. Then M is
monoform.

Proof. By Proposition 1.2, M is compressible and so it is a prime module.
Let L be a nonzero submodule of M and f : L → M such that 0 ∕= IM ⊆
Ker(f) for some ideal I of R. Then I((L)f) = 0 and hence (L)f must
be zero. This is clear because M is a prime module.

Now we prove that M is monoform. Let K,L be nonzero submodules
of M such that K ≤ L ≤ M , we need to show that HomR(L/K,M) = 0.
By contradiction suppose that there exists a nonzero g : L/K → M .
Considering the canonical projection � : L → L/K, f = �g : L → M
is nonzero. Since that M satisfy (∗), there exists r ∈ R such that 0 ∕=
rM ⊂ K ⊆ Ker(f). Taking I = (r) the ideal generated by r, we have
0 ∕= IM ⊆ K ⊆ Ker(f) and according to the previous paragraph f
needs to be zero, an absurd. Therefore HomR(L/K,M) = 0 and M is
monoform.

Moreover if M is a uniform module in the above theorem, then M is
critically compressible and so the Zelmanowitz’s question is affirmatively
answered in this context.
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