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Abstract. Let G and H be groups which act compatibly
on one another. In [2] and [8] it is considered a group construction
�(G,H) which is related to the nonabelian tensor product G⊗H. In
this note we study embedding questions of certain semidirect prod-
ucts A⋊H into �(A,H), for finite abelian H-groups A. As a conse-
quence of our results we obtain that complete Frobenius groups and
affine groups over finite fields are embedded into �(A,H) for con-
venient groups A and H. Further, on considering finite metabelian
groups G in which the derived subgroup has order coprime with its
index we establish the order of the nonabelian tensor square of G.
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on occasion of his 70-th anniversary

Introduction

Let K and H be groups each of which acts upon the other (on the right),

K ×H → K, (k, ℎ) 7→ kℎ; H ×K → H, (ℎ, k) 7→ ℎk

and on itself by conjugation, in such a way that for all k, k1 ∈ K and
ℎ, ℎ1 ∈ H,

k(ℎ
k1) =

(

(

kk
−1
1

)ℎ
)k1

and ℎ(k
ℎ1) =

(

(

ℎℎ
−1
1

)k
)ℎ1

. (1)
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In this situation we say that K and H act compatibly on each other.

An operator � in the class of (operator) groups has been introduced in
[8] (see also [2] and [9]) which is defined as follows: let K, H be as above,
acting compatibly on each other, and H' an extra copy of H, isomorphic
through ' : H → H', ℎ 7→ ℎ', for all ℎ ∈ H. Then we define the group

�(K,H) := ⟨K,H' ∣ [k, ℎ']k1 = [kk1 , (ℎk1)'], [k, ℎ']ℎ
'
1 = [kℎ1 , (ℎℎ1)'],

for all k, k1 ∈ K, ℎ, ℎ1 ∈ H⟩.

In particular we write �(H) for �(H,H) when all actions are conju-
gations (cf. [12]).

Besides its intrinsic group-theoretic interest, it follows from Proposi-
tion 1.4 in [3] that there is an isomorphism from the subgroup [K,H']
of �(K,H) onto the nonabelian tensor product K ⊗H (as introduced by
R. Brown and J.-L. Loday [1]), such that [k, ℎ'] 7→ k ⊗ ℎ, for all k ∈ K
and ℎ ∈ H. It is worth mentioning that [K,H'] is a normal subgroup of
�(K,H) and that �(K,H) = ([K,H'] ⋅K) ⋅H', where the dots denote
semidirect products.

On discussing nilpotency conditions on �(K,H) in [10], where K and
H are nilpotent groups, we observe that even in very elementary situ-
ations (in which at least one of the actions is non-nilpotent) the group
�(K,H) fails to be nilpotent. In fact, with appropriate actions �(Cp, C2)
contains the dihedral group of order 2p (where p denotes an odd prime),
while �(V4, C3) contains the alternating group A4 (here Cn denotes the
cyclic group of order n and V4 is the Klein four group; see [10] for details).

In this note we are interested in embedding certain split extensions
A ⋊ H into �(A,H), where A is an abelian H-group acting trivially on
H. It is an easy exercise to check the compatibility of these actions for
any given action of H on A. In the present situation we write �∗(A,H)
for the corresponding group �(A,H). If B is any H-subgroup of A, then
B ⋅H means the semidirect product of B by H. We also write [A,H] for
the subgroup of A generated by the set {a−1aℎ ∣ a ∈ A, ℎ ∈ H}.

With the above notation we can formulate

Proposition A. If (∣A∣, ∣H∣) = 1 then [A, H] ⋅ H is embedded into
�∗(A,H). If, in addition, A = [A, H] and A ∕= 1, then �∗(A,H) is
non-nilpotent.

In order to deal with some situations involving non-coprime actions
we prove

Proposition B. If A is a finite group and there is a central element
ℎ ∈ H such that ℎ acts fixed-point-free (f.p.f., for short) on A, then
A⋊H is embedded into �∗(A,H).

In particular if F = GF (q), the finite field with q elements, then the
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affine group An(F ) is embedded into �∗(A,GLn(F )), where here A ∼=
(Fn,+) is the translation subgroup.

Next we shall consider finite metabelian groups G in which the derived
subgroup G′ has order coprime with its index. We observe that the
defining relations of �(H,K) are externalisations of commutator relations.
Thus there is an epimorphism � : [G,G'] → G′, [x, y'] 7→ [x, y], for all
x, y ∈ G, whose kernel we denote by J(G). As usual we write M(G) for
the Schur Multiplier of G and Gab for the abelianized group G/G′. Our
contribution is
Proposition C. Let G be a finite metabelian group such that ∣G′∣ and
∣Gab∣ are coprime. Then

(i) ∣G⊗G∣ = n∣G′∣ ⋅ ∣Gab ⊗ℤ Gab∣;

(ii) ∣J(G)∣ = n∣Gab ⊗ℤ Gab∣,

where n is the order of the Gab-stable subgroup of M(G′).
Notation in this note is fairly standard. For elements x, y, z in an

arbitrary group G, the conjugate of x by y is xy = y−1xy; the commutator
of x and y is [x, y] = x−1xy and our commutators are left normed; in
particular [x, y, z] = [[x, y], z].

Throughout the paper we assume that the groups K and H act com-
patibly on one another.

1. Proofs

Our starting point is the embedding of K ⊗ H into �(K,H) via the
isomorphism K ⊗ H ∼= [K,H'] given by k ⊗ ℎ 7→ [k, ℎ'] for all k ∈
K, ℎ ∈ H (cf. [3], Proposition 1.4). By [2, Theorem 1],

�(K,H) = [K,H']H'K ∼= ((K ⊗H)⋊H)⋊K.

We shall use this decomposition without any further reference. This
together with [1, Proposition 2.3] gives

Lemma 1. The following relations hold in �(K,H) for all k, x ∈ K and

ℎ, y ∈ H:

(a) [k, ℎ'][x,y
'] = [k, ℎ']x

−1xy = [k, ℎ'](y
−xy)' ;

(b) [k, ℎ']
[x,y']−1

= [k, ℎ']x
−yx = [k, ℎ'](y

−1yx)' ;

(c) [[k, ℎ'], [x, y']] = [k−1kℎ, (y−xy)'];

(d)
[

[k, ℎ'], [x, y']−1
]

= [k−1kℎ, (y−1yx)'].
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The above relations immediately lead to the

Corollary 1. (a) If K acts trivially on H, then [K,H'] is abelian;

(b) If K and H act trivially on each other, then [K,H'] is isomorphic to

the ordinary tensor product Kab ⊗ZZ Hab of the abelianized groups.

Proof of Proposition A. Since A is abelian and acts trivially on H, [5,
Proposition 2.3] gives an isomorphism [A,H'] ∼= A⊗ℤHI(H), where
I(H) denotes the augmentation ideal of ℤH, such that [a, ℎ'] 7→ a ⊗
(ℎ − 1). On the other hand there is an H-epimorphism � : [A,H'] →
[A,H], [a, ℎ'] 7→ [a, ℎ] = a−1aℎ. It folllows from [11, 11.4.2] that Ker(�)
is isomorphic to the first homology group H1(H,A). Since gcd(∣A∣, ∣H∣) =
1 we have H1(H,A) = 0 (here we use additive notation in A), so that
� is an H-isomorphism. Therefore [A,H'] ∼= [A,H] and, consequently,
the subgroup [A,H'] ⋅ H' of �∗(A,H) is isomorphic to the semi-direct
product [A,H] ⋅ H. If in addition [A,H] = A, then certainly all terms

i(�

∗(A,H)) of the lower central series of �∗(A,H) will contain the sub-
group [A,H'] ∼= A. This finishes the proof. □

We recall that a finite group G containing a proper subgroup H ∕= 1
such that H ∩Hg = 1 for all g ∈ G ∖H is called a Frobenius group. The
subgroup H is called a Frobenius complement. By a celebrated theorem
of Frobenius, the set N = G ∖ (∪x∈G(H

∗)x) is a normal subgroup of G
(called its Frobenius kernel) such that G = NH and N ∩ H = 1. We
have that ∣H∣ divides ∣N ∣ − 1. If ∣H∣ = ∣N ∣ − 1, then we say that G is
a complete Frobenius group; in this case the kernel N is an elementary
abelian group (see for instance [14]).

Corollary 2. Every finite Frobenius group with an abelian kernel A and

complement H is embedded into �∗(A,H).

Proof of Proposition B. Let ℎ be a central element of H such that ℎ acts
f.p.f. on A. Since A is abelian and acts trivially on H, [A, ℎ'] = {[a, ℎ'] :
a ∈ A} is a subgroup of �∗(A,H). Further, there is a homomorphism
� : [A, ℎ'] −→ A such that [a, ℎ'] 7→ a−1aℎ. Because ℎ is central in H,
we have for all a ∈ A and x ∈ H,

� ([a, ℎ']x) = �([ax, ℎ']) = a−xaxℎ = a−xaℎx =
(

a−1aℎ
)x

= (�[a, ℎ'])x .

Thus � is an H-homomorphism. Further, if A = {a1, ⋅ ⋅ ⋅ , ar}, then
Im(�) = {a1

−1a1
ℎ, ⋅ ⋅ ⋅ , ar

−1ar
ℎ}. As aℎ = a implies a = 1, it follows

that ai
−1ai

ℎ = aj
−1aj

ℎ if and only if ai = aj . Hence ∣Im(�)∣ = ∣A∣. It is
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clear that ∣[A, ℎ']∣ ≤ ∣A∣. Therefore � is an H-isomorphism and A ⋊H
is embedded into �∗(A,H). □

As a consequence of Proposition B we obtain

Corollary 3. The affine group An(F ) is embedded into �∗(A,GLn(F )),
where F denotes the finite field with q elements GF (q) and A ∼= (Fn,+)
denotes the translation subgroup.

Proof. Set ℎ = �In, where In denotes the identity matrix of order n and
� is a generator of the multiplicative group (F∖{0}, ⋅). Then ℎ is central
in GLn(F ) and acts f.p.f. on A. Thus the corollary follows from the
above result.

Now we observe that there is a epimorphism � : [G,G'] → G′,
[x, y'] 7→ [x, y], whose kernel is denoted by J(G). Result in [1] implies
that the exact sequence

1 −→ J(G) −→ [G,G'] −→ G′ −→ 1 (2)

yields a central extension. On denoting by Δ(G) the subgroup ⟨[g, g']∣g ∈
G⟩ of �(G) we have that the section J(G)/Δ(G) is isomorphic to the
Schur Multiplier of G (cf. [7]).

We need a couple of lemmas before the proof of Proposition C.

Lemma 2. ([12, Lemma 2.1] and [13, Lemma 3.1]) The following rela-

tions hold in �(G), for all x, y, z ∈ G.

(i) [x, y', z] = [x, y, z'] = [x, y', z'];

(ii) [x', y, z] = [x', y, z'] = [x', y', z];

(iii) [g, g'] is central in �(G), for all g ∈ G;

(iv) [g, g'] = 1, for all g ∈ G′;

(v) If g ∈ G′ then [g, ℎ'][ℎ, g'] = 1, for all ℎ ∈ G.

Lemma 3. Let G = G′ ⋅ H be a semidirect product of its subgroups G′

and H. Then in �(G),

(i) [H, (G′)'] = [G′ , H'];

(ii) Δ(G) = ⟨[ℎ, ℎ'] ∣ ℎ ∈ H⟩.
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Proof. Part (i) is a consequence of the item (v) of Lemma 2. As for part
(ii), let g ∈ G be an arbitrary element. Then g = cℎ for some elements
c ∈ G′ and ℎ ∈ H. Thus we have:

[g, g'] = [cℎ, (cℎ)']

= [c, ℎ']ℎ[c, c']ℎ
2
[ℎ, ℎ'][ℎ, c']ℎ

'
(by commutator identities)

= [c, ℎ']ℎ[ℎ, ℎ'][ℎ, c']ℎ
'

(by Lemma 2 (iv))

= ([c, ℎ'][ℎ, c'])ℎ
'

[ℎ, ℎ'] (by Lemma 2 (iii))
= [ℎ, ℎ'], (by Lemma 2 (v)).

Therefore Δ(G) = ⟨[ℎ, ℎ'] ∣ ℎ ∈ H⟩, as required.

Proof of Proposition C. Firstly we observe that as gcd(∣G′∣ ,
∣

∣Gab
∣

∣) = 1,
by Schur-Zassenhaus Theorem [14, Theorem 2.7.4], there is a subgroup
H of G, with H ∼= Gab, such that G = G′ ⋅H is a semidirect product of G′

and H. Further, the tensor squares H⊗H and Gab⊗Gab are isomorphic.
Since Gab is abelian, Corollary 1 (b) gives Gab⊗Gab ∼= Gab⊗ZZG

ab. Using
Lemma 3.2 in [8] we obtain an exact sequence

1 −→ [G′ , G'] −→inc [G,G'] −→ Gab ⊗Gab −→ 1 (3)

where [G,G'] ≤ �(G). As gcd(∣G′∣ ,
∣

∣Gab
∣

∣) = 1, it follows from (2) and
(3) that

∣

∣G′
∣

∣

∣

∣

∣
Gab ⊗ZZ Gab

∣

∣

∣
divides ∣[G,G']∣ . (4)

On the other hand, [8, Theorem 3.3] gives that

∣[G,G']∣ divides
∣

∣G′ ∧G′
∣

∣

∣

∣

∣
G′ ⊗ZZ[Gab] I(G

ab)
∣

∣

∣

∣

∣

∣
Gab ⊗ZZ Gab

∣

∣

∣
(5)

where G′∧G′ is the exterior square of the ZZ-module G′. As G′ is abelian,
G′∧G′ ∼= M(G′) (cf. [7]). By [5, Proposition 5.2] we have that G′⊗ZZ[Gab]

I(Gab) is isomorphic to the subgroup [G′, (Gab) ] of the group �∗(G′, Gab)
(here we assume that G′ acts trivially on Gab and Gab acts on G′ induced
by conjugation in G, that is, cG

′g = cg, for all c ∈ G′ and g ∈ G). Thus,
Proposition A gives

G′ ⊗ZZ[Gab] I(G
ab) ∼= [G′, Gab] = [G′, H]. (6)

Now it follows from the proof of [12, Proposition 3.5] that in �(G)

[G , G'] = [G′ , (G′)'][G′ , H'][H , (G′)'][H , H']
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where [H,H'] ∼= H ⊗H. However, by Lemma 3, [H, (G′)'] = [G′ , H']
and consequently

[G , G'] = [G′ , (G′)'][G′ , H'][H , H']. (7)

Since G′ and H are abelian, we have [G′, (G′)'][H,H'] ⊆ J(G), so that

[G′, H] = �([G′, H']) = �([G,G']) = G′.

This, together with (6), yields

G′ ⊗ZZ[Gab] I(G
ab) ∼= G′. (8)

From (4), (5) and (8) it follows that

∣G⊗G∣ = ∣[G,G']∣ = n
∣

∣G′
∣

∣ ⋅
∣

∣

∣
Gab ⊗ZZ Gab

∣

∣

∣
(9)

where n is a divisor of ∣M(G′)∣. Using (9) and sequence (2) we obtain

∣J(G)∣ = n∣Gab ⊗ℤ Gab∣.

Let us show that n = ∣M(G′)H∣, where M(G′)H denotes the H-stable
subgroup of M(G′) (see [6] for an overview). We observe that M(G) ∼=
J(G)/Δ(G). Now by Lemma 3 (ii), Δ(G) = ⟨[ℎ, ℎ'] ∣ ℎ ∈ H⟩ ⊆ [H,H'].
Considering that [H,H'] ∼= H ⊗H ∼= Gab ⊗ZZ Gab and H is abelian, we
have

∣M(G)∣ = n

∣

∣

∣

∣

[H,H']

⟨[ℎ, ℎ'] ∣ ℎ ∈ H⟩

∣

∣

∣

∣

= n ∣H ∧H∣ = nM(H). (10)

On the other hand, since the orders of G′ and H are coprimes, from [6,
Corollary 2.2.6]

M(G) ∼= M(H)× M(G′)H . (11)

The required equalities then follow by (10) and (11). □

Corollary 4. Let G be a group as given in Proposition C. If M(G′) = 1,
then

(i) G⊗G ∼= G′ × (Gab ⊗ZZ Gab);

(ii) J(G) ∼= Gab ⊗ZZ Gab.

Proof. If M(G′) = 1 then previous result yields ∣J(G)∣ =
∣

∣Gab ⊗ZZ Gab
∣

∣ .
But, according to the proof of Proposition C, J(G) contains [H,H'],
which is isomorphic to Gab ⊗ZZ Gab. Hence

J(G) = [H,H'] ∼= Gab ⊗ZZ Gab

This proves part (ii). Part (i) follows from (ii) and the central extension
(2).
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